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Abstract
Automatically reconstructing a 3D shape model of a non-

rigid object using a sequence from a single commodity RGB-D
sensor is a challenging problem. Some techniques use a 3D shape
template of a target object; however, in order to generate the tem-
plate automatically, the target object required to be stationary.
Otherwise, a non-rigid ICP algorithm, which registers a pair of
point clouds, can be used for reconstructing 3D geometry of a
non-rigid object directly, but it often fails due to the ambiguity in
point correspondences. This paper presents a method for gener-
ating a 3D shape template from a single RGB-D sequence. In or-
der to reduce the ambiguity in point correspondences, our method
leverages point trajectories obtained in the RGB images, which
can be used for associating points in different point clouds. We
demonstrate the capability of our method using deforming human
bodies.

Introduction
Recently, various applications that present a moving and de-

forming object to users, such as virtual fitting room [1] and virtual
pets [2], have become available to ordinary users. These applica-
tions render objects based on 3D geometry of their entire shapes
(which we refer to as full-body shape models) and their non-rigid
motion, both of which are usually handcrafted. Automatic tech-
niques for reconstructing full-body shape models at each frame
can drastically reduce the cost for creating a 3D shape model and
motion (e.g., [3, 4]). They use multiple sensors (e.g., RGB or
RGB-D sensors), whose relative poses are known, to capture the
object from different viewpoints simultaneously. It then applies
an existing 3D reconstruction technique for rigid objects, such as
[5, 6, 7]. However, the use of multiple sensors may be still cum-
bersome for some applications in which ordinary users need their
own shape models and motions.

Reconstructing 3D shape and motion from a single sensor is
a challenging problem. Two approaches have been proposed: one
uses 3D shape templates of the target object and the other does
not. Former approach [8, 9] generates a 3D shape template using
a 3D shape reconstruction technique for rigid objects [5, 6, 7],
assuming the object is almost stationary. They then fit the 3D
shape template to a 3D point cloud at each frame of a single depth
map sequence. One major limitation of this approach is that it
requires an extra burden to capture the target object while it is
stationary, which is practically infeasible, especially for objects
like animals.

Latter approach [10, 11] registers 3D point clouds in all
frame of a single depth map sequence to any other frames using
non-rigid iterative closest point (ICP) [12, 13]; however, it often
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Figure 1: Template points (red) and point trajectories (black).

fails due to the ambiguity in point correspondences and the high
degrees of freedom in non-rigid transformation. In addition, non-
rigid ICP is formulated as a non-convex optimization problem and
thus depends on initial values of transformation parameters.

This paper presents a novel non-rigid point cloud registration
method for 3D shape template generation, designed for an single
RGB-D sensor. Observing that the RGB image sequence con-
tains rich cues for finding the correspondences between a pair of
points on an image and another, our method reduces the ambiguity
in point correspondences via optical flow-based point trajectories
obtained by, e.g., [14, 15]. Since the point trajectories terminate
when they disappear, assuming that the sequence captures the ob-
ject from all around it, local descriptors (e.g., [16, 17, 18]) loosely
associate the point trajectories in different frames to reduce regis-
tration errors.

Point cloud registration in our method is based on the non-
rigid ICP algorithms by Li et al. [12] and Amberg et al. [13],
which directly register point clouds assuming non-rigid transfor-
mation. In order to incorporate the point trajectories obtained
from the RGB image sequence into these algorithms, we intro-
duce template points, each of which is a point on the 3D shape
template associated with a point trajectory. The correspondences
among 3D points in different point clouds are represented by the
associated template point as shown in Fig. 1. Our method thus
registers the point clouds via the template points. We formulate
this non-rigid registration as an optimization problem to find the
template points as well as non-rigid transformations from the tem-
plate points to each point cloud. Due to its non-convexity, our
method still depends on initial values of the parameters, and we
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alleviate this by adopting two step optimization.
The main contributions of this paper are as follows.

• Our method uses the RGB image sequence for explicitly
identifying point correspondences. To the best of our knowl-
edge, no prior work uses the RGB image sequence for the
purpose of non-rigid registration. This method well suits for
commodity RGB-D sensors, such as Microsoft Kinect.

• Our two step optimization provides stable registration with
less dependency on the initial parameter values by gradu-
ally increasing the degrees of freedom of the transformation
assumed in registration.

