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Abstract
Human detection from depth images is gaining substan-

tial attention since depth information facilitates object extraction
from the background. In this paper, we propose a human detec-
tion method where search for humans is performed over regions
obtained from a pre-segmentation of the depth image. Our seg-
mentation scheme is based on K-means clustering of location,
depth values and surface normals of pixels. Once homogeneous
regions are determined, the top portion of the boundary of each
region in the segmentation map is extracted and matched with re-
alistic head-shoulder template curves. We evaluate our method
both on a publicly available dataset, and on our new human de-
tection dataset, which is composed of 500 depth images of humans
in diverse poses acquired in varying indoor environments.

Introduction
Since the introduction of low-cost depth sensors such as Mi-

crosoft Kinect, research on scene analysis of indoor environments
has gained momentum. Depth sensing provides rich information
on surface geometry and unambiguous depth relationships be-
tween the objects and other structures present in the scene. Thus,
depth information brings a powerful cue to segment objects of
interest from the background.

Correct detection of humans is essential for tracking algo-
rithms, especially for those that rely on detection at each frame.
These algorithms search for the presence of humans in each frame
separately, then relate detected human positions across video
frames to provide tracking output. Apart from tracking algo-
rithms, detecting unmoving humans in diverse, non-pedestrian
poses from still depth images is especially important for robots
performing domestic tasks or office service, for the care of sick,
elderly, or disabled people, and for indoor search and rescue op-
erations after a disaster.

Our main objective is to detect humans in indoor environ-
ments from depth images without assuming the following con-
straints:

• There is no constraint on the number of people present in
the scene.

• The humans are not assumed to be moving. Hence, the
detection algorithm does not employ approaches, such as
background subtraction, that rely on motion information.

• There is no restraint on the environment as long as the hu-
mans are in the range of the depth sensor. There can be any
amount of clutter in the scene.

• The only assumption on the pose of the people is that
their head and shoulder regions are at least partially visi-
ble. Humans can be seen in pedestrian poses, i.e. standing
and walking, or non-pedestrian poses, such as lying down,
fallen, etc.

• As long as head and shoulder region is not completely oc-

Figure 1. Samples from our new human detection dataset. White rectan-

gles indicate ground truth bounding boxes.

cluded, the humans can be seen occluded by other objects or
humans.

• The ground plane is not assumed to be visible. The ground
plane may be cluttered with furniture and other objects, or
the ground may not be in the field of view of the sensor.
Besides, humans can be on sofas, beds, or armchairs.

The object-background or object-object discontinuity in a
depth image can manifest itself either as depth discontinuity or
surface normal discontinuity, or both. We propose a method that
exploits the homogeneity of depth values and surface normals
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over regions corresponding to distinct objects. To this effect, we
apply K-means clustering to the depth pixels each represented as
a vector of weighted location, depth value and surface normal. In
addition to facilitate the search for candidate human occurences,
the segmented regions provide additional information that may
lead to a semantic interpretation of the environment; e.g. extrac-
tion of ground, walls, and furniture, as well as other objects of
importance.

After segmentation, the boundary of a segmented region is
examined to check whether its top portion resembles the shape
of the head-shoulders part of the body, known as ”omega-shape”
in human detection literature. We locate potential neck positions
at curvature minima, and then, we perform a full matching with
realistic head-shoulder template curves to cover a variety of head-
shoulder configurations.

In order to measure the effectiveness of our method, we con-
structed a dataset of 500 depth images containing humans in di-
verse poses (standing, sitting, sleeping, fallen, chatting, playing,
etc.), acquired from various indoor environments (kitchens, living
rooms, bedrooms, offices, classrooms, coffee shops, stores). The
scenes contain a varying number of people with significant occlu-
sion. We acquired the depth images with Microsoft Kinect Sen-
sor for XBox 360. The human occurences are manually labeled
with bounding boxes. See Figure 1, for sample images from our
dataset.

Related work
In most of the previous work dealing with human detection

from depth images, the main objective is tracking of moving hu-
mans. The people are assumed to be mostly in upright position,
i.e. standing, walking, and sometimes sitting; poses which can
be classified as pedestrian postures. Human detection approaches
that assume such pedestrian detection/tracking framework can ei-
ther rely on motion information to detect humans [15], [16] or
use individual depth frames to localize human regions [3], [4],
[6], [19]. Locating candidate regions using individual frames, and
then associating candidates across video frames is a common ap-
proach in tracking, which greatly reduces both false positives and
false negatives [5], [8], [14], [17], [20], [22].

