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Abstract

In this research, we present a novel Fuzzy Finite Automat
(FFA) for predicting pedestrian’s intention for advanced driver
assistant system. Because dangerous pedestrians generally have a
higher moving velocity and lateral moving direction than the
‘standing’ pedestrian as well as tracking trajectory in the time
domain, we estimate the state probability of pedestrian by
considering spatial domain such as pedestrian’s face (looking back
or not). To consider the above characteristics over temporal and
spatial domain, ‘distance between a pedestrian and curb’,
‘distance between a pedestrian and vehicle’, and ‘head orientation
and orientation variation’, and ‘speed of a pedestrian’ are used to

generate probability density functions for the state transition value.

In this paper, the four states connected with transitions of FFA are
defined as Walking-SW, Standing, W-Crossing, and R-Crossing,
and these states correspond to ‘“‘walking sidewalk,” “standing
sidewalk,”  “walking crossing,” and “running crossing,”
respectively. The state changes are controlled by various transition
probabilities. There is no standard dataset for evaluating
prediction performance using a stereo thermal camera, and we
therefore created a KMU prediction dataset. The proposed
algorithm was successfully applied to various pedestrian video
sequences of the dataset, and showed an accurate prediction
performance.

Introduction

Among a few researches related to advanced driver assistant
system (ADAS), pedestrian’s intention prediction is one of
important works to avoid collision between a pedestrian and a
vehicle in advance. In particular, most pedestrian-vehicle accidents
are highest between 4 a.m. and 6 a.m., far infrared (FIR) camera
based pedestrian detection has been receiving attention in recent
years. However, many researches have been focusing on only
pedestrian detection in the field of driver’s view. Therefore another
solution is necessary to decrease accidents; a driver can get alert
about the pedestrian who is entering the road without noticing a
vehicle.

Recent studies on pedestrian’s intention prediction using video
camera install in a vehicle are as follows. Gandhi and Trivedi [1]
predicted pedestrian’s path using pedestrian’s body direction.
Pedestrian’s body direction is firstly estimated using histogram of
gradient (HOG) and support vector machine and final pedestrian’s
path is predicted using Bayesian framework based on combination
of pedestrian detection and previous state information. Keller et al.
[2] proposed a system for pedestrian path prediction and action
classification within short time intervals using stereo vision data
obtained from the vehicle. Xu et al. [18] proposed sudden
pedestrian crossing (SPC) detection using a potential reference line
and pedestrian detection. In this study, SPC is detected when the
ratio of overlap between the pedestrian and reference line, along
with the movement magnitude, is over a predefined threshold.
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Huang et al. [4] investigated prediction of pedestrian's intention
based on head pose and pose change features using a discrete
dynamic Bayesian network (DBN). This study used a hierarchical
clustering method to process the histogram of head pose and the
change of head pose under the assumption that different head pose
patterns reflect different intentions. The clustering results are used
as features feeding into a dynamic Bayesian network. Kooij et al.
[5] also used a DBN for pedestrian path prediction in the
intelligent vehicle domain. The model incorporates the pedestrian
situational awareness such as head orientation, situation criticality
such as the distance between vehicle and pedestrian, and spatial
layout such as the distance of the pedestrian to the curbside.

This research presents novel fuzzy finite automata (FFA) for
pedestrian’s intention prediction for intelligent ADAS instead of
DBN using a stereo FIR camera mounted on the front-roof of a car.
For pedestrian detection and tracking, we use the low-level feature
with boosted type random forest classifier. To consider the
characteristics of pedestrian over temporal and spatial domain, the
variations in trajectory, a pedestrian distance derived from dense
stereo, the speed of a pedestrian, and direction of head are used to
generate probability density functions (PDFs) for the state
transition value of FFA. In contrast to the existing DBN related
methods [4][5], the novel pedestrian’s intention prediction
proposed herein uses FFA with four probability density functions
based on spatial-temporal feature variations. Moreover, it can
handle continuous spaces by combining the capabilities of
automata with fuzzy logic. The moving direction and velocity of
pedestrian continuously changes over time; hence, the states of
previous pedestrian influence the state of the current frame.
Therefore, for pedestrian’s intention prediction as shown in Fig. 1,
fuzzy finite automata are the most appropriate tools because the
variables are time-dependent and continuous.

