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Abstract 
In media production, previsualization is an important step. It 

allows the director and the production crew to see an estimate of 
the final product during the filmmaking process. This work focuses 
in a previsualization system for composite shots, which involves 
real and virtual content. The system visualizes a correct 
perspective view of how the real objects in front of the camera 
operator look placed in a virtual space. The aim is to simplify the 
workflow, reduce production time and allow more direct control of 
the end result. The real scene is shot with a time-of-flight depth 
camera, whose pose is tracked using a motion capture system. 
Depth-based segmentation is applied to remove the background 
and content outside the desired volume, the geometry is aligned 
with a stream from an RGB color camera and a dynamic point 
cloud of the remaining real scene contents is created. The virtual 
objects are then also transformed into the coordinate space of the 
tracked camera, and the resulting composite view is rendered 
accordingly. The prototype camera system is implemented as a 
self-contained unit with local processing, and it runs at 15 fps and 
produces a 1024x768 image. 

Introduction 
Previsualization (previs) is the name given by the movie 

industry to any system that allows the director and the staff to view 
an approximation of the end result before actually shooting the 
scene. It helps save time by minimizing the errors and the 
iterations necessary to materialize the view of the director. 

The system proposed is a blend of two relatively recent 
concepts and the technology that has been developed from them. 
These concepts are mixed reality (MR) and the virtual camera. 
Mixed reality systems are a relatively recent advancement in 
technology. The term MR encompasses systems that merge virtual 
and real worlds to produce environments and visualizations where 
physical and virtual objects coexist and interact. The first general 
term for such a system, augmented reality (AR), was coined in 
1990 to define systems where computer-generated sensory 
information (sound, video, etc.) is used to enhance, augment or 
supplement a real world environment. 

 A virtual camera captures the position and orientation of the 
camera inside a space and returns a render of the image from a 
point of view relative to it. To do this, the position of the camera 
has to be tracked. Examples of systems that have been adapted for 
camera pose estimation include accelerometers and gyroscopes in 
smartphones or motion capture in movie studios. 

In order to improve on current previs virtual cameras, the 
system developed takes into account the position of the objects in 
the space. The real objects in the space are then mixed with the 
virtual objects, and a complete 3D joint space is produced. Real 
objects can occlude virtual objects and vice versa. The end result is 
a mixed reality rendered in place for the virtual camera system. 
This allows a movie director to explore how the real characters 
will blend in with a virtual background. This can help reduce errors 
and corrections done in postproduction thus reducing the cost and 
making the production cycle faster. 

Prior work 
An extensive description and formalization of MR systems 

can be found in [1]. After the release of the ARToolkit [2] by the 
Nara Institute of Technology, the research community got much 
better access to real time blend of real and virtual data. Most of the 
AR applications running on web browsers produced during the 
early 2000s were developed using the ARToolkit. MR has evolved 
with the technology used to produce it, and the uses for it have 
multiplied. Nowadays, in the embedded system era, a single device 
can have most of, if not all, the sensors and computing power to 
run a good MR application. This has led to a plethora of uses, from 
training and military simulation to simple videogames.  

Any system that mixes data from a virtual and real 
environment to produce a joint world can be classified in the 
spectrum proposed in [1]. Most systems can be divided into a 
capture component and display components. The capture 
component is usually some kind of image capture device, a single 
camera [3], a stereo pair [4], or one or more depth sensors [5]. The 
display component shows the user the resulting environment, 
employing either screens, projectors, head mounted displays 
(HMD), or other visualization means. 

The potential success of the Oculus Rift has revitalized the 
development of mixed reality systems using HMD. Relevant 
examples are the MR systems developed by University of 
California aimed at tele meeting [6]. The aim of these systems is to 
create a full 3D model of a person and place it in a shared 
environment with other people. Microsoft has announced the 
HoloLens [7]. This system is a view-through mixed reality display 
that places virtual objects on top of the real world using a 
semitransparent screen. Many of the recent MR developments use 
head mounted displays; these are a natural interface for systems 
that try to achieve presence, (the feeling of ownership towards a 
body), but this is not always the best option. The system presented 
in this paper uses a more familiar interface for a camera operator, 
where the display and capture systems are attached to a 
commercially available video camera shoulder mount. 