Related work
This section reviews the relevant work in full-body 3D shape

reconstruction of non-rigid objects.
Multiple sensors. Shape reconstruction using multiple sen-

sors basically is a registration problem for rigid objects if the sen-
sors are synchronized. Starck et al. [3] designed a system with
eight calibrated RGB sensors, whose relative poses are known.
Their system reconstructs the 3D shape of non-rigid objects by
combining shape-from-silhouette and multi-view stereo. Dou et
al. [4] presented a full-body scanning system with eight calibrated
RGB-D sensors. It relies on non-rigid registration [19] in order to
make the system more robust against unsynchronized sensors and
measurement noises. Ye et al. [20] developed a motion capturing
system with three hand-held RGB-D sensors. Since the poses of
these sensors are unknown, it registers point clouds from them us-
ing ICP. These systems with multiple sensors can reconstruct the
full-body shape of target objects at each frame solely from obser-
vations but requires synchronization among the sensors and their
relative poses.

Single sensor with prior knowledge. Full-body reconstruc-
tion with a single sensor is generally more challenging than the
multiple sensor case because it needs to handle unobserved parts
of the target object due to, e.g., occlusion.

Some techniques use various types prior knowledge to facil-
itate shape reconstruction from a single sensor. Prior knowledge
includes skeletons of articulated objects [21, 22], statistical shape
models [23, 24], have been proposed. Malleson et al. [21] pro-
posed a full-body shape reconstruction method designed for hu-
man body. The point cloud is divided into several partial point
clouds, so that each of them can be handled by rigid registra-
tion, which is followed by non-rigid registration. Schmidt et al.’s
method [22] reconstructs 3D shapes of articulated objects in real-
time using GPU accelerated optimization. Anguelov et al. [23] fit
a partial 3D point cloud to a full-body shape model of human with
a trained dataset of various shapes and poses. Chen et al. [24] ac-
quire higher quality 3D shapes of non-rigid objects than that by
Anguelov et al.’s method [23] using a tensor-based deformation
model. These approaches are effective for specific objects, such
as a human; however, they cannot be applied to other objects.

Single sensor without prior knowledge. Some methods di-
rectly register 3D point cloud in every frame to any other frame
[10, 11, 12, 13, 25, 26, 27]. Li et al. [12] and Amberg et al. [13]
proposed a non-rigid ICP algorithm, which can handle larger de-
formation than Brown et al.’s [25]. Dou et al. [10] acquired high-
quality 3D shape of non-rigid objects, using the non-rigid ICP
and bundle adjustment algorithms. Newcombe et al.[11] pre-

sented real-time non-rigid 3D shape reconstruction with GPU-
accelerated optimization. This type of approaches can reconstruct
full-body shapes from a single RGB-D sequence; however, it of-
ten fails due to the ambiguity in point correspondences and the
high degrees of freedom of non-rigid transformation. In addi-
tion, such algorithms are formulated as a non-convex optimization
problem and thus are dependent on initial values of transformation
parameters.

Another approach for single-sensor 3D shape reconstruction
is to generate a full-body 3D shape beforehand (namely, a 3D
shape template) and fit it to a point cloud at each frame [8, 9]. Li
et al. [8] fit a low resolution 3D shape template to a point cloud
and update it for finer geometric details. The 3D shape template
is generated by an existing reconstruction method for rigid object
(e.g., [5, 6, 7]) assuming the object is almost stationary. Zollhöfer
et al. [9] presented a real-time method, which is similar to Li et
al.’s [8] using GPU-accelerated optimization. These method can
reconstruct full-body shape models more stably than the meth-
ods without shape templates; however, it requires a capturing step
dedicated for template generation, which can be practically im-
possible when the target is, for example, an animal.

Most existing methods with a single RGB-D sensor do not
leverage RGB images. Our method provides stable non-rigid reg-
istration of point clouds using the RGB image sequence for ex-
plicitly identifying point correspondences.

Template generation using point trajectories
Given an RGB-D image sequence capturing a moving and

deforming object from entire directions around it, our method
first tracks the 2D point trajectories in RGB images using Sun-
daram et al.’s method [14] and then extract 3D point trajectories,
each of which is a series of 3D points in each point cloud given
by the depth maps. The i-th 3D point trajectory is denoted by
Xi = {xt

i |t = ts
i , . . . , t

e
i }, where ts

i and te
i are the frame indexes

at which the point trajectory starts and terminates. The template
point associated with Xi is denoted by pi ∈P , where P is the set
of template points. We assume that xt

i and pi is associated by local
affine transformation identified by At

i and bt
i (i.e., pi = At

ix
t
i +bt

i).
Under this assumption we formulate the non-rigid registration
problem as a minimization problem of an energy function with
respect to pi and (At

i ,b
t
i) for all i and t. The point trajectory is

lost when the corresponding point is occluded, potentially result-
ing in erroneous registration. To alleviate this, we also use local
descriptor-based point correspondences in RGB images to loosely
associate point trajectories in different frames.

