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Abstract
In this paper we present an algorithm of depth estimation

from a single frame captured with color coded aperture camera.
Our algorithm provides continuous depth and is more robust to
lack of texture comparing to the state-of-the-art. The main con-
tributions of this work comparing to prior-art algorithms are: (1)
robust metric for depth determination in a pixel, (2) depth map
sub-pixel estimation, (3) depth propagation to low-textured ar-
eas, (4) depth map edge restoration, (5) depth quality enhance-
ment, (6) raw data processing. We also made an efficient algo-
rithm implementation which processes FullHD frame for 50 ms
on GeForce GTX 780 and requires 15 seconds on Qualcomm An-
dreno 330 GPGPU for the same frame.

Introduction
Single frame passive depth sensors allow extracting depth of

a moving object outdoors which is not possible with active sen-
sor and structure-from-motion techniques. The stereo camera is a
good choice but it increases camera power consumption and adds
additional space and cost which can be critical for handheld de-
vices. That is why single-lens single frame passive depth sensors
based on coded aperture seems to be a good choice. A number
of researchers in this area [1, 2, 3, 4] developed the technology
proposed in [5] but the depth estimation quality as well as the
algorithm timing performance is not satisfactory.

We have chosen a color-coded aperture [1] over binary-
coded aperture [2] due to the following reasons:

1. it allows differentiating defocused and smooth object;

2. it allows differentiating if the object is closer than focus or
beyond it;

3. has lower liability to diffraction (due to bigger size of a
smallest element);

4. has higher light-efficiency (2 times for the same lens);

5. has much faster timing performance ( 500 times faster for
the same image resolution and comparable depth quality);.

Our goal was a development of a more robust, more precise
and faster algorithm of disparity estimation for color coded aper-
ture. This was a part of our work on developing a single-lens
single-frame passive depth sensor with minor hardware changes
made to conventional camera.

Disparity Map Estimation
Overview

The pipeline of depth extraction is shown in Figure 1. It is
similar to [5, 1]. We capture an image (1), compute a cost vol-
ume (2), filter it (3), extract preliminary depth (4), and make depth
enhancement (5). However, we made a significant modification

Figure 1. Depth extraction algorithm pipeline.

of all the algorithm parts. (1) Processing RAW image instead of
compressed one can lead to significant depth quality enhancement
on several scenes. (2a) We compute a mutual correlation of color
channels with different candidate disparity values (shifts). Mutual
correlation metric is similar to the color lines metric [1], though
it is more robust to texture lack. (2b) We use an exponentially-
weighted window (Figures 2(d)-2(f)) as it gives more weight to
closer pixels and increases depth quality in low-textured areas.
Convolution with this window can be efficiently implemented as
described in [6]. (3) We filter cost volume to propagate the in-
formation to low-textured areas. We use a joint-bilateral filter ap-
proximation in which Gaussian function is changed to exponen-
tial function [6]. We take a middle color channel as a reference for
this filtering procedure. (4) We use a sub-pixel estimation to ex-
tract continuous depth with parabola fitting technique. (5) We use
a joint-bilateral filtering to restore depth on the edges (reference
image is a middle color channel image). These modifications are
discussed in the following subsections in more details.

Mutual Correlation Estimation
Let {Ii}n

1 represent a set of n captured color channels of
the same scene from different viewpoints, where Ii is the M×N
frame. We form a conventional correlation matrices Cd for the
{Ii}n

1 set and candidate disparity values d:
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where superscript (∗)d denotes parallel shift in the corresponding
channel. The determinant of the matrix Cd is a good measure of
{Ii}n

1 mutual correlation. Indeed, when all channels are in strong
correlation, all the elements of the matrix are equal to one and
det(Cd) = 0. On the other hand, when data is completely uncor-
related, we have det(Cd) = 1. To extract a disparity map using
this metric one should find disparity values d corresponding to
the smallest value of det(Cd) in each pixel of the picture.

Here, we derive another particular implementation of the
generalized correlation metric for n = 3. It corresponds to the
case of aperture with three channels. The determinant of the cor-
relation matrix is:
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Again,
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d
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(3)

This metric is similar to the color lines metric [1], though it is
more robust. The extra robustness appears when one of three
channels does not have enough texture in a local window around a
point under consideration. In this case the color lines metric can-
not provide disparity information even if the other two channels
are well defined. The generalized correlation metric avoids this
disadvantage and allows the depth sensor to work similarly to a
stereo camera in this case.

