©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Depth Assisted Composition of Synthetic and Real 3D Scenes

Santiago Cortes, Olli Suominen, Atanas Gotchev; Department of Signal Processing; Tampere University of Technology; Tampere,

Finland

Abstract

In media production, previsualization is an important step. It

allows the director and the production crew to see an estimate of

the final product during the filmmaking process. This work focuses
in a previsualization system for composite shots, which involves
real and virtual content. The system visualizes a correct
perspective view of how the real objects in front of the camera
operator look placed in a virtual space. The aim is to simplify the

workflow, reduce production time and allow more direct control of

the end result. The real scene is shot with a time-of-flight depth
camera, whose pose is tracked using a motion capture system.
Depth-based segmentation is applied to remove the background
and content outside the desired volume, the geometry is aligned
with a stream from an RGB color camera and a dynamic point
cloud of the remaining real scene contents is created. The virtual
objects are then also transformed into the coordinate space of the
tracked camera, and the resulting composite view is rendered
accordingly. The prototype camera system is implemented as a
self-contained unit with local processing, and it runs at 15 fps and
produces a 1024x768 image.

Introduction

Previsualization (previs) is the name given by the movie
industry to any system that allows the director and the staff to view
an approximation of the end result before actually shooting the
scene. It helps save time by minimizing the errors and the
iterations necessary to materialize the view of the director.

The system proposed is a blend of two relatively recent
concepts and the technology that has been developed from them.
These concepts are mixed reality (MR) and the virtual camera.
Mixed reality systems are a relatively recent advancement in
technology. The term MR encompasses systems that merge virtual
and real worlds to produce environments and visualizations where
physical and virtual objects coexist and interact. The first general
term for such a system, augmented reality (AR), was coined in
1990 to define systems where computer-generated sensory
information (sound, video, etc.) is used to enhance, augment or
supplement a real world environment.

A virtual camera captures the position and orientation of the
camera inside a space and returns a render of the image from a
point of view relative to it. To do this, the position of the camera
has to be tracked. Examples of systems that have been adapted for
camera pose estimation include accelerometers and gyroscopes in
smartphones or motion capture in movie studios.

In order to improve on current previs virtual cameras, the
system developed takes into account the position of the objects in
the space. The real objects in the space are then mixed with the
virtual objects, and a complete 3D joint space is produced. Real
objects can occlude virtual objects and vice versa. The end result is
a mixed reality rendered in place for the virtual camera system.
This allows a movie director to explore how the real characters
will blend in with a virtual background. This can help reduce errors
and corrections done in postproduction thus reducing the cost and
making the production cycle faster.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

Prior work

An extensive description and formalization of MR systems
can be found in [1]. After the release of the ARToolkit [2] by the
Nara Institute of Technology, the research community got much
better access to real time blend of real and virtual data. Most of the
AR applications running on web browsers produced during the
early 2000s were developed using the ARToolkit. MR has evolved
with the technology used to produce it, and the uses for it have
multiplied. Nowadays, in the embedded system era, a single device
can have most of, if not all, the sensors and computing power to
run a good MR application. This has led to a plethora of uses, from
training and military simulation to simple videogames.

Any system that mixes data from a virtual and real
environment to produce a joint world can be classified in the
spectrum proposed in [1]. Most systems can be divided into a
capture component and display components. The capture
component is usually some kind of image capture device, a single
camera [3], a stereo pair [4], or one or more depth sensors [5]. The
display component shows the user the resulting environment,
employing either screens, projectors, head mounted displays
(HMD), or other visualization means.

