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Abstract
This paper focuses on depth map boundary reconstruction

by providing a novel goal-oriented Time-of-Flight depth map su-
perresolution approach. State-of-the-art RGB-guided depth map
upscaling uses accompanied high-resolution RGB information to
upscale depth maps while leaving a minor but non-negligible
amount of blurred flying pixels which are physically incorrect
in depth maps. These flying pixels highly deteriorate consecu-
tive applications which need a high-definition depth key. Our ap-
proach evaluates RGB superpixel segmentation principles to pre-
cisely indicate RGB boundaries and to finally transfer this bound-
ary information to the depth map by assigning the maximum-
likelihood estimate for each region. Thereby, we achieve discon-
tinued and physically correct depth edges with noticeably reduced
flying pixel artifacts. The proposed method overcomes previous
algorithms by more than 50% in our dedicated evaluation on real
RGBD camera data. This highly accurate depth edge information
can be used in future applications relying on depth-based keying.

Introduction
Capturing depth together with two-dimensional RGB color

information has accessed numerous applications. Plenty of
them like depth-image-based rendering [42], object tracking [2],
image segmentation [39] or deep compositing [22] are improved,
facilitated or emerge when a depth channel becomes available.

A dense depth map for real image content can be captured
using stereovision techniques or Time-of-Flight (TOF) sensors.
While stereovision systems deliver high-resolution depth maps
with only minor noise, they lack of mechanical and computational
simplicity. Contrary, TOF sensors are cheap and easy to use in
practical environments but deliver only low-resolution depths
maps in the domain of a few hundred pixels per dimension,
containing a noticeable amount of noise. Due to the operational
benefits, captured depth maps by TOF systems are, however,
very interesting for conventional industrial operation as well
as novel fields like movie productions, where hand-made or
computer-generated depth layers are well-known. Therefore, we
consider so-called RGBD cameras, which capture RGB images
with matching, probably upscaled, depth maps.

In order to match the higher RGB sensor resolution,
information of the color image is used to refine the depth map.
However, problems in typical RGB-guided depth map upscaling
arouse when color and depth edges are misaligned, blurred or
color differences at depth discontinuities are varying a lot. Then,
depth edges either bleed over the aimed high-resolution edge
position or an effect called texture copying transfers texture to
depth structure. Considering RGB-guided upscaling filters, there
is an important aspect to captured depth maps that has not yet
been handled appropriately. This aspect is a known phenomenon
called flying pixels.

Flying pixels are sampling artifacts due to the low TOF
sensor resolution. That is, due to the low spatial sampling rate,
depth discontinuities generate mixed depth measurements of the
object and foreground or background at its boundaries, yielding
a displaced distance measurement somewhere in between. This
issue is visualized in Figures 1 and 2. In dependence of the usage
within a filter, either the native resolution depth map or a naively
upscaled depth map is used as input. Figure 1 shows the native
resolution depth map, where a noticeable amount of pixels is dis-
placed as flying pixels. Unfortunately state-of-the-art algorithms,
like the often used joint bilateral filter [19], don’t treat flying
pixels correctly with respect to the obtained application-based
consequences. Typically flying pixels are used as valid inputs.
Hence, there are two cases. First, if the flying pixel represents
the center pixel of the kernel, it is included with a high weight
leading to a biased result. Second, if the flying pixel is within the
considered filtering neighborhood, it can’t be fully suppressed as
a computed weight of zero is very unlikely. This case also leads
to a biased results in the sense of depth.

Our contribution in this paper is twofold. First, we introduce
an upscaling algorithm which incorporates color-guided super-
pixel clustering to indicate depth discontinuities as we assume
that object boundaries induce superpixel boundaries. Thereby,
we obtain high-resolution depth maps with lower boundary
classification errors compared to state-of-the-art upscaling
algorithms while softening the demands for smoothness. Our
observation, for example in our recent lens effect simulation using
RGBD data [13], clearly states that precise object boundaries
are more important compared to strict smoothness of surfaces.
This argument is underlined by the fact that important visual
information is located at object boundaries, which the human
visual system is highly sensitive to. Hence, we propose our
filter in particular for depth-image-based rendering applications,
whose success is dependent on depth edge reconstruction.