Nizalowska et al [16] describe a tracking algorithm that uses
motion information to determine candidate human silhouettes.
The top of a silhouette is marked as a head region if the region
conformed with a set of rules of ”headness”. Nghiem et al [15]
apply background subtraction to detect moving objects, and then
search for head locations restricted to these moving objects. They
use the assumption that the head contour is nearly a full circle.
They also use HOG descriptors to further classify human regions
from non-human ones. However, these methods, which require
motion information to detect humans are not applicable to situa-
tions where humans are not moving in a domestic or office envi-
ronment, or after a disaster.

In some of the methods developed to detect human candi-
dates from individual depth frames, it is assumed that the ground
or the ceiling is visible [3], [14], [17], [22]. Bagautdinov et al. [3]
searched for the presence of objects/humans on a ground plane
using Bayesian inference. In [14], a method is proposed to track
walking people from RGB-D images. The ground plane is de-
tected and removed from the point cloud data, and the remaining
points are clustered to determine candidate human regions. Like-

wise, Zhang et al. [22] used RANSAC to detect the floor and
the ceiling in the point cloud to extract clusters from the remain-
ing point cloud that might correspond to human regions. Then a
HOG-based people detection method is applied on the clustered
regions. This approach is based on the assumption that humans
stand isolated in an upright position, and the environment is not
cluttered. In our method, we avoid the assumption that a ground
or ceiling plane is visible in the scene, since that does not always
hold in domestic environments where the scene is cluttered with
furniture and other home or office objects. Furthermore, humans
are not always standing on the ground at home; for example, they
are often seated or lying down on sofas (Figure 1).

In [6], the authors decomposed the point cloud into a set of
layers at different heights, then clustered each layer separately.
The clusters are classified into human or non-human via a ran-
dom forest classifier. The histograms of local surface normals are
used as features. The training and tests were performed on point
clouds in which the subjects are standing, walking, sitting, and in
some cases partially occluded. Jafari et al. [8] also assumed a
pedestrian setting, where the point cloud is projected onto a plane
to obtain a histogram of points and blob detection is performed
on the projection to determine isolated objects. An upper body
detector is applied to the local maxima of the depth values in a
blob to localize human occurences.

In [20], Xia et al. developed a human detection method that
aims at first detecting heads from the edge map of depth images.
They use Chamfer distance to a template head contour to find
candidate heads, then verify using a 3D head sphere model. To
reduce the high false positive rate, association between succes-
sive video frames is used. Choi et al [4] employed a graph-based
segmentation algorithm followed by a region merging step to de-
termine candidate human regions. Then they compute Histogram
of Depth (HOD) descriptors on the candidate regions and clas-
sify the regions using linear SVM. Choi et al. [5] developed an
elaborate human tracking system that applies various cues and de-
tectors to video data. Depth information can be integrated in this
system when available. Their depth-based shape detector employs
a binary head-and-shoulder template to evaluate the likelihood of
human presence in target locations.

In some other work, metric distances obtained through the
calibration of the depth sensor are used to eliminate regions that
do not correspond to the geometric configuration of standing hu-
mans [18]. Spinello and Arras [18] developed Histograms of Ori-
ented Depth (HOD) descriptor where gradients of depth image
are encoded. The HOD descriptor is combined with Histogram of
Gradients (HOG) of RGB image to be classified using SVM. They
computed and classified the descriptors only on windows whose
depth values conform with the proportions of standing humans.

The head-shoulder contour has a distinctive shape that is
salient for most human poses and view angles. This distinc-
tive shape is widely exploited for human detection, tracking, and
head-shoulder contour estimation from 2D intensity/color images,
and is referred to as ”omega-like shape” [7], [9], [10], [12], [13],
[21]. In most of these methods, a classifier is trained on features
extracted from rectangular image patches that contain head and
shoulders. In our work, instead of using a sliding window detector
trained on features extracted from head-shoulder image patches,
we directly extract the head and shoulder contour from segmented
regions, since depth and surface normal discontinuities in depth
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images provide a robust object-background separation. Mukher-
jee and Das [12], [13] have also extracted contours from candidate
regions to search for the presence of an omega shape; however
they determine candidate regions via adaptive background mod-
eling in color videos. Although we work on static depth images
rather than RGB images, and we perform a full segmentation over
the image, our approach is similar to [13]. The main difference is
that we extract the omega-shape candidate via determining neck
positions at curvature minima, and then, we perform a full match-
ing with realistic head-shoulder template curves to cover a variety
of head-shoulder configurations.