The potential success of the Oculus Rift has revitalized the
development of mixed reality systems using HMD. Relevant
examples are the MR systems developed by University of
California aimed at tele meeting [6]. The aim of these systems is to
create a full 3D model of a person and place it in a shared
environment with other people. Microsoft has announced the
HoloLens [7]. This system is a view-through mixed reality display
that places virtual objects on top of the real world using a
semitransparent screen. Many of the recent MR developments use
head mounted displays; these are a natural interface for systems
that try to achieve presence, (the feeling of ownership towards a
body), but this is not always the best option. The system presented
in this paper uses a more familiar interface for a camera operator,
where the display and capture systems are attached to a
commercially available video camera shoulder mount.

The virtual camera concept has been introduced in the context
of computer graphics [8]. It was described as a “cyclops” device,
which renders a virtual scene according to a set of sensors attached
to a camera tripod. The concept has evolved through the years and
has been applied to videogames [9] and movies [10]. This
evolution has been linked to the advancement in technology: better
rendering capabilities, better sensing techniques, more powerful
computers, etc. The most common use of the device is to visualize
camera motions through a virtual environment in media
productions. For example, the movie Avatar used a virtual camera
to visualize and plan virtual camera movements [11].

In the University of Kiel, a mixed reality camera [5] was
developed in 2008. This camera is also based on Time of Flight
technology. The system scans the scene and creates a model of the
background prior to the operation. Once in operation, the camera is
fixed and the mixed space is created.

3DIPM-399.1

Description of algorithms

This section describes the algorithms and theoretical concepts
used in the implementation of the proposed system. In order to
keep track of the processing, three different coordinate spaces are
defined. The camera coordinate space (CCS) is fixed to the moving
camera. Its origin is in the optical center, the z coordinate is
perpendicular to the image plane and the y coordinate is in the
vertical direction of the image plane. The real coordinate space
(RCS) is defined by the motion capture calibration and is static.
The positions and orientations given by the motion capture system
are all in the RCS. The virtual coordinate space (VCS) is defined
by the modelling tool used to create the virtual objects. All virtual
objects are in the VCS. Figure 1 shows the algorithmic blocks,
which facilitate the flow of information from the sensor to the

display.
Kinect H Point cloud }7

[
Pose tracking H }—){ Segmentation

Inverse camera
transformation

Viewpoint
transformation

Camera
transformation

Local transformation }—){

Figure 1. Algorithm block diagram.

Real data

The Real space is the volume inside the capture studio. It
contains all objects inside the volume, the marker constellations
and the RCS definition. The motion capture software is calibrated
to have all camera poses relevant to an arbitrary reference frame
selected by the user; this becomes the origin of the RCS.

The calibration of the system has three different phases
presented below.

Pose tracking

OptiTrack camera system is used to estimate the pose of the
camera [12]The camera is assumed to be a rigid body; its 6 degrees
of freedom (DoF) pose is tracked using optical motion capture.
The calibration of the pose tracking is done according to the
procedures of the OptiTrack system. The position of the cameras is
given in reference to a user defined point in the space. A final
calibration is done to estimate the position of the camera sensor
relative to the marker constellation. This process is referred to as
external calibration. The calibration is designed specifically for
this system and it is based on multilateration estimation. A brief
description is presented below.

External Calibration is different from extrinsic calibration and
its goal is to find the position of the camera sensor. The position is
in reference to the marker constellation that is fixed to the body of
the system. Since the final image is reprojected from the color
camera point of view, the output is an estimate of the color camera
sensor relative to the marker constellation. To setup the calibration,
the camera is fixed to a stable position. A second constellation of
markers is placed in the visible space in front of the camera. Table
1 summarizes the data necessary to perform the calibration and
how to obtain it.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Table 1. Data to perform external calibration

Data Format description Source
(u,v) are the
coordinates of
. _ the visible Kinect
Kinect K=@v2) markers in the depth
capture ; .
depth image. image
z is the depth
measurement.
Camera _ Th?.I'St of OptiTrack
: Ci=(xYy2) positions of
constellation , camera
i<N the camera
N markers system
markers
Calibration Th?.“St of OptiTrack
X Si=(xy,2) positions of
constellation camera
i<M the second
M markers system
markers
Intrinsicand [€x,€¢y] isthe The result of Camera
T : . and stereo
Stereo principal point. the previous . .
. . . . calibration
calibration fx.fy are the calibration (Kinect
data focal lengths. steps SDK)

