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Abstract
Shadow detection is undergoing active research because

it plays an important role in scene understanding, and has a
wide range of applications including household robots and au-
tonomous cars. In this effort, we present a novel approach to de-
tect cast shadows on 3D point clouds. Point Cloud Library (PCL)
is used to perform plane detection on point clouds. A Markov
Random Field (MRF) is then constructed on the detected plane
region, with an energy term that combines plane labels, depth
cues and brightness cues. The resulting system is tested against
USC Shadow, a dataset we collected in a controlled environment,
as well as selected scenes from NYU Depth, a dataset that con-
tains 1449 RGB-D images of various indoor scenes. Our system
shows very stable performance even on complicated scenes and
heavily textured planes.

Introduction
Shadow detection plays an important role in scene under-

standing; with correctly detected shadows, one can infer lighting
conditions, and improve object recognition results.

Most previous efforts have based their work on 2D images.
Most recently, [1] built a Markov Random Field (MRF) on seg-
mented regions (super-pixels), and used various segment based
features such as intensity, chromatic alignment, texture histogram
and normalized distance. [5] and [6] combined an edge based
method with convolutional neural network (CNN), in which a
neighborhood patch is extracted for each pixel on detected edges,
and fed into a CNN that classifies between shadow and non-
shadow edges.

Although such methods achieved some degree of success,
the problem still remains ill posed due to the limited information
provided by 2D images. Shadow is inherently a result of complex
interactions among light sources and multiple objects in 3D space,
and hence cannot be completely characterized with the informa-
tion contained in 2D images. The methods mentioned before all
tried to engineer some higher level features from images, either
explicitly [1] or implicitly [5][6]; however, there’s no guarantee
that these features will always be present in a scene. For example,
some scenes in Figure 8 and Figure 9 are typical counter exam-
ples where a majority area of the scene lacks texture, and objects
with drastically different albedo are present. In addition, region
based features can be unstable if soft shadows are present.

3D sensing and scene understanding is an area under active
research recently, and has enabled a wide range of successful ap-
plications including household robots and autonomous cars.

Developing a shadow detection algorithm in 3D can benefit
from the extra depth information provided by 3D sensors. The
problem becomes less ill posed with the extra information: planes
can be extracted, scene structure can be estimated, and the com-

plex interaction among lights and objects can be simulated in a
physically meaningful manner. The improved algorithm in turn,
could enhance various 3D sensing and scene understanding appli-
cations.

Figure 1: A typical PCD file. Y-axis coordinates are shown as
pseudocolor for visualization purposes. The view shown is rotated
relative to the original camera view.

Some initial success has already been observed in 3D
shadow detection. [2] moved one step beyond 2D: its algorithm
inputs 2D image data; 3D geometry information was provided in
the form of a manually input bounding box around the object of
interest; and this 3D information was used to supplement a tradi-
tional 2D algorithm. More recently, [3] first used RGB-D images
in shadow detection, using the depth channel as an extra image to
enhance traditional 2D shadow detection results.

For all its promise, shadow detection in 3D presents its own
challenges: methods need to be re-thought, and directly extending
existing 2D approaches to 3D does not take full advantage of the
3D shape information.

The goal of this project is to develop a shadow detection sys-
tem that performs inference in a 3D world coordinate system. The
system should be fast and fit well in robotics and other 3D sensing
applications.

Method
Our current system comprises two modules, a plane detec-

tion module followed by an MRF based shadow detection mod-
ule. The plane detection module separates plane area from objects
and empty space; the MRF module performs shadow detection on
the detected plane area.
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Plane Detection
Images captured by 3D sensors (e.g. Kinect) are normally

represented as color and depth image pairs; most publicly avail-
able 3D datasets use this format as well. So, we first convert each
image pair into a point cloud, or PCD file, the 3D format proposed
by Point Cloud Library (PCL) [4], and perform some preprocess-
ing such as outlier removal.

Unlike 2D images that are always represented as rectangu-
lar 2D arrays, PCD (Figure 1) is a 1D array of points that have
their own x, y and z positions, as well as additional fields such
as RGB color, curvature or custom labels. The PCD format com-
bines color and depth channels into a single representation.

The plane detection module uses the Random Sample and
Consensus (RANSAC) algorithm available in PCL to find the
largest set of points that represents a plane, and returns an ar-
ray of plane labels (Figure 2), as well as the normal and position
of the plane. Depending on the application, if we assume that
orientation of the camera is known, we may further restrict the
orientation of planes we are looking for (e.g., horizontal floors or
vertical walls).

Figure 2: RGB channel and detected plane labels of a point cloud.
Top: RGB channel of original point cloud. Bottom: Detected
plane labels (blue denotes points on the plane, red denotes points
not on the plane). Side view is shown for better illustration of 3D
shape.