Existing depth datasets constructed for human detec-
tion/tracking assume a pedestrian detection framework. The im-
ages are acquired mostly in non-domestic environments, such as
university halls, offices, and laboratories. The Kinect Tracking
Precision Dataset (KTP) constructed by Munaro et al. [14] con-
sists of RGB-D sequences of people walking in a lab. The RGB-D
People Dataset [11], [18] contains more than 3000 RGB-D frames
acquired in a university hall from three static Kinect cameras. The
people in the dataset are in mostly upright position, walking or
standing. The UTKinect-HumanDetection Dataset [20] is a se-
quence of depth images taken by the Kinect sensor for XBOX
360. The sequence contains 98 depth images of two people walk-
ing in a lab environment. The Kinect Office Dataset, collected by
Choi et al. [5] is composed of 17 videos, each 2 to 3 minutes long,
acquired in an office from a static Kinect camera. People can be
found in sitting or standing positions. The 18 video sequences of
the Kinect mobile dataset [5] were obtained from a Kinect sensor
mounted on a mobile robot that wandered in the offices, corridors,
hallways, and cafeteria of an office building. The EPFL-LAB and
EPFL-CORRIDOR datasets described in [3] are created to track
multiple people in upright positions. In contrast to these datasets,
our new dataset contains scenes from various home and office en-
vironments, as well as stores and coffee shops, with people being
in both pedestrian and non-pedestrian poses.

Human detection from depth images
Our human detection algorithm is composed of three main

steps: First we segment the depth scene using K-means cluster-
ing, and merge adjacent planar regions. Prior to segmentation
of the depth image, the zero depth values are filled by the al-
gorithm developed in [2]. The second step is extracting omega-
like curves from the top portions of the boundaries of the seg-
mented regions, and matching them with template head-shoulder
curves. Finally, the candidate head-shoulder regions are exam-
ined to check whether they satisfy two geometrical constraints
attributed to valid head and shoulder regions.

Segmentation of depth images
The depth scene is segmented into homogeneous regions in

terms of proximity, depth and surface normals. To this end we use
a scheme that is based on K-means clustering of position, depth,
and surface normal data, followed by median filtering and con-
nected components algorithm. We also employ a region merging
method to extract large planar regions. The resulting segmenta-
tion map is suitable for further processing to infer other objects of
interest and structures, i.e. the ground plane, walls, and furniture.

Let d be the depth value at pixel location (x, y), and
[Nx Ny Nz] be the unit surface normal at that location. We nor-

malize the coordinates and depth values by dividing them with
their corresponding maximum values in the depth image to ob-
tain x̂, ŷ, and d̂. The components of the normal vectors remain in
the range of [−1,1]. For each pixel we form the weighted vector
p̄ = [wxyx̂ wxyŷ wd d̂ wNNx wNNy wNNz]. The weighted vec-
tors of all pixels are then clustered into K clusters via K-means
algorithm. The weights, wxy, wd , and wN determine the contribu-
tion of each component to the formation of clusters, controlling
the proximity of the pixels, the similarity of depth values, and
surface normal homogeneity in each cluster, respectively.

After K-means clustering, an index image is formed using
the cluster membership of each pixel. Median filtering is ap-
plied to the index image to smooth the index image, i.e. to merge
small regions formed due to surface normal noise, into their larger
neighbors. Then, connected regions with the same cluster index
are determined and each connected region is assigned a separate
region identity.

Merging planar regions
The connected regions are further analyzed to extract large

planar surfaces from the scene. Regions that are larger than a
predetermined size are processed with RANSAC algorithm, and
regions with a low proportion of outliers are classified as planar
regions. Then, adjacent planar regions with similar surface pa-
rameters are merged into a single planar region.