Our second contribution is a detailed comparison of different
highly potential superpixel algorithms, which build the basis of
our approach and, for example, other general superpixel-guided
approach like the proposed depth upscaling algorithms by Matsuo
et al. [24] or Soh et al. [35].

This paper concludes with a comparison of our approach
and significant state-of-the-art filters, focusing on correct edge
classification. Therefor, we provide a new metric, which is
suitable for noise-aware depth edge classification.

Prior Art
In general, there are specialized methods for identification

or combined identification and correction of flying pixels.
Pure identification methods are proposed by May et al. [26],

Swadzba et al. [36] and Huhle et al. [17]. These solely remove
identified flying pixels from the depth map.
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Figure 1: Real example of flying pixels at the object boundary
of the box in the foreground and the wall in the background.
(top) RGB and depth map; (bottom) false color point cloud of the
depth map with red circle indicating flying pixels

optical
center

Figure 2: Flying pixels are generated because of the low sam-
pling rate resulting in pixels covering portions of background and
foreground at object boundaries.

May et al. proposes to span triangles from the physical
position of the sensor pixel to voxels of a neighborhood sur-
rounding the candidate voxel. The voxels are based on the TOF
measurement. If an angle in this triangle exceeds a user-defined
threshold, the voxel is marked as flying pixel.

Similarly, Swadzba et al. propose a 3x3 neighborhood
filter that marks the central pixel to be a non-flying pixel, if the
distance to more than 2 pixels of the neighborhood is smaller
than a threshold.

While the last two methods solely work on the depth map,
Huhle et al. employs a system based on an RGB image and its
corresponding TOF depth map. Therein, the RGB image is used
to differentiate homogeneous and inhomogeneous regions in
terms of color. Then, using a color-weighted Gaussian distance,
pixel distances within a neighborhood are evaluated towards a
threshold to determine flying pixels.

Identification and correction methods are proposed by

Sabov et al. [32] and Richardt et al. [31].
Sabov et al. introduce a so-called score value that measures

the distance of the central pixel to its neighbors based on the depth
map, similar to the approach of Huhle et al.. If the score value is
larger than a threshold, the pixel is referred to as flying pixel. In
order to correct the flying pixel, the same neighborhood is consid-
ered. The flying pixel is assigned to the pixel value of the neigh-
boring pixel with the smallest score value distance while being a
valid pixel. The authors also provide a second approach, which
fits line, free or jump segments in the depth map, which is divided
into vertical and horizontal scanlines. A flying pixel is defined as
a pixel which lies within a jump segment. The correction step ver-
ifies whether the flying pixel can be projected onto a neighboring
line segment. Compared to our approach, they try to correct flying
pixels in the low-resolution domain, which is not appropriate due
to the sampling theorem, when subsequent upscaling is applied.

Richardt et al. propose an RGB plus depth camera workflow
based on an RGB camera and a depth camera mounted as
side-by-side system. A processing step considers edge pixels in
the depth map, which are either determined using a thresholded
gradient image or surface normals, depending on the given geom-
etry. The marked flying pixels and the occluded pixels, because
of the required viewpoint warp, are then filled-in by a multi-scale
approach using the joint-bilateral filter [19]. Subsequently a
cross-bilateral filter is used to refine the edges with respect to the
higher resolution RGB image. Compared to our approach, the
subsequent application of the cross-bilateral filter re-introduces
flying pixels based on the Gaussian filter kernels, which do not
force outliers to be zero-weighted. Thus this blur generates new
flying pixels.