Since the depth data given by the used depth sensor is already
in a global coordinate system, first the points in the depth map
have to be transformed back into distances to the sensor. Using
triangle similarity in Figure 2, the distance can be calculated as

D(uv,Z) = ||(Z—“;:",Z”;:Y,Z)||, 0

where the calibration data is attained from the depth camera SDK.

| |

|

Figure 2. 2D Pinhole camera model

The set of points of the calibration constellation S and their
corresponding distances to the sensor can be treated as a set of
spheres. The center of the sensor should intercept all of them. To
find the maximum likelihood estimate (MLE) of the intersection of
the spheres, we use the multilateration LS algorithm

LS) - [Mlat] - d, @

where [Mlat] is the LS algorithm for the multilateration problem,
and d is the MLE estimate of the position of the sensor. Using the
translation parameter of the sterco calibration £, the position of the
color sensor X can be estimated as

i=d+t. 3)

The translation parameter has to be given in the correct
direction (from depth to color). If it is not, inverting the extrinsic
calibration matrix will yield the correct translation vector.

3DIPM-399.2

Finally, the camera marker constellation is redefined with the
found camera sensor as the origin. Since the orientation remains
the same, it is done by subtracting the sensor position from the
marker position,

CGi=C—-%, i<N,)

where C is the corrected camera constellation.

The set of corrected camera marker positions can be put into
the tracking software. This redefines the rigid body with the
estimated camera sensor as the origin.

Joint bilateral filtering

The depth image usually suffers from noise and errors close to
the edges of the color image. These impede the color and depth
images. In order to tackle this problem, structural information from
the color image is used into a bilateral filter to properly correct
errors and reduce noise [13]

1
) =7 Z D) fUID(p) —=DWID gl = I@ID, (5)

Pi€R

where / is the intensity of the RGB color matrix (one color channel
of the luminance channel in luminance-chrominance color space
representation), D is the input depth matrix, and C is the output
depth matrix. All matrices have the same size. R is the window of
the filter; f and g are the kernels of the intensity difference and
distance metric respectively. These kernels are arbitrarily selected,
a common choice is to use Gaussian functions. 7 1is the
normalization term,

T =Yper fUID() = D@D gl (@) — 1P, (6)

which ensures that the filter preserves image energy.

The intensity distance is done relative to the difference in
color rather than in depth. This aligns the edges of the depth image
to the color image. [13]

Real point cloud
The point cloud is built by calculating the 3D coordinates
[x,y,2]T of the points in the depth image

T

u-—=c vV—=cC
27—z (7

fe fy

p=Ixyz"=|Z

where (u,v) are the coordinates of the pixel, Z is the depth
measurement and the rest are the parameters extracted from the
calibration matrix. The depth image is already aligned to the color
image in the earlier processing. Hence, the texture mapping is the
same as the grid of the image. The output is the point cloud in the
CCS.

Some points in the real point cloud will be outside of the
capture volume. These points are of no interest, and should not be
rendered. To find out which points are to be ignored all the points
are transformed from the CCS to the RCS using

p=rp p=|f 1 ®)

Points whose corresponding positions in the RCS are outside

of the capture volume are discarded from the render. The rest are
rendered normally.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Virtual elements

The virtual space is a set of 3D objects, described in mesh
format. Each object has a texture and a rigid body position
associated to it. The set of objects forms the virtual scene and is
defined in the VCS.

Virtual objects are transformed from the VCS to the RCS
using their own associated rigid body matrix.

¥ =T,)

where ¥ is the vector of coordinates of a vertex in the mesh
description and ¥’ in the vector of coordinates in the RCS. This
builds the virtual room.