Exponentially Weighted Window
Disparity map estimation is based on the measurement

of correspondence between color channels. The prior art ap-
proach [1] uses the color lines metric in a square local moving
window (Figures 2(a-c)) for similarity estimation, but this leads
to a large amount of errors in non-textured areas. This made us to
modify prior-art approach.

To mitigate errors in non-textured areas and to preserve the
advantage of low computational complexity, we propose to esti-
mate conventional mutual correlation metric in a weighted local
window. We use an exponentially-weighted window (Figures 2(d-
f)) as it gives more weight to closer pixels. Convolution with this
window can be efficiently implemented.

We use an implementation of a recursive separable convo-
lution with exponential function proposed in [6]. It significantly
reduces the number of arithmetical operations required for per-
pixel computation.

Fast Recursive Filter
Recursive separable convolution with exponential kernel is

implemented via a 1st order Infinite Impulse Response (IIR) filter.
The equation for one half of the exponential function is:

I f (n) = I(n) · (1−α)+ I f (n−1) ·α, (4)

where I(i, j) and I f (i, j) are respectively the input and output im-
ages in pixel n, and α is a coefficient which is responsible for the
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Figure 2. Local support window for disparity map estimation. Conventional

approach (e.g.,[1]): (a) 3D axes, (b) zero-cross section and (c) XY projection;

Our approach: (d) 3D axes, (e) zero-cross section and (f) XY projection.

exponential function attenuation. The convolution with the sec-
ond half of exponential function is applied the same way but in
reverse pixel order.

Four filters need to be applied to process an image with a
2D separable IIR filter: two in the X-direction and two in the Y-
direction.

Disparity Map Enhancement
Usually, passive sensors provide sparse disparity maps.

However, dense disparity maps can be obtained by propagating
disparity information to non-textured areas. The propagation can
be efficiently implemented via joint-bilateral filtering of mutual
correlation metric cost C. This can also be efficiently approxi-
mated with a 1st order IIR filter:

C f (n) =C(n) · (1−α(n))+C f (n−1) ·α(n), (5)

where all variables have the same meanings as in (4) and α varies
with respect to similarity in intensities of a point and its neighbor-
hood in the color-range domain and is defined as follows:

α(n) = exp(−σsp) · exp(−σr · (I(n)− I(n−1)), (6)

where σsp and σr are the smoothing parameters of joint-bilateral
filter in spatial and range domain respectively. Furthermore, we
enhance the disparity map resolution using sub-pixel estimation
via quadratic polynomial interpolation for each pixel:

dsp = dmin−
Cdmin+1−Cdmin−1

2Cdmin−1−4Cdmin +2Cdmin+1 , (7)

where index Cdmin is the cost value in layer dmin, dmin is the dis-
parity corresponding to the minimum of cost function and dsp is
the disparity after sub-pixel estimation.

Results
Algorithm Modifications

First, we present the impact of algorithm modifications dis-
cussed above (see Figure 3). You can see that all of the proposed
depth extraction algorithm modifications positively affect depth
map quality.
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Figure 3. Algorithm modifications impact in overall depth quality increase comparing to prior-art implementation available online [1]. Line 1: (a) color lines

metric and (b) mutual correlation metric; Line 2: (c) layered depth map and (d) continuous depth map with sub-pixel estimation; Line 3: (e) depth map without

cost filtering and (f) with cost filtering using joint-bilateral filter; Line 4: (g) depth map without edge restoration and (h) with edge restoration.
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Figure 4. Input image compression may lead to depth artifacts: (a) input image, (b) depth map extracted from JPEG image, (c) depth map extracted from RAW

image.

Our algorithm implementation requires about 50 ms for
FullHD resolution on Nvidia GeForce 780 Ti GPU and about 15
seconds on mobile device (see Table 1).

Performance on different target platforms

Platform Time
PC CPU (Intel Core i7-2600), Matlab 6 s
PC GPU (NVidia GeForce 780 Ti),
OpenCL

48 ms

Qualcomm Adreno 330, OpenCL 15 s

Proposed algorithm produces strip artifacts due to non-
smoothness of bilateral filter approximation. However, these arti-
facts were not critical for our applications.

Prototype Evaluation
We have implemented a numerical simulator for image for-

mation as well as the prototype for depth extraction based on
Canon 60D camera and Canon EF 50mm f/1.8 lens. We have
made a comparison of our algorithm with prior art for the same
aperture as well as with commercial plenoptic camera Lytro which
has a size comparable to prototype lens [10] (see Figure 5).