The virtual camera concept has been introduced in the context 
of computer graphics [8]. It was described as a “cyclops” device, 
which renders a virtual scene according to a set of sensors attached 
to a camera tripod. The concept has evolved through the years and 
has been applied to videogames [9] and movies [10]. This 
evolution has been linked to the advancement in technology: better 
rendering capabilities, better sensing techniques, more powerful 
computers, etc. The most common use of the device is to visualize 
camera motions through a virtual environment in media 
productions. For example, the movie Avatar used a virtual camera 
to visualize and plan virtual camera movements [11]. 

In the University of Kiel, a mixed reality camera [5] was 
developed in 2008. This camera is also based on Time of Flight 
technology. The system scans the scene and creates a model of the 
background prior to the operation. Once in operation, the camera is 
fixed and the mixed space is created. 
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Description of algorithms 
This section describes the algorithms and theoretical concepts 

used in the implementation of the proposed system. In order to 
keep track of the processing, three different coordinate spaces are 
defined. The camera coordinate space (CCS) is fixed to the moving 
camera. Its origin is in the optical center, the z coordinate is 
perpendicular to the image plane and the y coordinate is in the 
vertical direction of the image plane. The real coordinate space 
(RCS) is defined by the motion capture calibration and is static. 
The positions and orientations given by the motion capture system 
are all in the RCS. The virtual coordinate space (VCS) is defined 
by the modelling tool used to create the virtual objects. All virtual 
objects are in the VCS. Figure 1 shows the algorithmic blocks, 
which facilitate the flow of information from the sensor to the 
display. 

 

 
Figure 1. Algorithm block diagram. 

Real data 
The Real space is the volume inside the capture studio. It 

contains all objects inside the volume, the marker constellations 
and the RCS definition. The motion capture software is calibrated 
to have all camera poses relevant to an arbitrary reference frame 
selected by the user; this becomes the origin of the RCS. 

The calibration of the system has three different phases 
presented below. 
Pose tracking 

OptiTrack camera system is used to estimate the pose of the 
camera [12]The camera is assumed to be a rigid body; its 6 degrees 
of freedom (DoF) pose is tracked using optical motion capture. 
The calibration of the pose tracking is done according to the 
procedures of the OptiTrack system. The position of the cameras is 
given in reference to a user defined point in the space. A final 
calibration is done to estimate the position of the camera sensor 
relative to the marker constellation. This process is referred to as 
external calibration. The calibration is designed specifically for 
this system and it is based on multilateration estimation. A brief 
description is presented below. 

External Calibration is different from extrinsic calibration and 
its goal is to find the position of the camera sensor. The position is 
in reference to the marker constellation that is fixed to the body of 
the system. Since the final image is reprojected from the color 
camera point of view, the output is an estimate of the color camera 
sensor relative to the marker constellation. To setup the calibration, 
the camera is fixed to a stable position. A second constellation of 
markers is placed in the visible space in front of the camera. Table 
1 summarizes the data necessary to perform the calibration and 
how to obtain it. 

 

Table 1. Data to perform external calibration 

Data Format description Source 

Kinect 
capture 

𝑲 = (𝒖, 𝒗, 𝒛) 
 

(𝒖, 𝒗) are the 
coordinates of 

the visible 
markers in the 
depth image. 
𝒛 is the depth 
measurement. 

Kinect 
depth 
image 

Camera 
constellation 
N markers 

𝑪𝒊 = (𝒙, 𝒚, 𝒛) 
𝒊 < 𝑵 

The list of 
positions of 
the camera 

markers 

OptiTrack 
camera 
system 

Calibration 
constellation 
M markers 

𝑺𝒊 = (𝒙, 𝒚, 𝒛) 
𝒊 < 𝑴 

The list of 
positions of 
the second 

markers 

OptiTrack 
camera 
system 

Intrinsic and 
Stereo 

calibration 
data 

 [𝒄𝒙 , 𝒄𝒚] is the 
principal point. 
𝒇𝒙 , 𝒇𝒚 are the 
focal lengths. 

The result of 
the previous 
calibration 

steps 

Camera 
and stereo 
calibration 

(Kinect 
SDK) 

 
 
Since the depth data given by the used depth sensor is already 

in a global coordinate system, first the points in the depth map 
have to be transformed back into distances to the sensor. Using 
triangle similarity in Figure 2, the distance can be calculated as 

𝐷(u, v, Z) = ‖(𝑍
𝑢−𝑐𝑥

𝑓𝑥
, 𝑍

𝑣−𝑐𝑦

𝑓𝑦
, 𝑍)‖, (1) 

where the calibration data is attained from the depth camera SDK. 

