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Abstract

Recent advances in consumer depth sensors have created
many opportunities for human body measurement and modeling.
Estimation of 3D body shape is particularly useful for fashion
e-commerce applications such as virtual try-on or fit personaliza-
tion. In this paper, we propose a method for capturing accurate
human body shape and anthropometrics from a single consumer
grade depth sensor. We first generate a large dataset of synthetic
3D human body models using real-world body size distributions.
Next, we estimate key body measurements from a single monocu-
lar depth image. We combine body measurement estimates with
local geometry features around key joint positions to form a ro-
bust multi-dimensional feature vector. This allows us to conduct
a fast nearest-neighbor search to every sample in the dataset and
return the closest one. Compared to existing methods, our ap-
proach is able to predict accurate full body parameters from a
partial view using measurement parameters learned from the syn-
thetic dataset. Furthermore, our system is capable of generating
3D human mesh models in real-time, which is significantly faster
than methods which attempt to model shape and pose deforma-
tions. To validate the efficiency and applicability of our system,
we collected a dataset that contains frontal and back scans of 83
clothed people with ground truth height and weight. Experiments
on real-world dataset show that the proposed method can achieve
real-time performance with competing results achieving an aver-
age error of 1.9 cm in estimated measurements.

Introduction

Recent advances in 3D modeling and depth estimation have
created many opportunities for non-invasive human body mea-
surement and modeling. Particularly, getting precise size and
fit recommendation data from consumer depth cameras such as
Microsoft® Kinect™ device can reduce returns and improve
user experience for online fashion shopping. Also, applications
like virtual try-on or 3D personal avatars can help shoppers visu-
alize how clothes would look like on them. According to [1, 2],
about $44.7B worth of clothing was purchased online in 2013.
Yet, there was an average return rate of 25% because people could
not physically try the clothes on. Therefore, an accurate 3D model
of the human body is needed to provide accurate sizing and mea-
surement information to guide online fashion shopping. One stan-
dard approach incorporates light detection and ranging (LiDAR)
data for body scanning [3, 4]. An alternative approach is to use
a calibrated multi-camera rig and reconstruct the 3D human body
model using structure from motion (SfM) and Multi-View Stereo
(MVS) [5], which generates impressive results when combined
with motion capture technology [6]. A more recent work [7] aims
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at estimating high quality 3D models by using high resolution 3D
human scans during registration process to get statistical model of
shape deformations. Such scans in the training set are very limited
in variations, expensive and cumbersome to collect and neverthe-
less do not capture the diversity of the body shape over the entire
population. All of these systems are bulky, expensive, and require
expertise to operate.

Recently, consumer grade depth camera has proven practical
and quickly progressed into markets. These sensors cost around
$200 and can be used conveniently in a living room. Depth sen-
sors can also be integrated into mobile devices such as tablets
[8], cellphones [9] and wearable devices [10]. Thus, depth data
can be obtained from average users and accurate measurements
can be estimated. However, it is challenging to produce high-
quality 3D human body models, since such sensors only provide
a low-resolution depth map (typically 320 x 240) with a high
noise level.

In this paper, we propose a method to predict accurate body
parameters and generate 3D human mesh models from a single
depth map. We first create a large synthetic 3D human body
model dataset using real-world body size distributions. Next, we
extract body measurements from a single frontal-view depth map
using joint location information provided by OpenNI [11]. We
combine estimates of body measurements with local geometry
features around joint locations to form a robust multi-dimensional
feature vector. This allows us to conduct a fast nearest-neighbor
search to every 3D model in the synthetic dataset and return the
closest one. Since the retrieved 3D model is fully parameterized
and rigged, we can easily generate data such as standard full body
measurements,labeled body parts, etc. Furthermore,we can ani-
mate the model by mapping the 3D model skeleton to joints pro-
vided by Kinect™. Given the shape and pose parameters de-
scribing the body, we also developed an approach to fit a gar-
ment to the model with realistic wrinkles. A key benefit of our
approach is that we only calculate simple features from the in-
put data and search for the closest match in the highly-realistic
synthetic dataset. This allows us to estimate a 3D body avatar in
real-time, which is crucial for practical virtual reality applications.
Also, compared to real-world human body datasets such as CAE-
SAR [12] and SCAPE [13], the flexibility of creating synthetic
models enables us to represent more variations on body param-
eter distributions, while lowering cost and refraining from legal
privacy issues involving human subjects. In summary, we make
the following contributions:

e We build a complete software system for body measure-
ment extraction and 3D human model creation. The system
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Figure 1: Im2Fit. We propose a system that uses a single consumer depth camera to (i) estimate 3D shape of human, (ii) estimate key
measurements for clothing and (iii) suggest clothing size. Unlike competing approaches that require a complex rig, our system is very
simple and fast. It can be used at the convenience of existing set up of living room.

only requires a single input depth map with real-time per-
formance.

e We propose a method to generate a large synthetic hu-
man dataset following real-world body parameter distribu-
tions. This dataset contains detailed information about each
sample, such as body parameters, labeled body parts and
OpenNI-compatible skeletons. To our knowledge, we are
the first to use large synthetic data that match distribution of
true population for the purpose of model fitting and anthro-
pometrics.

e We design a robust multi-dimensional feature vector and
corresponding matching schemes for fast 3D model re-
trieval. Experiments show that our proposed method that
uses simple computations on the input depth map returns
satisfactory results.

The remainder of this paper is organized as follows. Section
gives a summary of previous related work. Section discusses
Im2Fit - our proposed system. Section shows our experimental
results. Section provides some final conclusions and directions
for future work.

Background and Related Work

We follow the pipeline of generating a large synthetic
dataset, and then perform feature matching to obtain the corre-
sponding 3D human model. A wealth of previous work has stud-
ied these two problems, and we mention some of them here to
contrast with our approach.

3D Human Body Datasets: Despite vast literature concern-
ing depth map based human body modeling, only a limited num-
ber of datasets are available for testing. These datasets typically
contain real-world data to model the variation of human shape,
and require a license to purchase.

The CAESAR [12] dataset contains few thousand laser scans
of bodies of volunteers aged from 18 to 65 in the United States and
Europe. The raw data of each sample consists of four scans from
different viewpoints. The raw scans are stitched together into a
single mesh with texture information. However, due to occlusion,
noise and registration errors, the final mesh model is not complete.

The SCAPE [13] dataset has been widely used in human
shape and pose estimation studies. Researchers found it useful to
reshape the human body to fit 3D point cloud data or 2D human
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Figure 2: Block Diagram. This illustrates the interactions be-

tween various components of Im2Fit, along with relevant data.
Details are in Section .

silhouettes in images and videos. It learns a pose deformation
model from 71 registered meshes of a single subject in various
poses. However, the human shape model is learned from different
subjects with a standard pose. The main limitation of the SCAPE
model is that the pose deformation model is shared by different
individuals. The final deformed mesh is not accurate, since the
pose deformation model is person-dependent. Also, the meshes
are registered using only geometric information, which is unreli-
able due to shape ambiguities.

Recently, Bogo et al. [14] introduced a new dataset called
FAUST which contains 300 scans of 10 people with different
poses. The meshes are captured by multiple stereo cameras and
speckle projectors. All subjects are painted with high frequency
textures so that the alignment quality can be verified by both ge-
ometry and appearance information.