Next we compare our depth estimation algorithm with a
highly light-efficient solution proposed in [4] (see Figure 6).
Please, note that we captured images with different exposure
times to overcome an issue of different light-efficiencies. Each
depth map is scaled from its minimum to its maximum.

Depth Accuracy
Actually, measuring the correspondence between pixels al-

lows to compute a disparity map (not a depth map). However,
most of researchers in this area use disparity and depth as syn-
onyms in this context, so we do. We differentiate these terms only
in this sub-section. To calculate a depth map having a disparity
map one should use a following equation:

1
z1

+
1+Disp/R

z2
=

1
f
, (8)

where: f is a lens focal length, R is a lens radius, Disp is a dispar-
ity value, z1 is a lens-object distance, z2 is a lens-sensor distance.

We made a numerical fitting of z1 and z2 in (8) for disparity-
to-depth conversion equation for a single lens and estimated depth

accuracy in near focus area. We used a highly-textured synthetic
scene to minimize the impact of wrong disparity map estimation.

The results in Figure 7 show that in ideal condition depth
accuracy of proposed approach is close to Microsoft Kinect.

Figure 7. Depth accuracy analysis in a center point of an image.

Discussion
Here we discuss the limitations of the proposed color-coded

aperture depth sensor compared to the most popular passive depth
sensor, i.e. a stereo camera. We analyzed the theoretically achiev-
able depth accuracy for different sizes of color-coded aperture
cameras with respect to the distance to the object. This analy-
sis is based on (8) and is in close agreement with experimental
results shown in Figure 7.

In Figure 8 we show the distance between depth layers cor-
responding to disparity values equal to 0 and 1. The layered depth
error is two times smaller than this distance. The sub-pixel refine-
ment reduces the depth estimation error by half again (see Fig-
ure 7). That gives an accuracy better than 15 cm on the distance
of 10 m and better than 1 cm on the distance below 2.5 m for the
color-coded aperture equivalent baseline of 20 mm.

These results are in good agreement with plenoptic cam-
era [7] and stereo camera [8] accuracies.

However, a color-coded aperture depth sensor has a number
of limitations:

1. A working range of an color-coded aperture depth sensor is
mostly limited by the its equivalent baseline. For example,
for conventional smartphone cameras the working range is
limited to 1 m.
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Figure 5. Proposed algorithm provides better depth quality for both low- and highly-textured scenes. Line 1, highly-textured scene: (a) scene image, (b)

proposed depth, (c) prior-art depth [1], (d) plenoptic camera depth [10]. Line 2, low-textured scene: (e) scene image, (f) proposed depth, (g) prior-art depth [1],

(h) plenoptic camera depth [10].

(a) (b) (c)

Figure 6. Depth quality extracted with proposed algorithm is better than recent results in this area [4]. (a) Scene image, (b) proposed depth, (c) prior-art

depth [4].

2. All passive depth sensors require texture information for
depth extraction. For a color-coded aperture depth sensor
this requirement is stronger than for a stereo camera, as good
texture should be present in each color channel.

3. The accuracy of our depth sensor is low in strongly defo-
cused areas. Strong blur leads to low texture in these areas
and therefore to disparity estimation accuracy degradation.

4. A color-coded aperture depth sensor requires computational
restoration to get a sharp image, because it needs low f-
number lens for disparity estimation. A stereo camera does
not have this disadvantage.

Nevertheless, if these limitations are taken into account, a color-
coded aperture depth sensor can be used in applications which
require a single-lens single-frame depth sensor, e.g. 3D endo-
scope [9].

Conclusion
We have made a number of algorithm enhancements compar-

ing to prior-art solutions [1]. They lead to more robust depth maps
of a better quality. Moreover, we showed that in case of highly-
textured scene near-focus depth accuracy of proposed approach
is close to Microsoft Kinect. However, the color-coded aperture
based depth sensor still suffers the lack of light-efficiency and is
dependent of a texture quality even more than a stereo camera.
This seems to be a promising direction of a future research.
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(a) (b)

(c)

Figure 8. Depth sensor accuracy analysis for different aperture baselines:

(a) full-size camera with f-number 1.8 and pixel size 4.5 µm; (b), (c) compact

camera with f-number 1.8 and pixel size 1.2 µm.
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