 
Figure 2. 2D Pinhole camera model 

The set of points of the calibration constellation S and their 
corresponding distances to the sensor can be treated as a set of 
spheres. The center of the sensor should intercept all of them. To 
find the maximum likelihood estimate (MLE) of the intersection of 
the spheres, we use the multilateration LS algorithm 

 𝐷
S

→ [𝑀𝑙𝑎𝑡] → 𝑑, (2) 

where [𝑀𝑙𝑎𝑡] is the LS algorithm for the multilateration problem, 
and 𝑑 is the MLE estimate of the position of the sensor. Using the 
translation parameter of the stereo calibration 𝑡, the position of the 
color sensor �⃗� can be estimated as 

 �⃗� = 𝑑 + 𝑡. (3) 

The translation parameter has to be given in the correct 
direction (from depth to color). If it is not, inverting the extrinsic 
calibration matrix will yield the correct translation vector. 
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Finally, the camera marker constellation is redefined with the 
found camera sensor as the origin. Since the orientation remains 
the same, it is done by subtracting the sensor position from the 
marker position, 

 Ċ𝑖 = 𝐶𝑖 − �⃗�   ,    𝑖 < 𝑁, (4) 

where Ċ is the corrected camera constellation. 
The set of corrected camera marker positions can be put into 

the tracking software. This redefines the rigid body with the 
estimated camera sensor as the origin. 
Joint bilateral filtering  

The depth image usually suffers from noise and errors close to 
the edges of the color image. These impede the color and depth 
images. In order to tackle this problem, structural information from 
the color image is used into a bilateral filter to properly correct 
errors and reduce noise [13] 

𝐶(𝑝) =
1

𝑇
∑ 𝐷(𝑝𝑖) 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖)

𝑝𝑖∈𝑅

 𝑔(‖𝐼(𝑝𝑖) − 𝐼(𝑝)‖), (5) 

where I is the intensity of the RGB color matrix (one color channel 
of the luminance channel in luminance-chrominance color space 
representation), D is the input depth matrix, and C is the output 
depth matrix. All matrices have the same size. R is the window of 
the filter; f and g are the kernels of the intensity difference and 
distance metric respectively. These kernels are arbitrarily selected, 
a common choice is to use Gaussian functions. T is the 
normalization term, 

𝑇 = ∑ 𝑓(‖𝐷(𝑝𝑖) − 𝐷(𝑝)‖) 𝑝𝑖∈𝑅 𝑔(‖𝐼(𝑝𝑖) − 𝐼(𝑝)‖), (6) 

which ensures that the filter preserves image energy. 
The intensity distance is done relative to the difference in 

color rather than in depth. This aligns the edges of the depth image 
to the color image. [13] 
Real point cloud 

The point cloud is built by calculating the 3D coordinates 
[𝑥, 𝑦, 𝑧]𝑇 of the points in the depth image  

 𝑝 = [𝑥, 𝑦, 𝑧]𝑇 = [𝑍
𝑢 − 𝑐𝑥

𝑓𝑥
, 𝑍

𝑣 − 𝑐𝑦

𝑓𝑦
, 𝑍]

𝑇

 (7) 

where (u, v) are the coordinates of the pixel, Z is the depth 
measurement and the rest are the parameters extracted from the 
calibration matrix. The depth image is already aligned to the color 
image in the earlier processing. Hence, the texture mapping is the 
same as the grid of the image. The output is the point cloud in the 
CCS. 

Some points in the real point cloud will be outside of the 
capture volume. These points are of no interest, and should not be 
rendered. To find out which points are to be ignored all the points 
are transformed from the CCS to the RCS using  

 
𝑝′ = 𝑃𝑝           𝑃 = [𝑅 𝑡

𝟎 1
]. (8) 

Points whose corresponding positions in the RCS are outside 
of the capture volume are discarded from the render. The rest are 
rendered normally. 

Virtual elements 
The virtual space is a set of 3D objects, described in mesh 

format. Each object has a texture and a rigid body position 
associated to it. The set of objects forms the virtual scene and is 
defined in the VCS.  

Virtual objects are transformed from the VCS to the RCS 
using their own associated rigid body matrix. 

 �⃗�′ = 𝑇�⃗�, (9) 

where �⃗� is the vector of coordinates of a vertex in the mesh 
description and �⃗�′ in the vector of coordinates in the RCS. This 
builds the virtual room.  

The camera transformation puts the virtual objects in the CCS 

 �⃗̇� = 𝑃−1�⃗�′, (10) 

where P is defined in equation 95. 
The viewpoint transformation puts the objects in the image 

plane of the virtual camera. Since both the real and the virtual 
objects are in the CCS, only the intrinsic matrix is necessary. 