The camera transformation puts the virtual objects in the CCS

v=P17, (10)

where P is defined in equation 95.

The viewpoint transformation puts the objects in the image
plane of the virtual camera. Since both the real and the virtual
objects are in the CCS, only the intrinsic matrix is necessary.

The pixels are painted with the corresponding texture from
the object. Z buffering lets the renderer know which object is
closer to the camera and which ones are occluded. This blends the
virtual meshes and the point cloud in the same 3D space with
correct occlusion order.

Software and hardware implementation

The hardware composition is shown in Figure 3. The
algorithm description is grouped in information processing units,
which are not necessary implemented in the same system or
covered in the same block in the computational description.

O
L. o
Kinect V2
Surface pro 3
Capture and display computer

OptiTrack camera system
Tracking computer

Figure 3. Hardware diagram, only information links are shown, power
connections are ignored.

The implementation of the algorithm presented in the
previous chapter has several distinct parts. Figure 4 shows the
block diagram that describes the system. Commercial SDKs and
software are considered black boxes and are only described in
terms of inputs and outputs.

3DIPM-399.3

OptiTrack
camera system

Motive

Capture and display computer

‘ Kinect }»é{ Kinect API H cPu .
Preprocessing

)

Virtual GPU .
‘ irtua H GPU setup }—){ }7*){ Display
space processing

Figure 4. Computational Block Diagram

NatNet SDK ‘

Kinect V2 depth sensor

A Kinect V2 depth sensor is used to sample the real scene. It
captures a color image with 1920x1080 px resolution and a ToF
depth image with 512x424 px resolution. The two images are then
resampled and aligned together. Access to the different modalities
is provided through the Kinect SDK [48], which drives the capture.
The API also performs the mapping from the depth camera to the
color camera. In Figure 5, the flowchart of the processing done in
the SDK is shown.

Kinect SDK driver

Aligned depth

Kinect SDK Coordinate
mapping

Textures

Figure 5. Kinect process diagram

OptiTrack and the NatNet SDK

The OptiTrack camera system is a motion capture system. It
uses a set of infra-red (IR) light sources and IR cameras (8 in the
current space) to find the position of IR reflective markers within
the scene. The user defines sets of markers attached to rigid bodies
and the system solves their 6 DoF position and orientation.

Natural point provides an SDK that interfaces their software
(Motive) and the user’s application. The SDK sends the data
packets through a previously setup wireless connection and the
synchronization of the data transfer. The data is sent at a constant
framerate set in motive (12fps, 30fps, and 60fps). The block
diagram is shown in Figure 6.

(S SE Motive N, /lathet SDK Transforms
system
Camera pose

matrix
Figure 6. Motion capture process diagram

CPU Preprocessing

The point cloud structure is built before starting the capture
process. It is never modified in the CPU once it has been built. The
virtual scene is preprocessed by applying any changes to the
transforms (placing the objects in their initial position). The real
scene is created as an empty template; a point cloud is built where
all points have the same depth and are distributed as a rectangle.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

The flowchart in Figure 7 shows the steps to prepare the scene
before rendering, which are all performed in CPU every frame.
This process calls upon the Kinect SDK to deliver the color and
depth and the motion capture to deliver the pose of the camera. If
either of them has not produced a new frame of information, the
previous one is used. The depth and color textures are loaded into
the point cloud and the transformation is loaded into the virtual
world.

New frame
from
Kinect?

Read frame

v

Update Textures

]

New frame

from Read pose
Motive?
No Update transform

Bind textures to
cloud(real data)

v

Bind transforms

and textures to

mesh set(virtual
data)

|

Render

Is t& Yes

render
finished?

Figure 7. Flowchart of preprocessing

GPU processing

The processing in the GPU is programmed in shaders .There
are two sets of shaders, one for the real point cloud and one for the
virtual objects. The point primitive is used to render the real point
cloud. The triangle primitive is used to render the virtual objects,
Figures 8 and 9 show the processing done by the GPU divided into
the shaders.

