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Abstract 

3D reconstruction has been an active research topic with the 
popularity of consumer-grade range cameras, and the whole 
process mainly consists of registration and integration. Most 
recent methods pay their attention to making depth maps aligned 
with each other, but the step of integration is simply conducted by 
weighted average for the volumes of truncated signed distance 
function (TSDF), thus the relationship between individual and 
integrated TSDF representations is not well explored. In this paper, 
under the framework of voxel-level optimization, a novel method is 
proposed for TSDF volume integration. Considering camera 
distortions, each individual TSDF volume is corrected by a non-
rigid transformation. Based on the consistency of TSDF values of 
individual and integrated volumes, both the final global TSDF 
representation and the transformation parameters are calculated 
by solving the optimization problem. Experimental results 
demonstrate that more satisfactory reconstruction performance 
can be obtained by our proposal. 

Introduction 
As one of the most important goals in computer vision and 

graphics, obtaining digital representations of real-world objects has 
been a hot research issue in the last decades. Among different 
kinds of methods, 3D reconstruction based on depth maps is a 
promising way. With the development of depth acquisition 
technology, consumer-grade range cameras have appeared. Due to 
their low cost, easy portability and high frame rate for streaming 
depth maps, consumer-grade range cameras have been widely used 
in various applications, such as computer games, augmented reality, 
and 3D printing. However, these cameras are often with inevitable 
distortions, and the obtained depth maps are not accurate enough 
for high-precision modeling [1]. Therefore, in recent years, how to 
get satisfactory 3D reconstruction performance with inaccurate 
capture devices has attracted more and more attention [2], [3], [4], 
[5], [6], [7], [8], [9], [10]. 

Generally speaking, there are two main steps in the whole 
process of 3D reconstruction based on depth maps: registration and 
integration [11], [12]. Since the available depth maps are captured 
from different positions and directions, they are first aligned into 
the same coordinate space in the step of registration. Then in the 
step of integration, the aligned depth maps are combined for the 
final reconstruction results. 

Although much work has been dedicated to exploring 3D 
reconstruction based on depth maps, most recent methods mainly 
focus on the step of registration. The basic idea of some common 
methods is to estimate the camera pose of each depth map as 
accurate as possible, and the two frequently adopted approaches 
are frame-to-frame matching [13] and frame-to-model matching 
[2], [3]. The former approach estimates the camera pose of each 
new depth map by registering it to its last frame, while the latter 
one aligns the incoming depth map to the growing model 
constructed by all the frames coming before. Since more useful 

information is effectively involved in frame-to-model matching, 
the second approach significantly outperforms the first one [3]. To 
take the frames after the incoming depth map into consideration 
and to achieve more accurate results, the approach of two-pass 
registration is proposed [4]. A whole model is constructed by all 
the available depth maps in the first pass, and then each frame is 
aligned to the obtained whole model in the second pass. For 
performance improvement, some methods further deal with camera 
distortions in the step of registration. Two ways are mainly 
adopted for this purpose. One utilizes elaborate calibration and 
attempts to estimate a specific distortion function for the given 
camera, although the function is usually irregular and complicated 
[14], [15]. The other tries to correct the distortions by introducing 
non-rigid deformation to the acquired data [5]. Although the 
second way needs neither specialized calibration sequences nor 
additional assumption, it always leads to unnecessary warping to 
the final reconstruction results due to the lack of prior knowledge. 
Moreover, its computational cost is quite high. By factorizing the 
non-rigid deformation into a rigid localization component and a 
latent non-rigid calibration component, a method conducts 
localization and calibration simultaneously [7]. It achieves better 
reconstruction results. Meanwhile, the total computational load is 
greatly reduced. 

In contrast to many research achievements on registration, the 
approach used for the step of integration is always quite simple. 
For a typical 3D reconstruction system, it often maintains a model 
represented by volumetric truncated signed distance function 
(TSDF). When a new depth map comes, after camera pose 
estimation, its corresponding TSDF volume is calculated, and the 
volume is integrated with the global TSDF volume by weighted 
average. This approach implies that every individual TSDF volume 
has already been well aligned, thus the integration performance 
directly depends on the registration results. However, even much 
related work has been developed for registration, due to the 
complexity of unknown distortions, perfect alignment results for 
multiple TSDF volumes cannot be obtained in practice. If camera 
distortions are also taken into account for the step of integration, it 
is hoped that the final global TSDF representation will become 
more accurate, and better reconstruction for real-world objects can 
be obtained. 

In this paper, in the framework of voxel-level optimization, a 
novel method for TSDF volume integration is proposed. Without 
the assumption that all the individual TSDF volumes have already 
been aligned, we try to explore the relationship between individual 
and integrated TSDF representations. In order to make them 
aligned with each other, we introduce a suitable transformation for 
each individual TSDF volume before it is integrated into the final 
global one. Considering the complexity of unknown camera 
distortions, non-rigid transformation is adopted in our proposal. A 
problem involving both the final global TSDF representation and 
the transformation parameters is defined, and all the variables are 
optimized to maximize the consistency of TSDF values of 
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individual and integrated volumes. By combining the transformed 
individual TSDF volumes together, a more accurate global TSDF 
representation is acquired, which makes the final reconstruction 
more satisfactory. Furthermore, voxel-level transformation does 
not lead to unreasonable local displacements, which often result 
from point-level range camera calibration. 

The rest of the paper is organized as follows. The next section 
describes our proposed TSDF volume integration method based on 
voxel-level optimization in detail. Then our experimental results 
are illustrated, and it is followed by some conclusions and analysis 
of future work in the last section. 