Next to these specialized approaches, we also consider
typical upscaling as a way of flying pixel correction because
upscaling inherently tries to refine edges. As there are numerous
color-image-guided depth map upscaling approaches [4, 6, 40,
14, 29, 8, 19, 28, 41, 28, 30, 20, 27, 23, 3], we especially stress the
approach by Soh et al. [35]. Therein, they propose to use a super-
pixel segmentation, generated on the color image and transferred
to the depth map, which is similar to our approach. However, re-
introducing flying pixels as the approach is followed by a Markov-
Random-Field framework to overcome plane-fitting artifacts.

The approaches of Matsuo et al. also consider RGBD data by
employing a superpixel segmentation on the color image, transfer-
ring the segmentation to the depth map and fitting planes similar
to Soh et al. [24, 25]. However, Matsuo et al. extend plane fitting
to connecting planes, which suffice a given smoothness constraint.

Van den Bergh et al. approach depth map upscaling and
refinement by an extended SEEDS segmentation algorithm [38].
Their main application is to provide closed and dense object
silhouettes for robotic vision and recognition tasks.

Method
This section starts with an overview of the employed

superpixel clustering algorithms, followed by the description of
our approach.

Superpixel Segmentation Candidates
As we provide a recommendation of suitable superpixel

algorithms, we present a subset of algorithm candidates first. The
chosen superpixel algorithms are selected due to they reported
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performance and scientific popularity.

Contour-Relaxed Superpixels
Contour-Relaxed Superpixels (CRS) by Conrad et al. is a

statistical Maximum-A-Posteriori (MAP) approach for superpixel
segmentation [5]. Therein, they define the image segmentation
Q, the parameter ensemble θ and the random variable z, which
denotes the image. The aim is to find Q and θ that optimize the
joint probability density p(z,Q,θ). Regarding the problem using
MAP principles leads to

J = p(θ ,Q|z) = p(z|Q,θ) · p(Q,θ). (1)

The maximum is found assuming a Gibbs random field with
discrete two-element cliques employing potentials V from the
Potts model and isolating the problem to a region-specific max-
imum likelihood estimation as Q = {R1, ...,Rn} is fixed during
each iteration. The solver, which is also proposed by Conrad
et al., efficiently maximizes Eq. 1 by variation of pixel labels.
Therefor, only grid points that are located on region contours and
their neighbors are adduced. Changing the region label directly
alters V and thus Eq. 1. This process is done for each segment Ri
individually, because it is assumed that knowledge of the entire
image texture does not change the knowledge of the texture
within a segment Ri. Finally, a compactness term that typically
controls the shape of the superpixels is added yielding the energy

L = J+κ ∑
xi∈R j

(xi −m(R j))
T (xi −m(R j)), (2)

where the second term expresses the squared distance of each
pixel coordinate vector x = (x,y) within region R j to its center
m(R j).

Entropy Rate Superpixels
Entropy Rate Superpixels (ERS) porposed by Liu et al.

considers superpixel segmentation as a graph partioning problem
in the real of graph theory [21]. Assuming a graph G = (V,E),
this approach seeks for a subset of edges A ⊆ E, such that the
resulting graph Ĝk = (V,A) consists of k connected sub-graphs.
The edge potential E is defined as the weighted sum of the en-
tropy rate H(G) of a random walk within G and a regularization
term B(G), denoted as

E(G) =H(G)+λB(G), with

H(G) =− ∑
n∈V

wm,n

∑m∈V wm,n
∑

m∈V
pm,nlog(pm,n),

B(G) =−
K

∑
i=1

|Si|
N

log(
|Si|
N

).

(3)

Therein, pm,n denotes the step probability of the random walk,
which is obtained by the edge weights wm,n of G. The weights
themselves are computed employing the L1 color distance of the
respective pixels m and n. The regularization term allows for the
control of the superpixel size by favoring superpixels with small
variance in size. The problem is solved using a Greedy algorithm.