Human Shape Estimation: A number of methods have
been proposed to estimate human shape based on raw 3D data
generated by a depth sensor or multiple images. Early work by
Blanz and Vetter [15] use dense surface and color data to model
face shapes. They introduced the term 3D morphable model to de-
scribe the idea of using a single generic model to fit all real-world
face shapes. In their work, pose and shape are learned separately
and then combined by using linear blend skinning (LBS). This
inspires the SCAPE [13] model, which models deformation as
combination of a pose transformation learned from a single person
with multiple poses and a shape transformation learned from mul-
tiple people with a standard pose. Balan ef al. [16] fit the SCAPE
model to multiple images. They later extend their work to esti-
mate body shape under clothing [17]. Guan et al. [18] estimated
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Table 1: Demographics. Distribution of height (cm) and weight
(kg) for selected age and sex groups (mean =+ 1 std dev). The
age and sex composition are obtained by using the 2010 census
data [23], while the height and weight distributions are obtained
by using the NHANES 1999-2002 census data [24]. This table
was used to generate synthetic models using MakeHuman [25].
Note that, unlike our approach, datasets such as CAESAR [12]
do not truly encompass the diversity of the population and are
cumbersome and expensive to collect.

Gender
Age . Male . _ Female .
Height Weight Height Weight
18-24 | 176.7+0.3 | 83.4+0.7 | 162.840.3 | 71.1+0.9
25-44 | 176.8+0.3 | 87.6+0.8 | 163.2+0.3 | 75.3+1.0
45-64 | 175.840.3 | 88.8+0.9 | 162.3+0.3 | 76.9+1.1
65-74 | 174.4+0.3 | 87.1+£0.6 | 160.0+£0.2 | 74.9+0.6

human shape and pose from a single image by optimizing the
SCAPE model using a variety of cues such as silhouette overlap,
edge distance and smooth shading. Hasler et al. [19] developed a
method to estimate 3D body shapes under clothing by fitting the
SCAPE model to images using ICP [20] registration and Lapla-
cian mesh deformation. Weiss [21] proposed a method to model
3D human bodies from noisy range images from a commodity
sensor by combining the silhouette overlap term, prediction error
and an optional temporal pose similarity prior. More recently, re-
searchers tackle the problem of decoupling shape and pose defor-
mations by introducing a tensor based body model which jointly
optimizes shape and pose deformations [22].

Im2Fit: The Proposed System

The overall processing pipeline of our software system can
be found in Figure 2. Algorithm 1 summarizes the various steps
involved to estimate relevant anthropometrics for clothing fitment,
once depth data and joint locations have been acquired.

Depth Sensor Data Acquisition

The goal of real data acquisition process is to obtain user
point cloud and joint locations, and extract useful features char-
acterizing the 3D shape, such as body measurements and 3D sur-
face feature descriptors. We first extract human silhouette from a
Kinect™ RGB-D frame and turn it into a 3D pointcloud. Next,
we obtain joint locations by using OpenNI [11] which provides a
binary segmentation mask of the person, along with skeletal key-
points corresponding to different body joints. There are 15 joint
positions in 3D real world coordinates (Figure 3(a)). They can be
converted to 2D coordinates on the imaging plane by projection.

Depth Sensor Data Processing - Measurements
and Feature Extraction

Once we obtain depth map and joint locations, we generate
features such as body measurements and Fast Point Feature His-
tograms (FPFH)! [26] around these joints. The body measure-
ments include height, length of arm & leg, girth of neck, chest,
waist & hip. These measurements can help us predict impor-
tant user attributes such as gender, height, weight, clothing size.

'FPFH features are simple 3D feature descriptors to represent geome-
try around a specific point and are calculated for all joints.
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The aforementioned features are concatenated into a single fea-
ture vector for matching the features in the synthetic dataset.

We observe that the 6 points on the torso (NE, TO, LS, RS,

LH, RH) do not exhibit any relative motion and can be regarded on

a whole rigid body. Therefore, we define the principal coordinate

(NE,TO) (LS,RS)

axes 1, v.wpasu = V=
{wv.w) INETOY™ " |[(LS.RS)|’

as the following condition is satisfied:

(w70, #55) firo, L F ) <o)

W =uXxYV,as long

where ﬁ is the vector from point A to point B, X is the vector
cross-product, - is the vector dot-product, || - || is the Euclidean
distance, and €; is a small positive fraction. We used & = 0.1.
Condition (1) ensures that the posture is almost vertical. For sim-
plicity, if this is not satisfied, we treat the data as unusable since
error in measurement estimates will be large.