The pixels are painted with the corresponding texture from 
the object. Z buffering lets the renderer know which object is 
closer to the camera and which ones are occluded. This blends the 
virtual meshes and the point cloud in the same 3D space with 
correct occlusion order. 

Software and hardware implementation 
The hardware composition is shown in Figure 3. The 

algorithm description is grouped in information processing units, 
which are not necessary implemented in the same system or 
covered in the same block in the computational description. 
 

 
Figure 3. Hardware diagram, only information links are shown, power 
connections are ignored. 

The implementation of the algorithm presented in the 
previous chapter has several distinct parts. Figure 4 shows the 
block diagram that describes the system. Commercial SDKs and 
software are considered black boxes and are only described in 
terms of inputs and outputs. 
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Figure 4. Computational Block Diagram 

Kinect V2 depth sensor  
A Kinect V2 depth sensor is used to sample the real scene. It 

captures a color image with 1920x1080 px resolution and a ToF 
depth image with 512x424 px resolution. The two images are then 
resampled and aligned together. Access to the different modalities 
is provided through the Kinect SDK [48], which drives the capture. 
The API also performs the mapping from the depth camera to the 
color camera. In Figure 5, the flowchart of the processing done in 
the SDK is shown. 
 

 
Figure 5. Kinect process diagram 

OptiTrack and the NatNet SDK 
The OptiTrack camera system is a motion capture system. It 

uses a set of infra-red (IR) light sources and IR cameras (8 in the 
current space) to find the position of IR reflective markers within 
the scene. The user defines sets of markers attached to rigid bodies 
and the system solves their 6 DoF position and orientation. 

Natural point provides an SDK that interfaces their software 
(Motive) and the user’s application. The SDK sends the data 
packets through a previously setup wireless connection and the 
synchronization of the data transfer. The data is sent at a constant 
framerate set in motive (12fps, 30fps, and 60fps).  The block 
diagram is shown in Figure 6. 
 

 
Figure 6. Motion capture process diagram 

CPU Preprocessing 
The point cloud structure is built before starting the capture 

process. It is never modified in the CPU once it has been built. The 
virtual scene is preprocessed by applying any changes to the 
transforms (placing the objects in their initial position). The real 
scene is created as an empty template; a point cloud is built where 
all points have the same depth and are distributed as a rectangle.  

The flowchart in Figure 7 shows the steps to prepare the scene 
before rendering, which are all performed in CPU every frame. 
This process calls upon the Kinect SDK to deliver the color and 
depth and the motion capture to deliver the pose of the camera. If 
either of them has not produced a new frame of information, the 
previous one is used. The depth and color textures are loaded into 
the point cloud and the transformation is loaded into the virtual 
world. 

 

Figure 7. Flowchart of preprocessing 

GPU processing 
The processing in the GPU is programmed in shaders .There 

are two sets of shaders, one for the real point cloud and one for the 
virtual objects. The point primitive is used to render the real point 
cloud. The triangle primitive is used to render the virtual objects, 
Figures 8 and 9 show the processing done by the GPU divided into 
the shaders.  

It is important to note that the inner workings of the rasterizer 
are not included in the block diagrams, and that the blue dashed 
arrows mean transfer of information. This information is used to 
interpolate and re-sample the textures and meshes by the rasterizer. 
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Figure 8. Shader block diagram for virtual objects. Blue lines indicate 
information transfer. The rasterizer interpolates and samples the 
corresponding values for each fragment. 

 
Figure 9. Shader block diagram for real point cloud,  blue lines indicate 
information transfer. The rasterizer interpolates and samples the 
corresponding values for each fragment. 

Results 

 

Figure 10. Virtual camera 

The main result of the work is the actual camera seen in 
Figure 10. The prototype is implemented in the CIVIT Motion 
Capture Studio at TUT. The components are a Kinect v2 for 
capture, a Microsoft Surface Pro3 for display and processing, four 
IR markers and a shoulder camera mount that holds the system 
together and allows the operator a natural operation of such a 
device. 

The system is evaluated based on the following parameters: 
refresh rate, delay, and visual quality. First, the external calibration 
was designed specifically for this system; hence, the results of the 
calibration for the current prototype are shown in this section. 

Second, the offline experiments designed to measure the 
performance of the system are presented. These include the current 
system and the bilateral filter meant to refine the images after data 
fusion. Finally the real time performance is presented. This 
includes timing parameters and example photos to evaluate the 
visual quality. 