It is important to note that the inner workings of the rasterizer
are not included in the block diagrams, and that the blue dashed
arrows mean transfer of information. This information is used to
interpolate and re-sample the textures and meshes by the rasterizer.

3DIPM-399.4

VIRTUAL VERTEX SHADER

Camera
Transform }—){ Vector product ‘

3D Position

VIRTUAL FRAGMENT SHADER

Fragment
colar

Texture

Texture
Sampler
Shadow
computation

Figure 8. Shader block diagram for virtual objects. Blue lines indicate
information transfer. The rasterizer interpolates and samples the
corresponding values for each fragment.

Texture
coardinate

EIIH

POINT PRIMITIVE
RASTERIZER

REALVERTEXSHADER REAL FRAGMENT SHADER

calor

Camera
Transform
iiiii

Inverse
camers
Matrix

Watrix
Froduct

Transform
inte CCS

Watrix
product

Color
Texture

| Textue
Sampler
Threshold Dismiss

decision

Figure 9. Shader block diagram for real point cloud, blue lines indicate
information transfer. The rasterizer interpolates and samples the
corresponding values for each fragment.

Results

Figure 10. Virtual camera

The main result of the work is the actual camera seen in
Figure 10. The prototype is implemented in the CIVIT Motion
Capture Studio at TUT. The components are a Kinect v2 for
capture, a Microsoft Surface Pro3 for display and processing, four
IR markers and a shoulder camera mount that holds the system
together and allows the operator a natural operation of such a
device.

The system is evaluated based on the following parameters:
refresh rate, delay, and visual quality. First, the external calibration
was designed specifically for this system; hence, the results of the
calibration for the current prototype are shown in this section.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Second, the offline experiments designed to measure the
performance of the system are presented. These include the current
system and the bilateral filter meant to refine the images after data
fusion. Finally the real time performance is presented. This
includes timing parameters and example photos to evaluate the
visual quality.

Joint calibration

The joint calibration was developed specifically for this
particular system and the detailed results are discussed below.
Figure 11 contains the setup used for calibration. Figure 12 shows
the markers as seen by the mocap. The two sets are easily
differentiated since the camera has four markers and the calibration
constellation has six.

Figure 11. Setup for joint calibration

Figure 12. Markers for joint calibration as seen by the mocap system

With this data, the external calibration is performed. The
resulting model is shown in Figure 13. After the calibration, the
origin of the constellation is a good estimate of the optical center
of the camera and sufficient for virtual view rendering.

Figure 13. Left, set of markers that define the position of the virtual camera.
Right, set of markers with virtual origin. Ideally this origin corresponds to the
optical center of the color camera.

Offline experiments

Due to performance constrains, some of the experiments were
performed offline. Each experiment below is performed offline, the
data acquisition and the processing performed are describes in this
section.

Joint bilateral filter

A test program is written in the Kinect SDK that
simultaneously captures the depth and color and exports them into
images as well as the transformation matrix provided by the mocap
system. The depth is encoded into the G and B channels of a bmp
file.

3DIPM-399.5

The data is imported into Matlab, where the bilateral filter
proposed in [14] is implemented. The filter is performed for
several kernel sizes. For each size, the time and resulting depth are
saved. These values are used to create several renderings of the
same joint reality scene. Evaluating the performance is not straight
forward, since most metrics rely on having a ground truth to
compare against. Since the main issue with the camera is the pixels
outside of an object that appear in the same plane, the percentage
of wrong pixels reduced from the original depth image is taken as
the performance metric. A pixel is wrong if it is farther than 10 cm
from its actual location. Figure 14 shows several joint spaces in
which the input was filtered with different kernel sizes while
Figure 15 shows the goodness metric computed.