Shadow Detection with MRF
An undirected graph G = (V ,E) is then constructed with the

preprocessed point cloud and detected plane label array. Instead
of constructing the graph as a standard rectangular 2D lattice, we
discard all graph nodes (i.e. points in the point cloud) that are

not on the plane (either part of objects or those do not have valid
depth information), and disconnect graph edges (i.e. links be-
tween nodes) that are considered a discontinuity in the original
point cloud, e.g. resulting in Figure 3.

It is worth pointing out that although G is not rectangular,
it is still pixed based and 4-connected. We chose to construct a
pixel based graph instead of a region based graph for the following
reasons:

• On a pixel based graph, a smooth inferred energy map can be
obtained, which, with appropriate thresholding, can stably
handle soft shadows.

• A pairwise graph structure can be kept, so inference can be
performed efficiently in polynomial time.

• Region segmentation is a time consuming process. Popular
algorithms such as mean shift or watershed can take sec-
onds, sometimes minutes to finish.

Figure 3: Constructed MRF graph of the point cloud in Figure 2

A MRF model is then constructed on the graph G, with a bi-
nary state variable (0 for shadow and 1 for non-shadow) assigned
to each node on the graph. The MRF minimizes an objective func-
tion of two terms:

• Unary energy, which is a function of pixel brightness (that
encourages darker nodes to be shadows) and object proxim-
ity (that encourages nodes connected to objects to be shad-
ows).

• Pairwise energy, following a modified version of the Ising
model that encourages neighboring nodes to have the same
label.

In the following subsections, we derive the energy terms of
our model.

Maximum a Posteriori Estimation on MRF
MRF models the posterior probability P(yyy|XXX ,θθθ) using

Bayes’ theorem:

P(yyy|XXX ,θθθ) ∝ P(XXX |yyy,θθθ)P(yyy|θθθ) (1)

where each element of the unrolled vector yyy is the shadow/non-
shadow label of a pixel, each row of the matrix XXX is the feature
vector of a pixel, and θθθ is the set of parameters of the model.
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With a given XXX and θθθ we estimate the state variables yyy by
minimizing the negative log posterior as an energy function:

E(yyy|XXX ,θθθ) =− logP(yyy|XXX ,θθθ) (2)

which can be expressed as a sum of unary and pairwise terms:

E(yyy|XXX ,θθθ) = ∑
i∈V

logΦ(yi,xxxiii,wwwvvv)+ ∑
ε(i, j)∈E

logΨ(yi,y j,xxxiii,xxx jjj,wwweee)

(3)

Unary Energy
The feature vector xxxiii contains two terms, and we take an

augmented notation:

xxxiii = [1, xbrightness, xboundary] (4)

where xbrightness is the brightness of the pixel in HSV color space,
xboundary is a binary variable that is set to 1 if the pixel is con-
nected to an object pixel.

The unary term is defined as follows:

Φ(xxxiii,wwwv|yi = 0) = exp(wv,0+wv,1 ·xbrightness+wv,2 ·xboundary)

(5)

where wwwvvv is a three dimensional vector. The global offset wv,0 is
added to reflect the influence of the global brightness of the scene.
Ψ(xxxiii,wwwvvv|yi = 1) is simply set to a constant. Note that the unary
term can be calculated before the inference process.

Figure 4: Node likelihood of the point cloud in Figure 2

Figure 4 shows that the node likelihood (maximized when
the unary energy is minimized) of the point cloud in Figure 2 is
larger in darker area, as well as on the edge at the bottom of the
object. Note that pixels adjacent to the sides of the object are
not considered object edges because they are disconnected on the
depth map, which is clear in Figure 2.

Pairwise Energy
The pairwise term is defined as follows:

Ψ(yi,y j,xxxiii,xxx jjj,wwweee) = exp(we,0+
we,1

1+(xxxiii− xxx jjj)2 ) · |yi−y j| (6)

where wwweee = [we,0,we,1]. we,0 is a global term that imposes a
penalty whenever yi 6= y j, hence encourages neighborhood nodes
to have same label regardless of the similarity between xxxiii and xxx jjj .
On the other hand we,1 is an adaptive term that further encourages
similar connected nodes to have same label.

Compared to the original Ising model, our pairwise term not
only depends on yi and y j, but also depends on xi and x j, which
utilizes the intuition that the connected nodes with similar features
are even more likely to have same label than the connected nodes
that are less similar.

Model Tuning
Combining equations (5) and (6) and denoting θθθ = [wwwvvv,wwweee],

we have 5 parameters in our model. A grid search is performed
to find the set of parameters that gives the best qualitative result.
Mean Cut, an approximate inference algorithm is used in the op-
timization.