Joint calibration 
The joint calibration was developed specifically for this 

particular system and the detailed results are discussed below. 
Figure 11 contains the setup used for calibration. Figure 12 shows 
the markers as seen by the mocap. The two sets are easily 
differentiated since the camera has four markers and the calibration 
constellation has six. 

 
 

 
Figure 11. Setup for joint calibration 

 
Figure 12. Markers for joint calibration as seen by the mocap system 

With this data, the external calibration is performed. The 
resulting model is shown in Figure 13. After the calibration, the 
origin of the constellation is a good estimate of the optical center 
of the camera and sufficient for virtual view rendering. 

 
Figure 13. Left, set of markers that define the position of the virtual camera. 
Right, set of markers with virtual origin. Ideally this origin corresponds to the 
optical center of the color camera. 

Offline experiments 
Due to performance constrains, some of the experiments were 

performed offline. Each experiment below is performed offline, the 
data acquisition and the processing performed are describes in this 
section. 

Joint bilateral filter 
A test program is written in the Kinect SDK that 

simultaneously captures the depth and color and exports them into 
images as well as the transformation matrix provided by the mocap 
system. The depth is encoded into the G and B channels of a bmp 
file. 
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The data is imported into Matlab, where the bilateral filter 
proposed in [14] is implemented. The filter is performed for 
several kernel sizes. For each size, the time and resulting depth are 
saved. These values are used to create several renderings of the 
same joint reality scene. Evaluating the performance is not straight 
forward, since most metrics rely on having a ground truth to 
compare against. Since the main issue with the camera is the pixels 
outside of an object that appear in the same plane, the percentage 
of wrong pixels reduced from the original depth image is taken as 
the performance metric. A pixel is wrong if it is farther than 10 cm 
from its actual location. Figure 14 shows several joint spaces in 
which the input was filtered with different kernel sizes while 
Figure 15 shows the goodness metric computed. 

 
 

  
Kernel size 1 Kernel size 6  

  
Kernel size 10 Kernel size 20 

Figure 14. Detail of result of bilateral filter. See how the edge starts to match 
the color edge 

 
Figure 15. Bilateral filter performance in the real scene 

Note that the noise is rapidly changing and quite localized to 
the edges. This makes it distracting and damages the visual 
appearance. The filtered image is much smoother and subjectively 
more naturally looking.  

 
 
 

Delay calculation 
Since the system is a combination of different systems, 

calculating the entire delay is not straightforward. The experiment 
designed to measure the delay requires a separate camera. The 
camera used is a Basler acA1920 running at SD resolution at 60 
fps. The camera is capable of higher resolution and faster capture, 
though, given the refresh rate of the display, no higher specs are 
necessary. 

The camera is framed so it captures both the space and the 
render in the screen of the camera. A periodic motion is created in 
front of the camera with a highly contrasted round object. A white 
circle was hung from the ceiling and its pendulum oscillation 
against a black background was recorded in the high-speed camera. 
Figure 16 contains a frame of the video. 

 

 
Figure 16. Frame of delay calculating vide, sub-images are shown as red 
rectangles. 

The area of movement from both circles is estimated by 
inspection and for each frame; they are extracted and analyzed 
separately. The first step is to binarize both sub-images with a 
threshold calculated according to Otsu’s method [4]. Then, since 
there are no other white objects in the background of the sub-
images, simple gravity center of the intensity values is used to 
estimate the center of each circle. 

Since both cameras are aligned to be parallel to the ground, 
the horizontal coordinates of each circle are strongly correlated. 
The vertical coordinates have a much smaller range and double the 
frequency (see Figure 17) so they are not used for the delay 
estimation. 

 
Figure 17. Motion of the center of the pendulum 
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The pixel position is irrelevant, what is important is the 

relative position in the pendulum path. For this, the horizontal 
position is scaled and translated so its highest value is one and its 
center is zero. This is done for circles, see Figures 18 and 19. 

 
Figure 18. Relative horizontal motion 

 
Figure 19. Closer look into Relative horizontal motion 

The position of the center point in the camera capture has a 
staircase shape when plotted against time, this is due to the refresh 
rate of the camera system (15 fps) being smaller than the capture 
rate (60 fps).  

Filtering the signal would average the delay along the time 
axis and reduce the delay variance. Since the autocorrelation 
estimates the delay along the whole signal, it estimates the mean 
delay. In this case this mean is invariant to a time domain filter. 
Filtering the input will have no change and may introduce 
unwanted artifacts. 