Kernel size 1 Kernel size 6

Kernel size 10 Kernel size 20

Figure 14. Detail of result of bilateral filter. See how the edge starts to match
the color edge

Bilateral filter performance
89 T T T T T T T T T

percentage of good pixels

88 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Kemnel size (pixels)

Figure 15. Bilateral filter performance in the real scene

Note that the noise is rapidly changing and quite localized to
the edges. This makes it distracting and damages the visual
appearance. The filtered image is much smoother and subjectively
more naturally looking.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Delay calculation

Since the system is a combination of different systems,
calculating the entire delay is not straightforward. The experiment
designed to measure the delay requires a separate camera. The
camera used is a Basler acA1920 running at SD resolution at 60
fps. The camera is capable of higher resolution and faster capture,
though, given the refresh rate of the display, no higher specs are
necessary.

The camera is framed so it captures both the space and the
render in the screen of the camera. A periodic motion is created in
front of the camera with a highly contrasted round object. A white
circle was hung from the ceiling and its pendulum oscillation
against a black background was recorded in the high-speed camera.
Figure 16 contains a frame of the video.

Figure 16. Frame of delay calculating vide, sub-images are shown as red
rectangles.

The area of movement from both circles is estimated by
inspection and for each frame; they are extracted and analyzed
separately. The first step is to binarize both sub-images with a
threshold calculated according to Otsu’s method [4]. Then, since
there are no other white objects in the background of the sub-
images, simple gravity center of the intensity values is used to
estimate the center of each circle.

Since both cameras are aligned to be parallel to the ground,
the horizontal coordinates of each circle are strongly correlated.
The vertical coordinates have a much smaller range and double the
frequency (see Figure 17) so they are not used for the delay
estimation.

Mation of the pendulum
500 : . .

Vertical axis
450 Horizantal Axis

400 B

350 1

300 B

250+ 1

Coordinates(Pixels)

2001 1
150 F B

100 A AR ARSI AN Ao

50 L L L L L L L L
0 5 10 15 20 25 30 35 40 45

Time(Seconds)

Figure 17. Motion of the center of the pendulum

3DIPM-399.6

The pixel position is irrelevant, what is important is the
relative position in the pendulum path. For this, the horizontal
position is scaled and translated so its highest value is one and its
center is zero. This is done for circles, see Figures 18 and 19.

Relative Horizontal position of pendulum

—— Direct capture
08 Camera capture

Harizontal position of pendulum (centered and scaled)
=

L .
0 5 10 15 20 25 30 35 40 45
Time(seconds)

Figure 18. Relative horizontal motion

Relative Horizontal position of pendulum

Direct capture
Camera capture

Horizantal position of pendulum {centered and scaled)

Time(seconds)

Figure 19. Closer look into Relative horizontal motion

The position of the center point in the camera capture has a
staircase shape when plotted against time, this is due to the refresh
rate of the camera system (15 fps) being smaller than the capture
rate (60 fps).

Filtering the signal would average the delay along the time
axis and reduce the delay variance. Since the autocorrelation
estimates the delay along the whole signal, it estimates the mean
delay. In this case this mean is invariant to a time domain filter.
Filtering the input will have no change and may introduce
unwanted artifacts.

Given the two signals, the delay is estimated by using the
cross-correlation signal, shown in Figure 20

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

Cross correlation
1500 T T T

1000 - B

500 - B

Cross-Carrelation

-1000 1

1500 L L L L L L
50 40 30 20 -0 0 10 20 30 40 50

delay(Seconds)

Figure 20. Cross-correlation of the signals

Cross correlation

1000 fy---
800 -4~
600 ---
400 -~
200 -~

Cross-Correlation

200 -
400 -~
600 |-~
RIS

-1000

delay(Seconds)

Figure 21. Closer look into Cross-correlation of the signals

The highest peak of the cross correlation is at a delay of 250 ms, as
seen in Figure 21, which is the estimated delay of the system.

Performance
The basic performance metrics are shown in Table 4.