1. R-Crossing
2. Walking-SW
3. Walking-SW

AN

1. W-Crossing
2. R-Crossing

Fig. 1. Examples of intention prediction'. of pedestrians (W-Crossing: Walking
Crossing, R-Crossing: Running Crossing, Walking-SW: Walking Sidewalk)

Pedestrian Detection and Tracking

For pedestrian’s intention prediction, pedestrian detection and
tracking is essential work. In this study, we use a cascade random
forest (CaRF) with low dimensional Haar-like features and
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oriented center symmetric-local binary patterns (OCS-LBP), based
on the previous work in [6], to verify a pedestrian region. For
pedestrian tracking, we perform real-time online learning for
trackers using boosted random ferns (BRFs) and update trackers in
each frame by using of [7], unlike the previous online learning-
based tracking algorithm. In addition, a feed-forward data
association is used to link detection responses to trajectories using
short-term optimization based on similarities in position, size, and
appearance. Pedestrian detection and tracking information is used
for the velocity and direction estimation of pedestrian.

Fuzzy Finite Automata

For pedestrian’s intention recognition, recognition method
should take into account robust against the variability of
appearance of shape, moving speed, and direction of pedestrian
together. One approach to recognize the temporal pattern is the
hidden Markov models (HMMs) [8]. HMMs have been showed
good performance in speech recognition, these models are difficult
to understand because the obtained states usually do not coincide
with the ones that human experts [9]. In addition, HMMs require
an exponential number of parameters (exponential in the number
of objects) to specify the transition and observation models and
HMMs also require exponential time for inference [10]. DBN is a
way to extend Bayes nets to model probability distributions over
semi-infinite collections of random variables 7 7 7, and these

random variables can be partition into 7 _(y | x,,y,) to represent

the input, hidden and output variables of a state-space model [10].
However, it has the similar problem with HMMs such as
exponential time for parameter estimation and inference when the
number of states is increased

In contrast to previous methods based on HMMs and DBN,
this study use fuzzy finite automata (FFA) [11] to predict
pedestrian’s behavior intention. For FFA, the state is represented
graphically by nodes, while the transition is represented by arcs
between the nodes. The states have corresponding membership
values, and these states are interpreted as the probability of a
pedestrian’s event at a particular time.

In this paper, the four states connected with transitions of
FFA are defined as Walking-SW, Standing, W-Crossing, and R-
Crossing, and these states correspond to “walking sidewalk,”
“standing sidewalk,” “walking crossing,” and “running crossing,”
respectively. Each state is associated with probability distributions
of five features. The state changes are controlled by various
transition probabilities. For finite automata, the state is represented
graphically by nodes, while the transition is represented by arcs
between the nodes as shown in Fig. 2.

FFA with final states are considered as a special case of fuzzy
Moore finite-state automata [12], and a finite set of output symbols
Z is defined as Z ={Danger,Safe} » which only has two output
symbols (labels). A finite set of output symbols Z is defined as
Z = {accept(Danger),reject(Safe)} , which only has two output
symbols  (labels). As the set of final states
Q... ={W —Crossing,R— Crossing} ( O m €0 ) only has two

states, the final decision of the system is determined by using the
following output assignment by modifying [13].

0)(6],-) = accept(Danger) = fq,, € Qﬁn
o(q,) = reject(Safe) = fq/ &0,

(@)
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In equation (1), if the activate state q, is an element of Qg , it

is declared a ‘danger of pedestrian’.

Fig. 2. Proposed FFA for predicting of pedestrian’s intention. The circular
nodes represent a state, while the transition from the current state to the next
state is shown by an arrow with an input symbol (event). The start state is
represented by the purple color.