Figure 2 gives some depth images from our dataset, along
with the index images obtained with K-means clustering, and
the segmentation maps after determining connected regions, and
merging planar regions. The regions of the resulting segmentation
map do not exactly correspond to semantic regions in the scene;
however, there is considerable overlap as can be observed from
Figure 2. This map is suitable for further processing to achieve a
semantic interpretation of the environment.

Detection of head and shoulders
Each region R in the segmentation map that has an area

larger than a threshold is treated as a candidate human region.
The boundary of the region is extracted and then smoothed with a
gaussian filter of standard deviation σ . The topmost point (xt , yt)
of the smoothed boundary is marked as the top point of a poten-
tial head. The curvature of each point on the boundary contour
is computed and the local minima of the curvature values are de-
termined. If a local minimum to the left of the topmost point is
below a certain threshold ct , then this point is treated as a potential
neck point (xnl , ynl). Suppose that the number of points between
the topmost point (xt , yt) and the left neck point (xnl , ynl) is L
(Figure 3). Then a curve is formed that is composed of 2L points
to the right of (xt , yt) and 2L points to the left of (xt , yt), together
with the topmost point itself. This new curve is saved as a candi-
date head and shoulders curve. If a local minimum to the right of
the topmost point also falls below the threshold ct , another can-
didate head and shoulders curve is created using this right point
(xnr, ynr). If the smoothed boundary of the region does not have
local minima below the threshold, then the region is discarded.
Head and shoulder curves that are too short or too long are also
discarded.

Let us call a candidate head and shoulder curve C = {xi, yi},
where i =−2L, ..,2L. The coordinates of the candidate curve are
normalized such that the topmost point is at the origin, and they

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-046

IS&T International Symposium on Electronic Imaging 2016
3D Image Processing, Measurement (3DIPM), and Applications 2016 3DIPM-046.3



Figure 2. First column: Depth images from our new human detection dataset. White rectangles indicate ground truth bounding boxes for humans. Second

column: Index image obtained with K-means clustering. Third column: Regions after determining connected components. Fourth column: Segmentation map

after merging planar regions.

are scaled such that the average Euclidean distance between the
topmost point and the two neck points becomes one. The curves
are also rotated such that the bisector of the angle formed by the
topmost point and the neck positions to the right and left becomes
vertical. This step accounts for the slight rotations of the head and
shoulder region. After this normalization, the normalized candi-
date curve C̄ is matched with a set of head-shoulder templates
via Hausdorff distance. Let d(C̄,Tm) be the Hausdorff distance
between the candidate contour C̄ and the mth template Tm. The
candidate contour is eliminated if D = minm

(
d(C̄,Tm)

)
exceeds a

threshold h.

The head-shoulder templates are not hand-tailored but are
obtained from real data. They are extracted in the same manner as
described above from depth images acquired with Kinect sensor,
and checked manually whether they truly are head and shoulder
curves. These head and shoulder templates belong to humans who

are not present in our dataset. Figure 4 shows some examples of
such curves. The rich collection of templates enhances the ability
of the system to capture a variety of head and shoulder configu-
rations. The disadvantage is an increase in false detection rates
since many non-human regions have top contours that are similar
to these template curves.

Verification
In order to reduce the false detection rate, we include a

simple verification step that checks whether the candidate head-
shoulder regions satisfy two constraints: 1) The depth values just
above the head should be larger than those within the head region.
2) The product of the perimeter and the median depth of the head
and shoulder region should be within a certain range.

The first constraint is based on the observation that the pixels
above a visible human head should have higher values of distance
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Figure 3. The topmost point (in red), and the curvature local minima (in

blue) on a boundary contour. The right (xnr , ynr) and left (xnl , ynl) neck points

are also indicated.

Figure 4. Some examples of head-shoulder templates.

from the camera, i.e. the head is assumed to be in front of the
objects corresponding to the pixels just above the head contour.
We define a rectangle centered at the topmost point of the head.
The height of the rectangle is twice the average distance from the
topmost point to the two neck points of the contour. The width
is set to be one fourth of the height. This rectangle centered at
the topmost point of the head is divided two equal parts as the
upper part and the lower part. If the average depth values inside
the upper part of the rectangle is higher than the average depth
values of the lower part by a certain amount, then the head region
is verified; otherwise it is discarded.