Superpixels Extracted via Energy-Driven Sampling
Superpixels Extracted via Energy-Driven Sampling

(SEEDS) proposed by van den Bergh et al. optimizes an initial

Figure 3: Superpixel map overlay on RGB (left) and depth (right)
images; (1) and (2) mark a superpixel on a smooth surface and a
superpixel at an object edge, respectively.
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Figure 4: Depth histogram of superpixel 1 in Figure 3 containing
only valid pixels (left) and superpixel 2 in Figure 3 containing
numerous flying pixels (right)

segmentation iteratively [37]. The authors propose to use an
hill-climbing algorithm to minimize the energy

E(s) =H(s)+ γG(s), where

H(s) =∑
k

∑
H j

(cAk ( j))2,

G(s) =∑
i

∑
k
(bNi(k))

2 .

(4)

Therein, the H(s) term optimizes for color similarity within each
superpixel using the color histogram cAk . G(s) controls the shape
of the superpixel using the histogram of superpixel labels bNi in
a neighborhood Ni.

To improve the results, SEEDS is applied hierarchically by
forming n levels, where level 0 consists of single pixels and each
level n+ 1 builds a new block of a 2x2 block neighborhood in
level n. The algorithm starts at the coarse level n. The similarity
to superpixels is measured by the intersection of the respective
superpixel histograms. Hence, in this block update process,
blocks are assigned to superpixels with higher similarity. In level
0, this process is referred to as pixel update, since the amount
of identical color values is evaluated in neighboring superpixels.
Finally, a contour smoothing process is conducted to obtain more
compact superpixels.

Simple Linear Iterative Clustering
Simple Linear Iterative Clustering (SLIC) proposed by

Achanta et al. is based on typical k-means clustering. Hence, a
5-dimensional feature space that comprises pixel color distances
in the CIE La*b* color space and the pixel coordinates for
positional information. Thereby, the distance Di,k of a pixel i to
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a superpixel center k is formulated by

Di,k =Dlab +
m
S

Dxy, with

Dlab =
√
(li − lk)2 +(ai −ak)2 +(bi −bk)2,

Dxy =
√
(xi − xk)2 +(yi− yk)2,

(5)

where m is a weighting parameter between the color and the

normalization distance S =
√

N
K , with the number of pixels N and

number of superpixels K, denotes the superpixel grid interval.
The SLIC algorithm alters between the assignment of pixels
in accordance to minimal Di,k and subsequent updating of the
superpixel centers. SLIC ends with a contour evolution step
that assigns incoherent pixel clusters, which are unconnected but
assigned to one superpixel, to neighboring superpixel.

Approach
Our approach accepts high-resolution color images and

dense occlusion-free low-resolution depth maps. Thus, we use
data generated from a monocular RGBD camera system, as
described by our previous papers [9, 12]. However, we want to
point out that our approach is not limited to this kind of camera
systems. There are multiple other systems, which generate
similar data like the system described by Bamji et al. [1].

We start at a common base for RGBD data, which comprises
a matching naively upscaled depth map using bi-cubic interpola-
tion. This upscaling process includes the registration of the depth
map from the raw depth map resolution of 160x90 in our case to
the color image geometry and resolution, which is 1920x1080.
In particular, the registration routine is a typical step in the
realm of sensor fusion and is commonly done separately before
higher level filtering, as outlined in our paper considering depth
denoising [10]. Considering a monocular system, registration is
applied using a full perspective transformation and a appropriate
lens model. In contrast, systems using mirrors in front of the lens
and binocular RGBD systems require 3D registration techniques
and the resolution of occlusions. We next apply one of the
specified superpixel algorithms depth-independently on the RGB
image. Figure 3 shows an RGB image with corresponding depth
map overlaid by the according superpixel segmentation.

As the superpixel segmentation is available, we swap the
segmentation information from the RGB image to the depth map.
Using these superpixel clusters, it becomes highly beneficial to
statistically consider the depth value ensemble instead of single
pixel values. Therefore, we directly deploy properties of the depth
ensemble histograms, depicted in Figure 4. Therein, histograms
of a first superpixel region (1) containing, by definition, only valid
depth values and a second superpixel region (2) contaminated
by numerous native and interpolated flying pixels, are shown.
Obviously, the contaminated region shows a very flat but long
tail on the left, compared to the spiky uncontaminated histogram.
Deploying this observation, we estimate the maximum likelihood
(ML) depth values of each superpixel ensemble individually.
This process provides a robust estimate of the most likely depth
value that represents a superpixel region.