In Figure 2, membership value (mv) of each state at time tis

denoted as ﬂ'O (Walking— SW) and it is allowed to have a value

between 0 and 1 as opposed to only 0 or 1; this is called a fuzzy
state as opposed to a crisp state and permits partial membership
according to [12]. In this study, the most appropriate mv of each
state at time t+1 is estimated on product between mv of time t and
transition values (tvs) which are presented in equation (5).

The fuzzy augmented transition function § maps the active state
to the fuzzy interval [0,1]. The membership assignment of state g,

at t+1 times takes place upon the tvs from state g, to q,0n input

a, 1s represented as

1g) =6((qu'(g))a,.q;) = F (' (q,),6(q,,a,,9,)) )
which means that the mv of the state g, at time t+1( u (,))
is computed by function F| using the mv of ¢, at time t ('(q,))
and the weight of the transition §(g,,q, .q;) Here, ¢, is an input
symbol (event) is represented by a vector [0,1]. In this study, we
assume that all the states are activated simultaneously.
A single output mv can be assigned as the mv (“‘“(qj) ) fora

particular state at time t + 1 by using the following maximum
multi-membership resolution [11][12].
t+1 t
u"(q,)=Max[F(u'(q,),6(q;,a,,9;,))] 3
i=lton
where 7 is the number of simultaneous transitions from states
q;’s to state q; prior to time t+1.

Hence, an event in fuzzy automata can take the system to more
than one state with different degrees. The tvs connected to a state
are estimated from the probability values of the PDFs for state
Walking-SW, Standing, W-Crossing, and R-Crossing, respectively,
and estimated using equation (4) with the input feature value.

ayy ap=ay—ay /4 as=a,-a,/4 a,=a;—a,/4 )
Uy =y —ay, /4 ay Ay =0y —ayl4 ay=ay—ayl4
ay =a,—ay /4 a,=ay—ay,/4 Q33 a, =ay—a;/4
ay=ay—a,/4 a,=a5-ayl4 az=a,-a,/4 Ay
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where, four self-transition values (a11 , 0y, Oy, Ay, )are estimated

for each state at time ¢ by using a linear combination of the PDFs
for Walking-SW, Standing, W-Crossing, and R-Crossing.

FFA permit partial membership and all events can occur
simultaneously; hence, using these conditions, the next state
candidate mv vector q =[q,-:-q,] can be estimated by using the

dot product between mvs of current states and tv matrix as follows,

all cee al

q=[mv,--mv]-| + ®)

a

nl o am’t

After calculating the next state candidate vector g, the next

activate state and its mv at time t+1 are estimated by using the
Max operation [12] based on equation (5) and (6).

1 (g;)=Max(q,---q,] (6)

Spatial-temporal Features Extraction

Because this study uses the spatial-temporal features as the tv of
each state, we make the four PDFs for individual feature using the
training data. As the spatial feature, ‘distance between a pedestrian
and curb’, ‘distance between a pedestrian and vehicle’, and ‘head
orientation and orientation variation’ are used. Moreover, as the
temporal feature, ‘speed of a pedestrian’ is used.

Distance between a pedestrian and curb (DPC)
Many pedestrians are usually stay nears the curb before crossing
the street and if suddenly approaching pedestrians on the curb
means that the probability of crossing road is high.

First, to remove the perspective effect in the image and distortion
occurred by top view camera location and detect road curb, we use
the inverse perspective mapping (IPM) [14] to generate a top view
of road image as shown in Fig. 3. By applying IPM, we can focus
our attention on only a sub-region of the input image and compute
the exact distance from a pedestrian to road curb.