Local descriptor-based point correspondences
Our method uses Sundaram et al.’s method [14] to obtain

point trajectories, which is based on optical flow in RGB images
sequence. This method can track relatively dense points over a
longer period; however it cannot re-identify the same point once it
is lost. To remedy this problem, we utilize point correspondences
by SIFT feature points and local descriptors [16].

To obtain reliable point correspondences, as shown in Fig. 2,
we first find point correspondences between a target frame t and
the rest, and identify the frames whose number of point corre-
spondences exceed a certain threshold TC. Since the sensor cap-
tures the target object from all around it, the number of the point
correspondences usually gives several sets of continuous frames.
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Figure 2: Obtaining a frame pair (t, t ′) for finding local descriptor-
based point correspondences.

For each set, we find the frame t ′ that gives the largest number of
point correspondences. We denote the set of all frame pairs (t, t ′)
obtained in this process by G .

Energy function
Let A and B the sets of linear and translation components

of the affine transformations. Our energy function is

E(P,A ,B) = αFEF +αCEC +αRER +αSES, (1)

where αF, αC, αR, and αS are weights to determine the contribu-
tions of terms EF, EC, ER, and ES, respectively.

Registration error term EF involves the registration error
defined by the sum of distances between the template points pi
and corresponding 3D trajectory points transformed by its associ-
ated affine transformation At

ix
t
i +bt

i , i.e.,

EF (P,A ,B) = ∑
t

∑
i∈V (t)

||pi− (At
ix

t
i +bt

i)||22, (2)

where V (t) is the index set of point trajectory-based 3D points
observed in frame t. The smaller EF is, the closer the template
point and the transformed point are to each other.

Local descriptor-based error term EC penalizes large dis-
tances between pairs of local descriptor-based 3D points in dif-
ferent frames in the template point space, inspired by Li et al.’s
method [8]. Instead of defining a template point for each local
descriptor-based 3D point yt

j as with point trajectory-based one,
we choose to loosely associate yt

j with several pi’s so that the
point correspondences by local descriptors can directly affects
pi’s. For this, we represent yt

j’s corresponding point in the tem-
plate space by a weighted sum of template points associated with
3D points xt

i around yt
j as shown in Fig. 3, assuming that the spa-

tial relationship among yt
j and neighboring xt

i’s is preserved in the
template point space, i.e.,

ỹt
j = ∑

i∈M (t, j)
w jipi, (3)

where M (t, j) is the index set of 3D points xt
i in frame t that are

m nearest neighbors of yt
j, and w ji is a weight determined by the

distance between yt
j and xt

i . We calculate w ji using Eq. (1) in [8].
This leads our local descriptor-based error term

EC (P) = ∑
(t,t ′)∈G

∑
j
||ỹt

j− ỹt ′
j ||22, (4)
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Figure 3: Local descriptor-based 3D point yt
j and its representa-

tion in the template point space.

where G is the set of frame pairs described in the previous sec-
tion. This term implies that the local descriptor-based 3D points
in frames t and s should be close enough to each other in the tem-
plate space as they represent the same point on the object.

Regularization terms ER and ES are introduced to constrain
transformation parameters A and B, assuming that the target ob-
ject is articulated as in Li et al. [8]. Motions of most points on
an articulated object can be described by rigid transformations;
therefore, ER constrains the linear component At

i to be almost a
rotation matrix, which can be represented by

ER (A ) = ∑
t

∑
i∈V (t)

||(At
i)

TAt
i− I||2F , (5)

where || • ||F is the Frobenius norm.
In addition, because the motions of neighboring points are

similar to each other under rigid motions, a 3D point xt
i trans-

formed by its own transformation (At
i ,b

t
i) and one of its neigh-

bor’s transformation (At
j,b

t
j) must be close to each other in the

template point space. This can be encoded by

ES(A ,B) = ∑
t

∑
i

∑
j
||At

ix
t
i +bt

i− (At
jx

t
i +bt

j)||22, (6)

where the second and third summations are calculated for i∈V (t)
and j ∈ N (t, i), respectively, and N (t, i) is the index set of n
nearest neighbors of the 3D point xt

i .

Two-step optimization
Our proposed method minimizes the energy function in

Eq. (1), which is a non-convex optimization problem because ER
is a quartic function with respect to each element of At

i . The solu-
tion thus depends on initial values of P , A , and B. To alleviate
this dependency, we adopt two-step optimization based on our
heuristics.

In the first step, we assume that all xt
i’s share the same trans-

formation, i.e., At
i = At and bt

i = bt for all i. Under this assump-
tion, the number of free parameters is drastically reduced. Also
ES is identically 0 and thus Eq. (1) can be rewritten to

E ′ (P,A ,B) = α
′
FE ′F +α

′
RE ′R +α

′
CEC, (7)

where

E ′F(P,A ,B) = ∑
t

∑
i∈V (t)

||pi− (Atxt
i +bt)||22, (8)
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Figure 4: Examples of masked RGB images and depth images in DS1 (left) and DS2 (right).