Height: To calculate height, we first extract contour of the
segmented 2D human silhouette, which was obtained by thresh-
olding the depth map and projection on to 2D plane defined by u
and v. Next, we pick those points on the contour that satisfy the

following condition:
/ |To.7.]

where P, is an arbitrary point on the contour and &, is a small
positive fraction. We used & = 0.1. These 2D points lie approx-
imately on u. We sort them by their y coordinates 2 and find the
top and bottom points. These points are converted to 3D real-
world coordinates and the estimated height can be calculated as
the Euclidean distance between the two points.

Length of Sleeve and Legs: The sleeve length can be calcu-

lated as the average of H(LA7LE5H + H(LELSjH + H(L&NEjH

(‘v~ (TO,P.) ) <& ®)

and H (RA,RE) H + H (RE,RS) H + H (RS,NEjH. Note that these
points are in 3D real-world coordinates. Similarly, length of legs
can be obtained as the average of H (LH,LK) H + H (LK,LF) H and

|(RHRK)|| + | (RKRFS .

Girth of neck, shoulder, chest, waist and hip: To get esti-
mates of neck, shoulder, chest, waist and hip girth, we need to first
define a 3D point x, and then compute the intersection between the
3D point cloud and the plane passing through x and perpendicular
to u. Since the joints tracked by OpenNI are designed to be useful
for interactive games, rather than being anatomically precise, we
need to make some adjustments to the raw joint locations. Here
we define new joint locations as follows:

LS+RS
(Xneck + 2 )

o _NETHE B
neck 2 s Xshoulder ) (3)
NE+TO LH+RH
Xchest = #7xwai5t =TO,Xpip = Y

We can only get frontal view of the user, since the user is al-
ways directly facing the depth camera and we use a single depth

2Note that OpenNI uses GDI convention for the 2D coordinate system.
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channel as input. Therefore, we fit an ellipse [27] to the points
on every cross-section plane to obtain full-body measurements.

(x—p)-u }
T—pl | <8

where &3 is a small positive fraction. We used €3 = 0.1. Since our
method is simple and computationally efficient, the measurements
can be estimated in real time.

Such points are defined as {p € Point Cloud, s.1. ‘

Algorithm 1: Frontal Measurement Generation

Data: Depth Map D and estimated set of joints from pose
estimation {ji}—1,..7

Result: Set of Measurements M, where " row is the

measurement around joint j;

while onEndCalibration=failure do

Call StartPoseDetection ;,

if User detected then

Draw skeletons;

Compute principal axes {u,v,w} ;

Request calibration pose from user;

Call RequestCalibrationSkeleton;

if User calibrated then

Save calibrated pose;

Call onEndCalibration;

while onEndCalibration=success do

Call StartTrackingSkeleton ;

for Joint labelt =1 :T do

if j; is available then
Compute cross section plane.

/* defined by v and w passing
through joint position j;*/ ;
Compute intersection points;
Ellipse fitting to obtain m;
if m; is available for all T
Jjoints then
Save M;
L Break;

Synthetic Data Generation - Depth Map Rendering
and Joint Remapping

For realistic synthetic data generation, the goal is to create
a large number of synthetic human data according to real world
population distributions and save the feature vectors for each
model. In order to generate the synthetic human model dataset,
we developed a plug-in3 for MakeHuman [25].

MakeHuman is an open-source python framework designed
to prototype realistic 3D human models. It contains a standard
rigged human mesh, and can generate realistic human charac-
ters based on normalized attributes for a specific virtual char-
acter, namely Age, Gender, Height, Weight, Muscle and Ethnic
origin (Caucasian, Asian, African). Our plug-in only modifies 4
attributes: Age, Gender, Height and Weight, which follows the

3We plan to make this plug-in available for research purpose and hope
will flourish research in this area, which is stunted by the complexity of
data acquisition for 3D human models and lack of royalty-free large public
datasets.
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distribution shown in Table 1. This is because we only care about
the 3D geometry of the human body. Every synthetic model con-
tains a Wavefront .obj file (3D mesh), a .skel skeleton file (Joint
location), a Biovision Hierarchy .bvh (Rigged skeleton data) file
and a text file containing the 9 above-mentioned attributes. We
tested our plug-in on a desktop computer with Intel Xeon E5507
(4 MB Cache, 2.26 GHz) CPU and 12 GB RAM. The modified
software is able to generate around 50,000 synthetic models in 12
hours (roughly a model every second).

