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Abstract
We propose a novel highly efficient method for filling dis-

parity holes, regions where disparity estimation fails to produce
correct result, with the most plausible values. While the filling
values may not exactly match the missing disparities, the filled
disparity map has cohesive and smooth areas. Such disparity map
enables many applications, such as refocusing and layer effects
and other new 3D photography apps, to overcome artifacts due to
holes and be visually pleasant for the user. To solve for the filling
disparities, we incorporate the visual saliency in our model and
decouple the solution complexity from the resolution of the orig-
inal disparity map. Hence, our technique strikes a good balance
between perceptual quality and computational efficiency. Overall,
our method produces high quality results fulfilling or exceeding
the requirements of practical applications that use depth. More-
over, it is fast and hence adequate to run on the ubiquitous mobile
platforms.

Introduction
There are many methods [1] to estimate depth/disparity us-

ing 2 or more images of a scene from different camera positions.
Fundamentally, all methods compare image regions using a se-
lected error measure. Such comparison might fail because of oc-
clusion or mismatch in the large areas indistinguishable by the er-
ror measure, e.g., areas of uniform color (wall in Figure 1), or with
repetitive pattern. There are methods to detect and label the areas
of occlusion or mismatch but the actual value of depth/disparity
remains undetermined in many regions of the map, resulting in
holes (Figure 2). Disparity holes result in unacceptable visual
experience in digital photography applications such as layer ef-
fects, parallax viewing, and refocus. However, many such appli-
cations do not require knowledge of the exact disparity values in
the holes. They only demand a disparity map cohesive enough for
plausible perceptual experience. For example, in layers effects
application, initially the image appears in grayscale. As the user
moves a slider, parts of the image come in color gradually, closer
layers before further ones. Filling the holes with cohesive and
smooth disparity guesses fixes the annoying artifacts. There are
many attempts for such filling in literature [2, 3, 4, 5, 6, 7, 8, 9],
usually based on propagation of known disparity values into the
interior of undefined region. Recently, Lu et al [10] suggest a new
method based on low-rank matrix completion to simultaneously
enhance noisy images and depth maps and the depth maps may
also have missing values. Overall, these methods either

a) Use simple disparity propagation techniques but lack
quality: no smooth transitions from boundaries to the in-
terior, results look patchy or grainy; or

b) Produce high quality results but are computationally com-
plex: such methods are usually based on solving a PDE sys-
tem, e.g. diffusion equation, or an optimization problem.

The reason that methods b) are computationally expensive is the
huge dimensionality of the problem which equals or exceeds the
pixel count in the disparity holes. The size of the problem is large
because the grid resolution for the solver is the same as the dis-
parity map resolution.

Figure 1. Reference image for disparity computation

Figure 2. Input: Original disparity map D(x,y) (black areas are disparity

holes)

Problem Statement
Our objective is to design a hole filling algorithm with the

following requirements:

• it has visually satisfactory results in digital photography ap-
plications, and

• it is computationally efficient to run even on mobile devices.
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For this purpose, we propose to decouple the resolution of the
solver grid from the resolution of the disparity map. Such decou-
pling allows for solving a smaller problem on a grid with reso-
lution lower than the resolution of original disparity map. At the
same time, the method maintains the full resolution of the origi-
nal disparity map, hence preserving all the details in the regions
where disparity was estimated correctly. Our novel method ap-
proaches the smoothness and quality of the expensive methods at
substantially lower computational cost.

Advantages of Our Approach over Existing
Methods

Our suggested method is better than existing solutions [2, 3,
4, 5, 6, 7, 8, 9] in the following aspects:

• Handling smoothness. Our method handles correctly areas
where depth changes smoothly. It produces smooth and vi-
sually plausible results unlike simpler extrapolation or prop-
agation methods like [2, 3, 4, 5] that take a single value and
propagate it across a large area. For example, our method
can handle arbitrarily oriented large uniform color wall, fill-
ing its region with gradually changing disparity.

• High performance (up to 10 fps on Bay Trail tablet CPU
and 38 fps on i7 desktop). Unlike methods based on dense
diffusion or optimization [6, 7], our method is at least 2 or-
ders of magnitudes faster for most of the cases. Despite the
potential speedup of multigrid diffusion over dense diffu-
sion [8, 9], these methods remain very hard to parallelize.

• Large holes. Our method addresses large mismatch areas
of the same color or texture where the error measure has no
single minimum. Other methods [4] target only disocclusion
holes, usually smaller with clear discontinuity in depth and
color space, and hence allowing use of 1 or 2 values to fill
the hole.

Algorithm
The input to our algorithm consists of the initial estimated

disparity map D(x,y) (Figure 2) and the labeled areas of mismatch
or occlusion\dis-occlusion indicating that the region is a hole, e.g.
labeled by special reserved disparity values. For example in Fig-
ure 2, holes are marked by disparity value zero (black). Here are
the steps of our algorithm:

1. First, we create holes mask H using the holes labels. The
holes mask has value zero outside holes and non-zero in
holes regions (Figure 3).