Results
Our algorithm shows stable performance on both USC

Shadow images, which contain textured surfaces and very uneven
lighting conditions; as well as on NYU Depth images, which con-
tain very complicated scenes.

USC shadow currently contains RGB-D images of 4 differ-
ent scenes on a plane: a box, a noodle bowl, a stuffed toy and a
combination of the three objects with occlusions. Each scene is
recorded under a combination of 4 different light source directions
and 2 global illumination levels. Total number of images is 32.
Figure 7 shows that our results on USC Shadow are very stable
for different scenes under different lighting conditions. The first
two columns specifically show that our method is robust against
global illumination changes, without any manual offsetting.

(a) (b) (c)

Figure 5: Details of Figure 9. (a) original image, (b) shadow
removal results in [3], (c) our detection results. In (c) red mask
indicates detected shadow, green mask indicates manually labeled
shadow, yellow mask hence indicates agreement (overlap of green
and red areas).

Our results on NYU Depth images (Figure 8) are at least
on par with state of the art [3] (note that [3] focused on shadow
removal, from which shadow labels can be estimated), and show
better performance in certain areas. Figure 9 shows a sample com-
parison between our results and that of [3]. It can be seen that [3]
failed to detect the shadow area under the black storage bench
against the right wall (enlarged in Figure 5), which our algorithm
successfully detected. This shadow area is difficult to detect in
2D even with human eyes, but is more obvious to humans when
viewed as PCD (Figure 9d), especially from a side view (Figure
9e).

It is worth pointing out that the manually labeled shadow
may not be absolutely accurate, especially when the shape of the
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Figure 6: Ambiguous cases. Top: original images. Bottom: our
detection results, red mask indicates detected shadow. Manual
label is not shown here because there are more than one way to
annotate shadow area in these cases.

shadow is difficult to trace or the shadow boundaries are fuzzy.
For example, in Figure 7 we would expect some variation in
shadow boundaries that are manually labeled by different people,
caused by fuzzy edges in the original shadows.

Compared to 5 to 7 minutes reported by [3], our pipeline
(including all preprocessing steps and reading/writing intermedi-
ate images) converges in under 90 seconds on 640 x 480 orga-
nized point clouds (native resolution of Kinect), and in typically
5 seconds when down-sampled to 160 x 160 in constructing the
MRF, without visible degradation in detection accuracy. All re-
sults shown herein used the down-sampled MRF.

Conclusions and Future Work
In this effort we presented the first shadow detection algo-

rithm on point clouds. Our system is innovative in various ways:

• It presents (to our knowledge) the first shadow detection al-
gorithm that solves the problem in a 3D world coordinate
system. Our algorithm is hence compatible with existing
3D sensing techniques and may benefit 3D applications like
object shape detection, scene segmentation, 3D scene recon-
struction with varying illumination, and robotics.

• It redefines the originally ill-posed shadow detection prob-
lem by distinguishing between cast shadows and shading ef-
fects on objects.

• It is tested on a new RGB-D dataset (USC Shadow) for
shadow detection; novel features of this dataset include
labeled shadow regions for performance evaluation, and
a controlled environment with known source locations.
(Source locations were not used for the work described in
this paper).

Due to the extra depth information, our method can detect
shadow areas that are otherwise impossible to identify with single
2D images; however, it still fails in various difficult (e.g. middle
column of Figure 7) or ambiguous cases.

Some ambiguous cases are shown in Figure 6, where more
than one shades of shadow exist on the floor. These cases suggest

that in complicated scenes, a binary shadow/non-shadow label
might not suffice, and that a hierarchical or soft labeling scheme
might be necessary.

In the future, this work will be further extended by combin-
ing it with other 3D scene understanding tasks such as light source
detection and semantic segmentation, and will be improved to ad-
dress the issues that are mentioned above.
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Figure 7: Shadow detection results on part of USC Shadow Dataset. Top row: RGB channels of original images. Bottom row: detection
results. In the bottom row, red mask indicates detected shadow, green mask indicates manually labeled shadow, yellow mask indicates
agreement.

Figure 8: Shadow detection results on part of NYU Depth Dataset. In the bottom row, red mask indicates detected shadow, green mask
indicates manually labeled shadow yellow mask indicates agreement.

(a) (b) (c) (d) (e)
Figure 9: Sample comparison between the shadow removal result in [3] and the shadow detection result of our method. (a) original
bedroom scene (b) shadow removal result in [3] (c) our result compared with our manual label (d) our result in point cloud, front view.
(e) our result in point cloud, side view. In (d) and (e) green area indicates detected shadow.
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