Since the synthetic data is clean, parametric and has fully la-
beled body parts and skeletons, we can match real world feature
vectors extracted from depth frames directly to the MakeHuman
synthetic feature vectors, and use the MakeHuman 3D paramet-
ric mesh model to replace incomplete and noisy point cloud data
from consumer grade depth sensor. Since it is straightforward to
establish joint correspondences, the 3D synthetic model can be
deformed into any pose according to the pose changes of the user.
The 3D mesh model can now be used for various applications
such as virtual try-on, virtual 3D avatar or animation. Since it is
difficult to directly process the MakeHuman mesh data, we also
developed a scheme to render the mesh model into frontal and
back depth maps and equivalent point clouds. The local 3D fea-
tures can be extracted easily from these point clouds by using the
Point Cloud Library (PCL) [28].

The above process has several advantages. Firstly, our cus-
tomized plug-in is able to generate a large number of realistic syn-
thetic models with real world age, height, weight, or gender dis-
tribution, even dressed models with various clothing styles. Sec-
ondly, the feature vectors can be matched in real time. Thus, we
can find the matching 3D model as soon as the user is tracked by
OpenNI. Compared to methods such as [21, 22, 29] which try to
generate parametric human model directly on the raw point cloud,
our method is more robust and computationally efficient.

Synthetic Data Retrieval - Online 3D Model Re-
trieval

Now that we obtained real-world and synthetic data in com-
patible formats, we can match feature vectors extracted from
Kinect™ depth frames directly to those generated from MakeHu-
man [25]. The retrieved 3D human model can be used to replace
the noisy, unorganized raw Kinect™ point cloud.

To reach the goal of real-time 3D model retrieval, we need
to define a simple yet effective feature vector first. We divide
the feature vector into three groups with different weights: global
body shape, gender and local body shape.

The first group contains 4 parameters: height and length of
sleeve, leg and shoulder. This captures the longer dimensions of
the human body.

The second group contains two ratios. They are defined as
follows:

[Chest |

Chest Hip

ratioy = ———,ratiop = - (C)]
|Chest|| Waist

P
where ||Chest|| represents the 3D surface geodesic distance and

||Chest|| represents the Euclidean distance between point LS and
RS. If two body shapes are similar, these two ratios tend to be
larger for females and smaller for males.
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Figure 3: Estimated Anthropometrics. (a) We use 15 joints head, neck, torso and left/right hand, elbow, shoulder, hip, knee, foot, which
we term HE, NE, TO, LA, RA, LE, RE, LS, RS, LH, RH, LK, RK, LF, RF, respectively. (b) Distribution of key estimated measurements. We
collected depth maps from 83 people and generated height, neck, shoulder, chest, waist and hip measurements for each person. Plotted
is the sample minimum, median and maximum, lower and upper quartile and outliers for different measurements. (c) For a given height
range, the distribution of height estimation errors are plotted. The overall mean estimation error for 83 samples is 1.87 cm.

The third group contains FPFH (33 dimensions) features [26]
computed at all 15 joints with a search radius of 20 centimeters.
This describes the local body shape. The feature vector has 4 +
2433 x 15 =501 dimensions. Any pair of feature vectors can be
compared simply by using their L, distance.

We use nearest neighbor search to find the closet match in
the synthetic dataset. The size of the feature vector dataset for
50,000 synthetic models is roughly 25 MB, and a single query
takes about 800 ms to complete on a 2.26 GHz Intel Xeon E5507
machine.