2. Next, we detect outer holes boundary contour for each con-
nected non-zero region in the holes mask H. The set of con-
tours C circumscribing the holes is the result of the opera-
tion. Note that we know the disparity values D(x,y) on these
contours, unlike pixels inside the holes. Then, we generate
mask O with outer contours of holes (Figure 3). In mask
bitmap O, all pixel values equal zero, except for the pixels
on the outer parts of the contours circumscribing the holes,
which are set to a non-zero value such as 1.

3. We select regular grid G(i, j) = (xi,y j) that has lower reso-
lution than the resolution of D(x,y) (the typical grid cell size
is 2-20 pixels depending on the original resolution and data)
(Figure 4).

Figure 3. Get the holes mask H(x,y) and the outer contour mask O(x,y)

(outer contours of hole boundaries), both in full resolution.

Figure 4. Low resolution regular grid G(i, j) on the disparity map D(x,y).

4. We build the sparse quadratic optimization problem in (1),
where grid disparities di j at G(i, j) are the unknowns. Solv-
ing (1) results in filtered disparity values at the vertices of
the lower resolution grid.

E = Ed +αEs (1)
Similarly to [11, 12], the quadratic cost E has 2 terms, the
data term Ed and the smoothness term Es. The data term
constrains di j to be close to the known D(x,y) in the holes’
contours O(x,y). The smoothness term is for regularizing
di j to be smooth and continuous. To fill holes with plausible
disparity values, we designed our problem in this way:

a. we know the original disparity D(x,y) except at holes.
We only want to solve for disparities inside the hole
or very close to its outer boundary. Therefore, an un-
known di j is included in (1) only if G(i, j) is inside the
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hole or if it is outside but very close/adjacent to some
outer hole boundary (Figure 5, red circling). For such
nearby outside nodes, there must be at least one point
(x,y) in the vicinity of G(i, j) such that O(x,y) is not
zero. For example, the neighborhood of G(i, j) can be
the 4 adjacent grid cells (quads).

Figure 5. The nodes given to the sparse solver (circled with red). Only

non-empty quads contribute to the solution.

b. only disparities from a hole boundary are used to build
the data term Ed . Disparities in other regions are ig-
nored because disparities at further points are more
likely irrelevant to the hole unknown disparities. A
point (x,y) from a vicinity of vertex G(i, j) partici-
pates in the correspondent coefficient for G(i, j) only
if (x,y) is on the outer boundary of a hole, i.e., O(x,y)
is not zero . Figure 6 shows the participating regions
around holes.

Figure 6. Outer contours around holes highlighted in light grey. Only these

regions participate in disparity filtering.

Therefore, we formulate the data term and smoothness term
as shown below. We define the data term Ed as

Ed =
N

∑
n=1

∑
(x,y)∈Sn

O(x,y)(w(x,y)
tdn−D(x,y))2. (2)

Sn is a cell of the grid, which has N total cells. Each Sn
has 4 vertices and dn = [di j d(i+1) j di( j+1) d(i+1)( j+1)]

t

are the unknown disparities at Sn vertices. As in (2), only
cells Sn that intersect with a holes contour contribute to Ed .
Moreover, we express every disparity value D(x,y) in Sn that
also belongs to hole contour (O(x,y) 6= 0) as linear combi-
nation of disparities in dn, i.e., w(x,y)

tdn. We then include
the squared estimation error in Ed . Ed is a sum over the
holes contours of the squared error between original dispar-
ities D(x,y) and their estimate, w(x,y)

tdn.
The smoothness term Es is defined as

Es =
N

∑
n=1

San{(di j−d(i+1) j)
2 +(di j−di( j+1))

2

+ (d(i+1) j−d(i+1)( j+1))
2

+ (di( j+1)−d(i+1)( j+1))
2}. (3)

In Es, for each cell Sn, we sum the squared difference be-
tween the unknown disparities di j at adjacent vertices of Sn.
Es is weighted by α , which provides a global handle on the
desired smoothness in the solution. We also weight each
term of Es by the saliency San of grid cell Sn, a local han-
dle on the amount of distortion acceptable at each cell. In-
tuitively, errors in di j are more visually tolerable on plain
than detailed areas and the saliency weighted error models
the perceived distortion. There are many options to com-
pute image saliency [13]. We model saliency as the sum of
multiresolution variance.

5. We solve (1) for di j by converting it into a linear problem
and efficiently using a sparse solver. Our current prototype
uses linear PCG with Jacobi preconditioner but any direct
technique works as well. A resulting solution is a set of
values for di j included in the system at step 4, the rest of the
filtered disparities are set to 0.

6. Then, we upsample the filtered disparity values di j from the
solver grid resolution to full resolution of original disparity
map using any suitable interpolation technique, and write
the results to F(x,y) (Figure 7). In the current implementa-
tion F(x,y) is the bilinear interpolation of values at vertices
of a grid cell containing point (x,y).

Figure 7. The map F(x,y) of the interpolated disparities produced by non-

linear filtering
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7. In the final step, we combine the original disparity map D
and map F using holes mask H as in Figure 8. The D(x,y)
is set to F(x,y) if H(x,y) is non-zero, thus filling only holes
in D with values from F .The resulting improved disparity is
shown on Figure 10.