Table 2. System performance metrics

Refresh rate 15 fps
Delay 250 ms
Point cloud size 960x540
Texture resolution (internal) | 1920x1080*

* Internal resolution of the point cloud, output resolution
depends on visualization.

The tracking marker accuracy is given by the motion capture
system. The LS algorithm returns the accuracy of the center
estimate. For the orientation error, all possible orientations
contained in the markers with the given variance are calculated and
the worst case scenario is used as the error. These values are
shown in Table 5.

Table 3. Accuracy of motion capture

Marker error +0.9 mm
Position error +0.5mm
Orientation error +0.4°

3DIPM-399.7

Figure 23 shows the capture space, the IR cameras are
attached to rafters in the ceiling and along the walls. The markers
are placed in the camera in such a way that only one solution to the
model fitting problem exists (see Figure 22).

Figure 23. Motion capture studio, the blue rings are the IR cameras.

Figure 24 shows the marker constellation as seen by the
mocap software. For four markers, a proper constellation is not
coplanar and isosceles triangles should be avoided.

Figure 24. Marker disposition in camera (shown by MOCAP)

Figure 24 shows two angles of the same scene in order to
demonstrate how the system is coherent in its mix of real and
virtual space. The relative positions of objects are not lost when
moving the camera around. As discussed, this movement is
continuous and the camera responds in an interactive manner.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

P)

Figure 25. Sample of position and orientation consistency [4] [5, 7]

Conclusions and future work

In this work, a complete system for previsualization of mixed
real and synthetic content has been presented and documented. The
system is a functioning prototype, a laboratory proof of concept
that showcases the potential of data fusion and multimodal sensing
in a movie production context.

The OptiTrack camera system and the Motive software are
used to perform optical motion tracking. A total of 8 cameras are
installed in the studio, and a four marker constellation is attached
to the camera. The resulting matrix is transmitted via Wi-Fi to the
camera. Every 33 milliseconds this matrix is updated.

In order to add the real data, a Kinect V2 camera is used. The
depth and color feeds are aligned by the Kinect API and are
provided to the system every 66 milliseconds. The system sends
the frames as textures into the GPU and lets it do the rest of work.

In the GPU, the worlds are mixed and projected to the
corrected position of the camera. The processing is done in such a
way that minimizes the time spent between capture and display.
The result is a mixed reality render of virtual and real worlds
which updates fast enough to provide an “interactive” experience.

This system is still in an early development state and needs
further work.

First, the depth has to be refined so mitigate erroneous depth
edges. Such errors cause an aesthetic issue where noise is present
at the edge of an object in the final image. An edge aware filter
that aligns the depth edges with the color edges has to be utilized.
In this work, a joint bilateral filter was implemented. However, this
implementation proved to be rather slow and unsuitable for the
system with its current processing power. Having the processing
done in a local machine reduces the delay and thus helps the
immersion. Having the processing done in a separate unit with
more processing power enables more complex algorithms for the
price of some time delays. Therefore, further optimization tests
should be held.

Second, focusing should be integrated into the system since
filmmakers use focus as a tool to help move audience’s attention.
Since the scene is already available in 3D, the refocusing should be
straightforward. However, it is important to find a fast
implementation and integrate it with the rest of the processing.

Third, some helpful camera interface controls have to be
added in order to provide the camera operator with better controls
and extend his/her experience. The basic controls are a focus
barrel, a zoom controller and some basic lighting controls. Similar
controls do exist in the Natural Points virtual camera, albeit the
lack of 3D scene capture, and have been used in several movies.

3DIPM-399.8

References

[1] P.Milgram and A. F. Kishino, "Taxonomy of Mixed Reality Visual
Displays," in IEICE Transactions on Information and Systems. pp.
1321-1329, 1994.

[2] H. Kato and M. Billinghurst, "Marker Tracking and HMD Calibration
for a video-based Augmented Reality Conferencing System," in
International Workshop on Augmented Reality, San Francisco, USA,
1999.