Regarding the scope of applications outlined in the introduc-
tory section, the algorithm is intended to deliver primarily high-
fidelity depth edges rather than perfectly smooth surfaces within

Figure 5: Lab data set with RGB image, naive upscaled depth map
and segmentation mask. Test patches for evaluation are indicated
by the red box: (1) cardboard, (2) watering can, (3) umbrella

objects. Thus, we assign the ML estimate, which is most likely
not a native or a interpolated flying pixel, to the entire superpixel
region. Thereby, all object boundaries, which are indicated by
superpixel boundaries, are discontinued in the depth. Although
being the desired effect, minor depth jumps are also introduced
into smooth surfaces of the depth map. Soh et al. discovered
a similar problem while fitting planes into the depth ensemble.
Therefore, they encountered by using an edge-sensitive maximum
a posteriori Markov-Random-Field approach for subsequent
smoothing. Unfortunately, this procedure again introduces flying
pixels in accordance to our own experiments. Hence, we decided
to provide the depth map without any subsequent continuity re-
striction, yielding a maximum of depth segmentation capabilities.
An example of the resulting depth map is shown in Figure 6.

Experimental Evaluation
In this work, we provide an evaluation on real RGBD data.

In real TOF depth data, we observe principle-based differences
in depth data characteristics compared to synthetic data sets like
Middlebury [34, 33]. In detail, we encounter noise types like
range ambiguity or Poisson noise as well as measurement errors
[7, 11, 16]. Focusing on flying pixels, we observe a lot of noise
influence, which leads to temporally highly fluctuating flying
pixels, which is not known to be available in TOF simulations yet.

For the evaluation of the depth upscaling performance on
real RGBD data, a novel method for ground truth creation was
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Figure 6: Example of the geometry based on the resulting depth maps using the naively upscaled version (bi-cubic, middle) and our
method (right). Please notice the high selectivity of our method yielding to a minimum amount of flying pixels between both surfaces.
To avoid confusion: the green screen was not used for segmentation purposes in any of our examples.

Figure 7: Acting scene with naive upscaled depth map (bi-cubic) and segmentation mask for the human actor. Test patches: (1, dashed
line) body, (2) head, (3) hand, (4) waist, (5) elbow

Figure 8: Results using our method based on different superpixel
algorithms. Rows from top to bottom: bi-cubic upscaling, ERS,
SEEDS, SLIC, CRS

developed for phase or round-trip time measuring TOF cameras
since there is no ground-truth-free method available yet. In par-
ticular, typical depth map evaluation when using the Middlebury
data set, deploys metrics like the root-mean-square error or mean
absolute deviation. These, give an idea of the similarity between
ground truth and processed depth map. However, both metrics
do not provide a specific statement on the reproduction of depth
discontinuities. This fact becomes obvious when considering
typical depth maps, which consist of smooth surfaces and jumps.
Jump areas are extremely narrow and seldom as objects consist
of much more surface area than depth discontinuities that only
describe the boundaries of the objects. Thus, using aforemen-
tioned metrics mainly gives an average statement of the distance
between ground truth and processed depth surfaces. Contrary,
we aim for a metric that specifically provides quantitative
information about the reconstruction of depth discontinuities.

The following section provides details on the developed
metric as well as the generated data set.