Given the two signals, the delay is estimated by using the 
cross-correlation signal, shown in Figure 20 

 
Figure 20. Cross-correlation of the signals 

 
Figure 21. Closer look into Cross-correlation of the signals 

The highest peak of the cross correlation is at a delay of 250 ms, as 
seen in Figure 21, which is the estimated delay of the system.  

Performance 
The basic performance metrics are shown in Table 4. 

Table 2. System performance metrics 

Refresh rate 15 fps 
Delay 250 ms 

Point cloud size 960x540 
Texture resolution (internal) 1920x1080* 

* Internal resolution of the point cloud, output resolution 
depends on visualization. 

The tracking marker accuracy is given by the motion capture 
system. The LS algorithm returns the accuracy of the center 
estimate. For the orientation error, all possible orientations 
contained in the markers with the given variance are calculated and 
the worst case scenario is used as the error. These values are 
shown in Table 5. 

Table 3. Accuracy of motion capture 

Marker error ±0.9 mm 
Position error ±0.5mm 

Orientation error ±0.4° 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-399

IS&T International Symposium on Electronic Imaging 2016
3D Image Processing, Measurement (3DIPM), and Applications 2016 3DIPM-399.7



 

 

Figure 23 shows the capture space, the IR cameras are 
attached to rafters in the ceiling and along the walls. The markers 
are placed in the camera in such a way that only one solution to the 
model fitting problem exists (see Figure 22). 

 

 
Figure 22. IR markers highlighted in virtual camera. 

 
Figure 23. Motion capture studio, the blue rings are the IR cameras. 

Figure 24 shows the marker constellation as seen by the 
mocap software. For four markers, a proper constellation is not 
coplanar and isosceles triangles should be avoided.  

 
Figure 24. Marker disposition in camera (shown by MOCAP) 

Figure 24 shows two angles of the same scene in order to 
demonstrate how the system is coherent in its mix of real and 
virtual space. The relative positions of objects are not lost when 
moving the camera around. As discussed, this movement is 
continuous and the camera responds in an interactive manner. 

 

 

 
Figure 25. Sample of position and orientation consistency [4] [5, 7] 

Conclusions and future work 
In this work, a complete system for previsualization of mixed 

real and synthetic content has been presented and documented. The 
system is a functioning prototype, a laboratory proof of concept 
that showcases the potential of data fusion and multimodal sensing 
in a movie production context.  

The OptiTrack camera system and the Motive software are 
used to perform optical motion tracking. A total of 8 cameras are 
installed in the studio, and a four marker constellation is attached 
to the camera. The resulting matrix is transmitted via Wi-Fi to the 
camera. Every 33 milliseconds this matrix is updated. 

In order to add the real data, a Kinect V2 camera is used. The 
depth and color feeds are aligned by the Kinect API and are 
provided to the system every 66 milliseconds. The system sends 
the frames as textures into the GPU and lets it do the rest of work. 

In the GPU, the worlds are mixed and projected to the 
corrected position of the camera. The processing is done in such a 
way that minimizes the time spent between capture and display. 
The result is a mixed reality render of virtual and real worlds 
which updates fast enough to provide an “interactive” experience. 

This system is still in an early development state and needs 
further work.  

First, the depth has to be refined so mitigate erroneous depth 
edges. Such errors cause an aesthetic issue where noise is present 
at the edge of an object in the final image. An edge aware filter 
that aligns the depth edges with the color edges has to be utilized. 
In this work, a joint bilateral filter was implemented. However, this 
implementation proved to be rather slow and unsuitable for the 
system with its current processing power. Having the processing 
done in a local machine reduces the delay and thus helps the 
immersion. Having the processing done in a separate unit with 
more processing power enables more complex algorithms for the 
price of some time delays. Therefore, further optimization tests 
should be held. 

Second, focusing should be integrated into the system since 
filmmakers use focus as a tool to help move audience’s attention. 
Since the scene is already available in 3D, the refocusing should be 
straightforward. However, it is important to find a fast 
implementation and integrate it with the rest of the processing.  

Third, some helpful camera interface controls have to be 
added in order to provide the camera operator with better controls 
and extend his/her experience. The basic controls are a focus 
barrel, a zoom controller and some basic lighting controls. Similar 
controls do exist in the Natural Points virtual camera, albeit the 
lack of 3D scene capture, and have been used in several movies. 
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