Figure 8. Final step to get the filled disparity map.

Finally, we illustrate an overview of the solver system in the dia-
gram of Figure 9.

Results
Algorithm Performance

Our algorithm performance results are summarized in the Ta-
ble below. For 1280×720 images and disparity maps, our method
runs at 10 fps, on Intelr Bay Trail tablet with 2 GB RAM and
1.46 GHz Atom Quad-core CPU. On a desktop, it is approxi-
mately 4 times faster and runs at 38 fps on 3.5 GHz Intelr i7
desktop with 32 GB of RAM.

Figure 9. Solver’s system diagram. Input: original disparity map with holes

and the image. Output: solved disparities in the holes at the grid vertices.

Performance

Intelr CPU Clock RAM Time per
frame

Atom Quadcore
Tablet

1.46 GHz 2 GB 100 ms

i7 desktop 3.5 GHz 32 GB 26 ms

Enhancing Photography Applications Experience
We ran our hole filling algorithm on 40 images / disparity

maps pairs. The holes are smoothly filled, e.g., see Figures 10
and 11. As emphasized earlier, in addition to running efficiently,
the objective of our hole filling algorithm is to enhance the visual
experience of photography applications such as layer effects. For
this purpose, we verify the effectiveness of our algorithm by ap-
plying the layers effects to the 40 images before and after filling
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Figure 10. Final output: disparity processed using our method. Holes/black

areas are smoothly filled.

the disparity. Figures 11 and 12 show an example. First, the raw
disparity suffering from holes and the disparity filled with our al-
gorithm are in Figure 11. Next, Figure 12 shows the layers effects

Figure 11. Left: raw disparity with holes. Right: disparity processed using

our method and holes are filled.

app with both raw and filled disparity maps. At the beginning, all
the image appears in grayscale. Gradually, closer pixels, i.e., with
higher disparity, become colored. For example, the pixels on the
chair and the table should get colorful before the pixels on the per-
son and on the wall. The artifacts resulting from holes are obvious
in the left column of Figure 12: the 2 spots on the table remain
gray, even when the person is already in color. These spots are
the holes in the raw disparity map, and since the holes have value
zero, they are wrongly assumed far. Once the holes are filled by
our algorithm, these artifacts disappear as in the right column of
Figure 12. The results are obviously much better after applying
our algorithm.

Comparison to Ground Truth
For completeness, we present our algorithm’s result on

’baby3’ set from the 2006 Middlebury data. The image resolu-
tion is 1312× 1110 and the data set provides the ground truth
(GT) disparity as in Figure 13. The GT map has holes itself. But
to evaluate our algorithm, we manually added 3 holes that cover
5.20% of the image. We applied our hole filling algorithm to this

Figure 12. As we move a slider from top to bottom, parts of the image

should come in color gradually with closer layers before further ones. Left:

using raw disparity with holes, artifacts are clearly visible. Right: using dis-

parity with filled holes, with the artifacts heavily reduced.

modified disparity map. Figure 13 shows the smoothly filled re-
sult and Figure 14 shows 3D plots of the disparities for further
illustration. In the 3 introduced holes, the GT disparities range
from 137 to 152 with average 150.17 and median 150. The re-
sults of comparing the GT values in the 3 holes with our algo-
rithm’s filling disparities are in the Table below. The quantitative

Comparison with ground truth
Median of absolute error 1

Mean squared error 2.15

PSNR 40.31 dB

Median of relative absolute error 0.66%

Average of relative absolute error 0.61%

results shown are encouraging, although our main goal is enabling
visually appealing computational photography applications rather
than obtaining as precise as possible disparity estimates.
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Figure 13. Top left: baby3 Middlebury view1 image. Top right: ground truth

disparity (it already has holes). Bottom left: disparity with 3 manually added

holes. Bottom right: disparity filled with our algorithm.

Discussion, Conclusion, and Future Work
We have presented an innovative algorithm that reduces the

computation cost of high quality hole filling by using a non-linear
filtering technique on a low resolution grid to propagate values
from a disparity hole boundary into its interior. Instead of filtering
the original disparity map, only the areas in the vicinity of holes
are filtered. The output map F(x,y) with filling candidate values
may not precisely match the original unknown disparities in the
holes, yet it creates a smooth continuation of known disparity val-
ues into the regions of missing disparity. Therefore, applications
using the filtered disparity map will benefit from the improved vi-
sual quality. All depth sensing methods based on disparity in im-
ages are subject to ambiguities or errors in the disparity estimation
process and thus require some method of fixing those errors using
a best guess. Given that our method allows improvement of the
depth map at a very low computation cost, it could be used as a
part of disparity computation stack on mobile platforms, e.g., In-
tel tablets and phones, which have less computational power than
PCs. In the future, we will develop our method further:

1. using RGB boundaries to refine hole detection and avoid
having two different holes merged together, e.g., holes on
adjacent surfaces of different depth.

2. leveraging confidence estimation for better identification of
holes and also better hole filling quality.

3. understanding the scene in the image and identifying key
regions. For example, recognizing and localizing the sky
helps us immediately fill the disparity values in this region
with zero.
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