a (b)
Fig. 3. IPM example, (a) the IPM view, (b) detected road curb

After IPM processing, we estimate the distance from left and right
curb to a pedestrian. DPC vector at time t consists of two values,
DPC' =[dist _LC,dist_RC] . Here, dist LC means that the
distance from left curb to a pedestrian and djs¢ RC means that the
distance from right curb to a pedestrian. From the estimated DPC
data using annotated training data, we generated the PDFs for four
states  Pg car X|Walking — SW) ,  pg corIStanding)
Pa_car XIW — Crossing), and py qr(X|R — Crossing)as shown
in Fig. *, Thus, Py _cor &IWalking — SW)  and
Pa_car (X|Standing)are used to compute the transition values for
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events a;; and a,, , respectively, according to input vector x,
while Py cqr XIW — Crossing) and py cqr XIWalking — SW)
are used to compute the transition values for event a;; and a4y,
respectively. In Fig. 4, for Walking-SW and Standing has the
longer distance between the pedestrian and the curb than other two

states. In contrast, W-Crossing and R-Crossing has the shorter
distance between the pedestrian and the curb than other two states.

Distance between a pedestrian and a curb
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Fig. 4. Two-dimensional PDF of Dist LC and Dist RC. X-axis represents
Dist_LC feature, and Y-axis represents Dist_RC feature.

Distance between a pedestrian and a vehicle (DPV)
Distance between the pedestrian and a car (DPV) is an important
clue in accidents between pedestrians and cars because the
probability of an accident is higher as the DPC is closer. In this
paper, to measure the DPV, two thermal cameras were configured
for stereo as shown in Figure 5 (a).

From the thermal stereo camera, we make the disparity map to
estimate the depth map as shown in Figure 5 (b). Depth map is
used to measure the distance between the pedestrian being tracked
and the car in the current frame.

Fig. 5. Disparity map generation, (a) stereo thermal camera mounted on front-
roof of a car, (b) disparity map
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DPV vector at time t consists of two values, DPV' = [depth, dist ]-
Here dist, means the relative distance of the pedestrian from the

center x-axis of the car after IPM is performed. This value has the
positive when a pedestrian is right side against a car and has
negative value when a pedestrian is left side against a car. From
the estimated DPV data using annotated training data, we
generated the PDFs for four states.

Distance between a pedestrian and a vehicle
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P 8002

-0.3

- 0.24
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- 0.06

Depth

L qS92238%¢% X 2 R R 2

§3933383%833858838
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Fig. 6. Two-dimensional PDF of depth and Distx. X-axis represents the

distance feature, and Y-axis represents the depth feature.

Head orientation and orientation variation (HOV)

In general, a pedestrian tends to decide the next move position
while moving through the eye. Therefore, we use head orientation
and orientation variation (HOV) as one of cue to predict the
intentions.

First head of the pedestrian is detected using the OCS-LBP and the
four classes Boosted Random Forest classifier based on the [6]
within the current location of a pedestrian being tracked. After
head detection, we find the orientation of the pedestrian by
recognizing the detection of a head that is facing in any direction

out of four orientation classes ( 315" ~45 45 <135,
135" ~ 225°,225° ~315) as shown in Fig. 7.

Head orientation variation means a difference between the head
orientation in current frame from the previous frame.

HOV vector at time t consists of two values, HOV' =[HO,0V]-
Here, HO means that the head orientation of a pedestrian and OV
means that head orientation variation of a pedestrian. From the
estimated HOV data using annotated training data, we generated
the PDFs for four states.
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Head orientation and orientation variation
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Fig. 7. Two-dimensional PDF of head orientation and orientation variation. X-

axis represents orientation variation feature, and Y-axis represents head
orientation feature.

Pedestrian’s moving speed (PMS)

Pedestrian’s moving speed (PMS) of the pedestrian is valuable
information to predict the next location of the pedestrian because
pedestrians tend to keep the moving speed or suddenly increase
speeds when they try to cross the road. To measure the moving
speed of a pedestrian, we use the optical flow algorithms. PMS
vector at time t consists of two values, PMS’ = [Mag of X —
axis,Mag of Y — axis] Here, Mag of X —axis and
Mag of Y — axis means that magnitude of optical flow in
orientation of X and Y axis, respectively. From the estimated PMS
data using annotated training data, we generated the PDFs for four
states.
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Fig. 8. Two-dimensional PDF of moving speed. X-axis represents moving
speed of X-direction, and Y-axis represents moving speed of Y-direction.
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Intention Prediction using FFA