(a) DS1 (b) DS2

Figure 5: Obtained template points in first (left) and second (center) steps, and 3D shape template (right) in second step for DS1 and DS2.

E ′R(A ) = ∑
t
||(At)TAt − I||2F . (9)

α ′F, α ′R, and α ′C are weights. The proposed method minimizes
E ′ using the gradient descent method. Since E ′R is still a quartic
function, this minimization is again a non-convex problem; how-
ever, our preliminary study has demonstrated that it gives good
initial estimates of parameter values for the later step.

In the second step, Eq. (1) is minimized with initial estimates
of the parameter values obtained in the first step, again using the
gradient decent method.

Experimental results

Implementation and dataset
We heuristically determined the threshold value TC = 80.

The weight values for the first step optimization α ′F, α ′R, and α ′C
were set to 1, 100, and 0.1, respectively, and for the second step
αF = 0.1, αR = 1.0. Those for the second step optimization were
αC = 1.0, αS = 1.0. The numbers m and n of nearest neighbors
in M and N were both set to 4.

For the first step optimization, we set all the template points
pi to 0 as initial values. For At and bt , we use the parame-
ters of rigid transformations as their initial values for fast con-
vergence. To obtain the rigid transformation, we registered point
clouds from consecutive two RGB-D images sequentially, assum-
ing that the transformation between two point clouds can be de-
scribed by a rigid transformation. We then calculated the trans-
formation from each frame’s point cloud to, e.g., the first frame’s
one, by recursively multiplying the transformations.

In this experiment, we generated the 3D shape template from
two RGB-D sequences, i.e., DS1 capturing a human moving his

body and head, and DS2 capturing a human moving his arms, in
which the numbers of frames are 350 and 325, respectively. They
were captured using fixed Microsoft Kinect v2. The subjects ro-
tated in front of the sensor while capturing. We consider that this
is almost equivalent to moving the sensor. Since the captured im-
ages included background regions, we extracted the human re-
gions by thresholding the depth values, as shown in Fig. 4.

Results
The template points and shape templates by the first and sec-

ond optimization steps are shown in Fig. 5, where the mesh mod-
els were generated by using an algorithm based on the Poisson
formulation [28].

For DS1, the template points around the head converged in
the second step optimization compared with those after the first
step. This demonstrates that our energy function with local affine
transformations works properly. On the other hand, the point
around the neck spread after the second step. One of possible
reasons is that the local descriptor-based correspondences were
erroneous around the neck (i.e., some points around neck were as-
sociated with those around the shoulder). For DS2, the template
points around the right hand, which was divided into two parts,
got closer because of the loose correspondences by local descrip-
tors. However, particularly for forearms, the numbers of point tra-
jectories and local descriptor-based point correspondences were
relatively small, and thus the template points did not exhibit good
convergence.

To quantitatively evaluate the accuracy of the proposed
method, we transformed the template points to the sensor’s co-
ordinate system during the first and second optimization steps,
and then calculated the distance between each transformed tem-
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First step Second step
(a) DS1

First step Second step
(b) DS2

Figure 6: Examples of template points (black) transformed back to the sensor’s coordinate system in a certain frame and the point
trajectory-based 3D points in that frame (red) in first and second steps for DS1 and DS2.

plate point and its associated point trajectory-based 3D point us-
ing the inverse transformation of At

i and bt
i , as shown in Fig. 6.

Fig. 7 shows the average and largest distances as well as the dis-
tances’ 5th and 95th percentile for DS1 and DS2. These results
indicate that our two-step optimization works well, decreasing the
distances in both steps, although the largest distance did not de-
crease in the second step.

For better 3D shape templates, we need removal of wrong
correspondences by local descriptors as well as uniformly ex-
tracted point trajectories. The geodesic distance-based weights
for Eq. (3) may also improve the local descriptor-based point cor-
respondences, especially for the neck and the forearms in DS1
and DS2, respectively.

Conclusion
In this paper, we have proposed a method for 3D shape

template generation leveraging RGB image sequence obtained
while capturing depth images with an RGB-D sensor. For sta-
bility, we have also proposed the two-step optimization strategy,
which gradually increases the degree of freedom of transforma-
tions assumed in the energy function. Our experimental results
have demonstrated that the proposed method can generate the 3D
shape template with about 0.01 meter of the averaged distance be-
tween a transformed template point and its associated 3D point.
Our future work includes the improvement of the quality of shape
template by, e.g., removing wrong local descriptor-based point
correspondences and using geodesic distances to determine the
weights in Eq. (3).
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steps for DS1 and DS2.
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