The second constraint limits the size of the head-shoulder
region given its median depth value. We compute the products of
the perimeters and the median depths of head-shoulder regions in
a training dataset. In a test image, if the product is close to the
average value by a constant multiple (q) of the standard deviation,
then the head-shoulder region is verified. Let the median depth
within the head and shoulder region be dHS, the perimeter of the
region be pHS, µd p and σd p be the average and standard deviation
of the depth perimeter product in the training set. The region is
verified as a head-shoulder region if the condition

|dHS pHS −µd p|< qσd p (1)

is met.

Figure 5. Detection results from our dataset. On the left, curves in red

indicate the detected head-shoulder curves. On the right, the segmentation

maps are given.
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New Human Detection Dataset
We created a new dataset of 500 depth images of 1016 hu-

mans in total acquired by Kinect sensor for XBOX 360. In con-
trast to existing datasets of depth images [3], [5], [14], [18], [20],
which are generally designed for tracking purposes, our dataset
does not contain frames of video sequences. Instead, it consists
of still depth images where motion information is unavailable for
human detection. The images were collected in various indoor
environments, such as living rooms, kitchens, bedrooms, offices,
home offices, classrooms, corridors, stores, and coffee-shops. The
humans in the images are diverse in identity and in poses. There is
no restriction on the pose, humans can appear standing, walking,
dancing, sitting, crouching, lying down, etc. A scene can contain
a number of humans that are occluded by other humans or ob-
jects. The ground truth is obtained through manually marking the
bounding box corresponding to each human in the scenes. The
dataset, which we call ESOGU RGB-D Human Dataset, is pub-
licly available on our web page along with the ground truth[1].
Figure 1 shows some example images from our dataset, with the
ground truth bounding boxes marked as white rectangles.

In our experiments, we separated the dataset into a training
and test set, composed of 200 and 300 images, respectively. The
training set is used to set the parameters for the segmentation and
head-shoulder curve extraction steps. In the training set, 354 hu-
mans are present in total, while in the test set 662 human occur-
rences are seen.

Experimental Results
We evaluated the performance of our human detection

method on two datasets. The first is our new dataset where we
used 200 images for observing the effects of segmentation re-
lated parameters, and the rest of the 300 for testing. The second
dataset is the UTKinect-HumanDetection Dataset [20], which is a
sequence of depth images taken by the Kinect sensor for XBOX
360. The sequence contains 98 depth images of two people taken
in a lab environment.

Evaluation
We measure the performance of our algorithm with precision

and recall, which are based on the number of True Positives (TP),
False Negatives (FN), and False Positives (FP) returned by the
algorithm. The precision and recall are defined as follows:

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

Given a depth image, our human detection algorithm re-
turns a number of head-shoulder contours. For the UTKinect-
HumanDetection dataset, the ground truth is given as a point indi-
cating the center of a head. If a detected contour encloses a ground
truth point, it is marked as a true positive. For our new dataset,
where the ground truth is given in terms of bounding boxes, if a
detected contour is enclosed by a ground truth bounding box, and
if the top of the contour is close to the upper edge of the bounding
box by at least 10 pixels, the detected contour is counted as a true
positive, otherwise it is a false positive. The undetected ground
truth instances are counted as false negatives.

Figure 6. Recall (%) yielded by various combinations of wd and wN .

Results on the training images
We used our training dataset composed of 200 images with

354 human occurrences to observe the effects of the following pa-
rameters: 1) The weights for the position, depth, and normal com-
ponents that are clustered via K-means algorithm; 2) The stan-
dard deviation of the Gaussian filter that is used to smooth region
boundaries.

In our experiments, we kept wxy as 1 and varied wd and wN
to get the combination that gives the best recall. Figure 6 gives the
results for various combinations of wd and wN . While obtaining
these results, we set σ and h as 4 and 1, respectively. The number
of head-shoulder template curves is 20. We eliminated the verifi-
cation step via Equation 1 at this stage. As can be observed from
the graphs in Figure 6, the performance is stable when wd is be-
tween 4 and 6. In this range wN should be set as less than 1. The
contribution of depth values for accurate segmentation is higher
than that of the surface normal components. The best recall value
for the training set is 77.4 % with wd = 5, and wN = 0.5.