Experiments

We conducted our experiments on clothed subjects with var-
ious body shapes. Figure 3(b) shows the distribution of measure-
ments from 83 people predicted by our system. For privacy issues,
we were only able to get ground truth height, gender and clothing
size data.

The gender predicted by Ratio; and Ratio, is correct for
all 83 samples. The height estimation error for different height
ranges is shown in Figure 3(c). The overall mean estimation er-
ror for the 83 samples is 1.87 centimeters. Compared to [21], our
system has obtained competitive accuracy with a much simpler al-
gorithm. The results of our system can be qualitatively evaluated
from Figure 5. To verify the prediction accuracy, we applied the
Iterative Closest Point (ICP) [20] registration algorithm to obtain
the mean geometric error between the retrieved 3D mesh model
and the raw point cloud data for the four subjects shown in Figure
5. The results are shown in Figure 6. We simply aligned the skele-
ton joints for ICP initialization. After 6 ICP iterations, the mean
registration error converges to below 9 centimeters, for all four
subjects. This is because the feature vector gives more weights
to frontal measurements. The mesh alignment can be fine tuned
by ICP after several iterations. However, the initial joint locations
are only accurate on the 2D plane, and may shift in the z-direction
due to random noise or holes on the point cloud surface.

Runtime of 3D model retrieval algorithm with different size
of the synthetic dataset is summarized in Figure 4. The algo-
rithm was run on a single desktop without GPU acceleration to
obtain relevant measurements, naked body model and clothed
model. The measurement estimation only depends on the input
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Figure 4: Runtime. Runtime of our complete system with in-

creasing size of the synthetic dataset. For synthetic dataset with
given number of samples, we evaluate the average runtime end-
end, to estimate relevant measurements, naked 3D models and
clothed 3D models.

depth map. So the running time is almost constant on a depth map
with given resolution. Generating clothed models is slower than
naked models because of the garment fitting and rendering over-
head which can be improved by GPU acceleration. On a dataset
containing 5 x 10 samples, we achieved runtime of less than 0.5
seconds for a single query, with little memory usage. Compared
to [21] which takes approximately 65 minutes to optimize, our
method is significantly faster, while still maintaining competitive
accuracy.

Using measurements from the body meshes, we also pre-
dicted clothing sizes and compared with ground truth data pro-
vided by the participants. The overall clothing size prediction
accuracy is 87.5%. We estimated size of T-shirt (e.g. XS, S, M,
L, XL, 2XL, 3XL).

Conclusion

We presented a system for human body measurement and
modeling using a single consumer depth sensor, using only the
depth channel. Our method has several advantages over existing
methods. First, we propose a method for generating synthetic hu-
man body models following real-world body parameter distribu-
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Figure 5: Qualitative Evaluation. The first column shows the raw depth map from Kinect™ 360 sensor, the second column shows the
normal map which we use to compute the FPFH [26] features. The third column shows the reconstructed 3D mesh model, and the last
three columns show the front, side and back view of the 3D model after basic garment fitting.
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Figure 6: ICP Error. Mean registration error per ICP [20] itera-
tion for different samples. We evaluated ICP registration error for
4 samples in the dataset. The raw depth maps and estimated body
shapes for the 4 samples can be found in Figure 5.

tions. This allows us to avoid complex data acquisition rig, legal
and privacy issues involving human subject research, and at the
same time create a synthetic dataset which represents more vari-
ations on body shape distributions. Also, models inside the syn-
thetic dataset are complete and clean (i.e. no incomplete surface),
which is perfect for subsequent applications such as garment fit-
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ting or animation. Second, we presented a scheme for real-time
3D model retrieval. Body measurements are extracted and com-
bined with local geometry features around key joint locations to
form a robust multi-dimensional feature vector. 3D human mod-
els are retrieved by using a fast nearest neighbor search, and the
whole process can be done within half a second on a dataset con-
taining 5 x 10° samples. Experiment results have shown that our
system is able to generate accurate results in real-time, thus is
particularly useful for home-oriented body scanning applications
on low computing power devices such as depth-camera enabled
smartphones or tablets.
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