After pedestrian detection and tracking algorithm is performed, the
pedestrian’s intention is predicted using the extracted feature. The
intention of the pedestrian as defined in this paper is about whether
a pedestrian in sidewalk wants to cross the road or not. We define
the two output symbols of FFA Z ={Danger,Safe} - The output

symbol ‘Danger’ includes two states {W-Crossing, R-Crossing}
and ‘Safe’ includes two states { Walking-SW, Standing}.
First, to estimate the intention of the pedestrian using the FFA, we
estimate new mv of four states § at t+1 by dot product between mv
of at time t and transition matrix using Equation (5).

After calculating the next state vector ([, the next activate state

and its mv at time t+1 are estimated by using the Max operation
using Equation (6).

Finally, after n times later, if the final sate is a member of a
finite set of Q,,, ={W —Crossing, R — Crossing} it is determined

as the ‘Danger and if the final sate is not a member of a finite set of
Q,, - it is determined as the ‘Safe’ > using Equation (1)

Experimental Results

Current dataset for pedestrian detection or tracking are
unsuitable because it was captured from a visible camera and only
considers normal walking pedestrians without a sudden crossing
scenario. Therefore, we proposed a dataset for an evaluation of the
prediction of pedestrian intention. Our proposed KMU dataset was
captured from moving vehicles for prediction of pedestrian
intention using a moving stere¢o camera. Therefore, to evaluate the
performance of the proposed algorithm, we captured three types of
FIR stereo video sequences, 5 for training and 5 for testing, while
varying the speed and activities of the pedestrians. Table 1 shows
the number of sequences and frames for each class.

Table 1. Number sequences and frames for each class

Classes Sequences / Total Frames
Walking-SW 864 /1097

Standing 453 /1097
W-Crossing 198 /1097
R-Crossing 279 /1097

Sequences are labeled with event tags and time-to-event
(TTE in frames) values as the same method of [5]. Figure 9 shows
the performance evaluation graph on 5 testing data in terms of
average precision.

The overall average error rate is 24.5% and “Standing” class
shows the highest performance because it had the characteristic
that distinguished it from the other classes. In contrast, “W-
Crossing” class has the lowest performance because it includes a
few ambiguous pedestrian’s actions.
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Flg. 9. Average error rate using the proposed method on five test data.

Figure 10 shows the intention prediction results for the seven
test videos, respectively, when the proposed method was used.
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Fig. 10. Some example videos for pedestrian’s intention prediction. The green
box represents “Safe” and the red box represents “Danger”.

Conclusion and future works

The main contributions and overall procedures of our study
can be summarized as follows; This research presents novel FFA
instead of previous heuristic methods for pedestrian’s intention
prediction for intelligent ADAS using a stereo thermal camera
mounted on the front-roof of a car.

To consider the above characteristics over temporal and
spatial domain, ‘distance between a pedestrian and curb’, ‘distance
between a pedestrian and vehicle’, ‘head orientation and
orientation variation’, and ‘speed of a pedestrian’ used to generate
probability density functions (PDFs) for the state transition value
of FFA. The four states connected with transitions of FFA are
defined as Walking-SW, Standing, W-Crossing, and R-Crossing,
and these states correspond to “walking sidewalk,” “standing
sidewalk,” “walking crossing,” and ‘“running crossing,”
respectively.

Finally, we proposed a dataset for an evaluation of the
prediction of pedestrian intention as shown Table 1. Our proposed
KMU dataset was captured from moving vehicles for prediction of
pedestrian intention using a stereo thermal camera.

Experimental results showed that the proposed approach is
robust prediction results about pedestrian intention although
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vehicle and pedestrian are moving. However, there still exist a few
limitations on ambiguous pedestrian’s action.

In the future, we plan to solve some problems related to
ambiguous pedestrian’s actions by designing advanced finite state
automata and PDF's for pedestrian’s intention.
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