Ground Truth and Metrics for Real Data
A single RGB frame, like it is available in the discussed sys-

tems, can be used as input for quick manual rotoscoping. Op-
tionally partitioning of the rotoscoped objects provides a series of
ground truth patches, which can be obtained from one single im-
age. Furthermore, one opaque pixel must correspond to one depth
value. Semi-transparent RGB pixels can’t match sensible depth
values. Hence, for ground truth selection, all image parts with
in-focus depth jumps are suitable. Figures 5 and 7 depict such ro-
toscoped binary masks. Therein, object boundaries are correct up
to minimal blur which arouses from remaining low pass properties
of physical lenses, even when they are fully focused, and low pass
properties of filter glasses in front of the image sensor. Addition-
ally, also high-resolution color sensors are limited to sampling.
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Hence, semi-transparency is also induced by mixture of fore-
ground and background colors, similar to the occurrence of na-
tive flying pixels. We account for this minimal blur at boundaries,
which does not correspond to semi-transparencies, by drawing the
mask boundary in the visual center of the blurred RGB region.
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Figure 9: NADEC value when sweeping the amount of superpix-
els per image. CRS, ERS, SEEDS and SLIC for the cardboard
patch (top, watering can patch (middle), umbrella patch (bottom)
—– CRS: β = 0.001; 256 bins —– ERS: λ = 1.1; 64 bins
—– SEEDS: γ = 0.25; 1024 bins —– SLIC: m = 6; 64 bins

Next, we define a criterion that reveals the depth segmen-
tation performance of depth boundaries. Therefore, we use the
bi-cubicly upscaled raw depth map and the mask from rotoscop-
ing the depth patch to segment into the object and remainder. The
mean value and the standard deviation are calculated for each of
the two regions separately. As a numerical measure, our metric
utilizes typical classification metrics. In this case, it’s the number
of false positives fp and the number of false negatives fn.

Considering depth maps, false negative pixels are depth val-
ues of the background located in areas of the foreground whereas
false positive pixels consist of depth values of the foreground
object bleeding into the background area. Subsequent classifi-
cation is done by masking and cutting the processed depth map.
Depth values outside a range of µ ±3σ of the respective area are
declared as false. Thereby, we are able to correctly classify more

than 99% of the inliers while respecting signal noise.
Our metric called noise-aware depth edge classification

(NADEC) is mathematically built by

NADEC =
fn + fp

N
. (6)

where N normalizes to the total number of pixels in the binary
mask. Hence, we obtain 0, as best possible value, if and only if all
depth pixels share perfect segmentation and thus best upscaling
with respect to the ground truth mask.

For a more detailed evaluation, we subdivided the Body
segment, seen in Figure 7, in 4 patches, head, hand, waist,
elbow, which emphasize different challenging situations for
RGB-guided upscaling filters.

Head is difficult for three reasons. Around the nose part,
the background provides a drawing which is very arbitrary in
structure but similar in color compared to the skin tone. A proper
segmentation is hard to achieve. Hair typically provides only
poor depth signal and the color is similar to the background
which gives an uncertain key, too. The opened mouth is difficult
to distinguish from the background in color but provides a
detailed and distinct depth structure.

Hand only provides a glove-like structure in the raw depth
map because of the low native resolution which can’t give a proper
depth map of the actor’s fingers. Furthermore, due to the thin
structure of the fingers, the native depth map is likely to consist
of flying pixels instead of valid depth values since the projection
of the finger onto the sensor is thinner than the pixel’s diameter.

Waist is prone to texture copying due to the significant
structure of the actors woven shirt. The red patterns of the shirt
are quite similar to the background color and hence color-guided
upscaling filters require strong color sensitivity settings to
distinguish between foreground and background. However, this
is said to lead to texture copying within smooth surfaces.

Elbow is challenging due to the green leaves in the back-
ground and the green patterns on the shirt. Thus, edge bleeding
is likely to occur.

Numerical Results
Our numerical evaluation consists of two parts. First, we

provide a detailed comparison of the upscaling performance
while altering the employed superpixel algorithm among the 4
selected algorithms CRS, ERS, SEEDS and SLIC. Figure 9 shows
the NADEC value when sweeping the amount of superpixels per
image. The amount of superpixels per image corresponds to the
cluster size and thus, to the granularity of object patches that can
be described using superpixels. Figure 8 shows the depth maps
using the minimum NADEC value from Figure 9.