Table 1: Recall (R) and Precision (P) on the test dataset.

h R (w/o) P (w/o) R (q = 6) P (q = 6)
0.8 65.9 33.4 62.5 37.9
0.9 68.7 31.6 64.7 36.0
1 69.3 30.4 65.0 34.9
1.1 69.6 29.8 65.3 34.8
1.2 70.2 29.5 65.4 34.6

Figure 7 demonstrates the effect of σ on recall. The results
are given for a set of best performing wd and wN combinations.
The threshold on Hausdorff distance, h is set to 1. We can observe
that σ = 3 and 4 are good choices for the standard deviation of the
Gaussian filter used to smooth region boundaries.

Results on the test images
The test images are the remaining 300 images of our dataset.

There are 662 human occurrences in these images. Setting the pa-
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Figure 7. Recall (%) with respect to σ .

Figure 8. Precision-Recall curves on test images for σ = 3 and σ = 4.

The curves were obtained by varying h; the Hausdorff distance from the tem-

plates.

rameters for segmentation as wd = 5, and wN = 0.5, we varied the
threshold on Hausdorff distance from the templates (h) to obtain
Precision-Recall curves. Figure 8 shows Precision-Recall curves
for the best two choices for σ we had determined from the train-
ing set. We observe that, although with σ = 3 we achieve a higher
recall (73.6 %) than with σ = 4 (70.2 %), the precision results are
improved when σ is 4.

Up to this point we reported results we obtained without us-
ing the constraint in Equation 1. Figure 9 gives Precision-Recall
curves when we impose this constraint on candidate head and
shoulder curves that return a Hausdorff distance greater than 0.3.
We give the Precision-Recall curves for the cases q = 2, 4, and 6,
as well as the case when the constraint is not imposed. σ is set as
4 for these runs. Although the verification step reduces the false
positives to a certain extent, it also has a large negative effect on
recall.

In Table 1, precision and recall figures are reported with re-
spect to a set of values of h and q. The algorithm is able to detect

Figure 9. Precision-Recall curves on test images for various q. The curves

were obtained by varying h; the Hausdorff distance from the templates.

70.2 % of the humans in the images with a high return of false
positives (29.5 % precision and 3.7 false positives per image).

In Figure 5, we show some example depth images from our
dataset. On the right column, the segmentation maps are given,
and on the left the detected head-shoulder curves are marked in
red on the depth images. The algorithm can extract head-shoulder
regions with success; however it returns a large number of false
positives. Some of these false positives are due to clutter, and
imperfect segmentation. In some cases, the human body is fur-
ther segmented, and body portions return boundaries that contain
curves similar to head-shoulder templates.

Figure 10 shows cases where the algorithm failed to detect
head-shoulder occurrences. In some cases, the segmentation al-
gorithm separates the head region from the shoulders due to the
large depth difference. In other cases, the head or shoulder re-
gions merge with other structures, such as the wall or the bed.
The algorithm also fails to locate the head and shoulder region, if
it does not occur at the top of the region boundary.

Results on UTKinect HumanDetection Dataset
In the UTKinect-HumanDetection Dataset [20], which con-

sists of 98 frames acquired in a lab environment, there are 176
occurrences of two persons. All the parameters, except for the
threshold on Hausdorff distance, are as determined from our train-
ing set (wd = 5, wN = 0.5, σ = 4). We skipped verification via
Equation 1 for the experiments on UTKinect-HumanDetection
Dataset. The results are give in Table 2, along with the results
reported in [20]. Notice that the performance figures in [20] are
obtained through a tracking module that discards false positives
via data association between video frames. Our algorithm missed
25 of the 176 positive instances. Most of the misses are due to
occlusion of the head region.

Conclusion
We propose a human detection method that operates on still

depth images. Our method is capable of detecting multiple hu-
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Table 2: Results on UTKinect-HumanDetection Dataset.

TP FN FP R (%) P (%)
h = 0.4 111 65 46 63.1 70.7
h = 0.9 151 25 333 85.8 31.2
XIA et al.[20] 169 7 0 96.0 100

mans in various poses and under significant occlusion, provided
that their head and shoulders are visible. We present a new human
dataset, which we constructed to test human detection algorithms
operating on single frames. We tested our algorithm on this new
dataset and a publicly available dataset. For both datasets, our al-
gorithm is able to detect over 70% of the humans present in the
scenes.
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