[3] A.J. Davison, . D. Reid, N. D. Molton and O. Stasse, "MonoSLAM:
Real-Time Single Camera SLAM," in /EEE Transactions on Pattern
Analysis and Machine Intelligence, vol.29, no.6, pp.1052-1067, 2007.

[4] M. Kanbara, T. Okuma, H. Takemura and N. Yokoya, "A stereoscopic
video see-through augmented reality system based on real-time vision-
based registration," in proceedings for IEEE Virtual Reality
conference, 2000.

[5] L Schiller, B. Bartczak, F. Kellner, R. Kollmann and R. Koch,
"Increasing Realism and Supporting Content Planning for Dynamic
Scenes in a Mixed Reality System incorporating a Time-of-Flight
Camera," in 5th European Conference on Visual Media Production,
pp 1-10, 2008.

[6] G. Kurillo, R. Bajcsy, K. Nahrsted and O. Kreylos, "Immersive 3D
Environment for Remote Collaboration and Training of Physical
Activities," in IEEE Virtual Reality Conference pp.269-270, 2008.

[71 Midrosoft, "Microsoft Hololens," [Online]. Available:
http://www.microsoft.com/microsoft-hololens/en-us. [Accessed 25
June 2015].

[8] B. W. Paley, "Interaction in 3D Graphics," in Proceedings of
SIGGRAPH 98, pp 43--54., 1998.

[9]1 A. Lecuyer, J.-M. Burkhardt, J.-M. Henaff and S. Donikian, "Camera
Motions Improve the Sensation of Walking in Virtual Environments,"
in Virtual Reality Conference, pp.11-18, 2006.

[10] K. Hansung, R. Sakamoto, I. Kitahara and T. Toriyama, "Virtual

Camera Control System for Cinematographic 3D Video Rendering,"
in 3DTV Conference 2007, pp.1-4, 2007.

IS&T International Symposium on Electronic Imaging 2016

3D Image Processing, Measurement (3DIPM), and Applications 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

[11] B. J. Lee, J. S. Park and M. Sung, "Vision-based real-time camera
match moving with a known marker," in In Entertainment Computing
- ICEC 2006, 2006.

[12] Natural Point, "Optitrack camera System," [Online]. Available:
www.optitrack.com. [Accessed 1 October 2015].

[13] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color
images," in Sixth International Conference on Computer Vision,
pp.839-846, 1998.

[14] C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz, "Fast
cost-volume filtering for visual correspondence and beyond," in 201/
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR),pp.3017-3024,2011.

Author Biography
Santiago Cortes received his BS in electronic engineering from the
Universidad de los Andes (2012) and his Ms in Information Technology

from Tampere University of Technology (2015). Since 2014 he has worked

in the centre for immersive visual technology (CIVIT) in Tampere, Finland.
His work has focused on image processing and computer graphics applied
to media production.

Olli Suominen received his M.Sc degree in information technology at
Tampere University of Technology in 2012. Currently, he is a researcher at
the Department of Signal Processing at Tampere University of Technology,
pursuing a Ph.D. in signal processing. His research interests are in
developing efficient methods for 3D scene reconstruction, depth processing
and multi-modal light-field capture.

Atanas Gotchev received M.Sc. degrees in radio and TV engineering
(1990), and applied mathematics (1992), and a PhD. in
telecommunications (1996) from the Technical University of Sofia, Sofia,
Bulgaria and the D.Sc.Tech. degree in information technologies from
Tampere University of Technology, Tampere, Finland, in 2003. Currently,
he is an Associate Professor (tenure track) with Department of Signal
Processing at TUT. His recent work concentrates on algorithms for multi-
camera and multi-sensor 3D capture, transform-domain light-field
reconstruction, and Fourier analysis of 3D displays.

3DIPM-399.9