Represented by the NADEC value, Table 1 provides a
numerical evaluation of the upscaling performance of our
approach compared to a selection of state-of-the-art algorithms in
color-guided depth map upscaling. Therein, we tested on 5 dif-
ferent image patches to obtain a small statistical set. On average,
our method is superior to the selected state-of-the art methods
with respect to our experiment. The typical improvement is
more than 50% of the NADEC value. Solely our implementation
of WMF by Min et al. is close to our approach. However, due
to the enormous execution time of WMF while computing the
parameter sweep forced us to reduce the problem to an 8-bit
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(a) nearest (b) bi-linear (c) bi-cubic

(d) JBU [19] (e) GF 1 stage [15] (f) GF 2 stage [18]

(g) NAFDU [4] (h) SDIS [35] (i) TGV [8]

(j) WMF [[27] (k) Our method (ERS) (l) Our method (SEEDS)

(m) Our method (SLIC) (n) Our method (CRS)
Figure 10: Resulting depth map of sate-of-the-art filters and our approach with each of the 4 possible superpixel algorithms
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depth map in this case. The quantization of the depth leads to
less distributed flying pixels, meaning that an algorithm yields
improved results when using the NADEC value.

Figure 10 visually compares the results from Table 1 and
the 4 possible results using our framework. Considering all
numerical and visual results when employing different superpixel
algorithms for our approach, we recommend using SLIC or CRS
as ERS and SEEDS show obvious drawbacks when segmenting
the color image. This is not necessarily bad segmentation. To
obtain a good depth assignment, it is also of the same importance
to yield very compact superpixel. This avoids tubular superpixels
along object boundaries, which only contain flying pixels for
subsequent ML estimation.
Table 1: State-of-the-art algorithms in comparison to our
approach using the acting scene. Benchmark was generated
employing the proposed metric NADEC [%]. Best values of each
column are marked in bold face; second best value in italic face

Method Body Head Hand El-
bow

Waist Avg.

Nearest 1.57 0.30 0.17 0.11 0.17 0.46
Bi-linear 1.73 0.32 0.14 0.12 0.18 0.50
Bi-cubic 1.59 0.30 0.13 0.10 0.16 0.47
JBU [19] 1.31 0.29 0.12 0.064 0.17 0.39
NAFDU [4] 1.34 0.28 0.12 0.067 0.16 0.39
GF 1s [15] 1.37 0.29 0.10 0.082 0.16 0.40
GF 2s [18] 1.38 0.28 0.11 0.075 0.13 0.40
SDIS [35] 1.13 0.24 0.17 0.085 0.26 0.38
TGV [8] 1.36 0.26 0.13 0.11 0.26 0.42
WMF(8-bit) [27] 0.60 0.26 0.13 0.028 0.061 0.23
Our method

0.59 0.19 0.10 0.044 0.084 0.20(CRS)
Our method

0.71 0.19 0.087 0.042 0.13 0.23(ERS)
Our method

0.72 0.18 0.13 0.038 0.077 0.23(SEEDS)
Our method

0.70 0.21 0.12 0.032 0.095 0.23(SLIC)

Conclusion
In this paper, we introduced a novel application-demanded

depth map upscaling algorithm. Our approach strongly focuses
on depth jump discontinuation, which is necessary due to the
outlined depth map artifact called flying pixels. Therefore, we
employ state-of-the-art superpixel segmentation on an accompa-
nied RGB image to obtain clusters at object boundaries. Those
clusters are processed by our algorithm, yielding superior depth
edge reconstruction results on a real RGBD data set compared to
state-of-the-art approaches. For detailed evaluation purposes, we
designed a new metric, which gives a measure for the quality of
depth jump reconstruction in upscaled TOF depth maps. Further-
more, as our approach relies on superpixel algorithms, we provide
a numerical comparison and criterions to select suited ones.

Our improved depth edge representation is especially
important for applications that make use of a clean depth key
to separate objects like, for instance, news speakers in green
screen TV studios when substituting the green screen by an
RGBD camera in the future or depth-image-based rendering,

which requires convincing results at object boundaries, where the
human observer is particularly attentive.
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