TSDF Volume Integration Based on Voxel-
Level Optimization 

In this section, first we present our proposed optimization 
framework for TSDF volume integration. Since the problem is 
quite complicated, we discuss how to solve it in the second part. At 
last, we talk about some implementation issues to speed up the 
solving process. 

Optimization Framework 
Suppose there are altogether 𝑁 individual TSDF volumes, and 

they are discretized into voxels with a predefined resolution. 
Similar to the existing methods, each volume is represented by a 
TSDF value 𝐹𝑛(𝐩) and a corresponding weight 𝑊𝑛(𝐩), where 𝑛 =
1, 2, ⋯ , 𝑁, and 𝐩 ∈ ℝ3 is a point in the volume, usually the central 
point of one voxel. Let the global TSDF value for the point 𝐩 be 
denoted as 𝐹(𝐩) , which needs to be calculated in the step of 
integration. 

Since multiple individual TSDF volumes may not be well 
registered, we introduce suitable non-rigid transformations for each 
of them, and try to make the transformed volumes aligned with 
each other. For the 𝑛-th (𝑛 = 1, 2, ⋯ , 𝑁) individual TSDF volume, 
let its corresponding non-rigid transformation be 𝑇𝑛. Considering 
the relationship between individual and integrated TSDF 
representations, the point 𝐩 in the integrated volume corresponds 
to the point 𝑇𝑛(𝐩) in the 𝑛-th individual TSDF volume. 

The basic idea for our proposed optimization framework is to 
maximize the consistency of TSDF values of individual and 
integrated volumes. That is to say, it is expected that the value of 
𝐹(𝐩)  in the integrated volume and its corresponding values 
𝐹𝑛(𝑇𝑛(𝐩)) (𝑛 = 1, 2, ⋯ , 𝑁) in the individual volumes should be as 
close as possible. By summing over all the points and all the 
individual volumes, the cost term is defined as 

          𝐸c = ∑ ∑ (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩𝑛

                                        (1) 

Usually each point in the TSDF volume is assigned with a 
weight, which indicates the certainty of the corresponding TSDF 
value. Therefore, the importance of each TSDF value is different. 
For a given point, its global TSDF value should be closer to the 
individual TSDF value with higher certainty, namely, with larger 
weight. Therefore, the weights should also be involved into the 
optimization problem. Using the aforementioned notations, the 
cost term is modified as 

          𝐸c = ∑ ∑ 𝑊𝑛(𝑇𝑛(𝐩)) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩𝑛

                   (2) 

Next we give the mathematical description of the non-rigid 
transformation 𝑇𝑛 (𝑛 = 1, 2, ⋯ , 𝑁). Since the type of 𝑇𝑛  may be 
complicated and cannot be determined in advance, the 
transformation is simply defined as a mapping from 3D space to 
3D space. It is obvious that due to the large number, the mapping 
results cannot be explicitly defined for all the involved points. 
Therefore, we just directly define the results for some pre-given 
points, and calculate other results by interpolation. In order to 
determine the pre-given points, a uniform lattice 𝐷 = {𝐝𝑚} ⊂ ℝ3 
is constructed, and the transformation 𝑇𝑛  for the lattice points is 
defined as 

          𝑇𝑛(𝐝𝑚) = 𝐝𝑚 + 𝐬𝑛,𝑚                                                                  (3) 

where 𝐬𝑛,𝑚 is the parameter for describing the transformation, and 
it indicates the displacement for the point 𝐝𝑚  by the 𝑛 -th 
transformation. It should be noted that although the introduced 
transformations for each individual TSDF volume are usually 
different, the lattice is the same for all the TSDF volumes to 
simplify the following calculation. Based on the mapping results 
on the lattice points, the transformation is extended to other points 
by interpolation 

          𝑇𝑛(𝐩) = 𝐩 + ∑ 𝜇𝑚(𝐩) 𝐬𝑛,𝑚

𝑚

                                                    (4) 

where 𝜇𝑚(𝐩) is the interpolation coefficient. The summation can 
be conducted over all the points in the lattice, but in our 
implementation, only 8 nearest neighboring lattice points are 
assigned with non-zero coefficients, and all the coefficients for 
other lattice points are set to zero. In this case, the mapping results 
for the point 𝐩 can be calculated by trilinear interpolation, and the 
coefficients can be easily determined by the relative position 
between the point 𝐩  and its corresponding nearest neighboring 
lattice points. 

In the above definition for the non-rigid transformation, if the 
parameter, namely, the displacement 𝐬𝑛,𝑚 , is not given any 
restriction, all the points may be mapped to the same point. If this 
case happens, although the cost term can get its minimum value, 
the optimal solution for the integrated TSDF volume is 
meaningless. Therefore, each lattice point should be mapped to its 
nearby point, and the magnitude of the displacement should be 
restricted. To make the optimization problem easy to solve, a 
quadratic regularization term is added as 

          𝐸𝑟 = ∑ ∑‖𝐬𝑛,𝑚‖
2

𝑚𝑛

                                                                   (5) 

At last, the final cost function is defined by combining the 
cost term and the regularization term together 

          𝐸 = 𝐸𝑐 + λ𝐸𝑟   

              = ∑ ∑ 𝑊𝑛(𝑇𝑛(𝐩)) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩𝑛

  

                    + λ ∑ ∑‖𝐬𝑛,𝑚‖
2

𝑚𝑛

                                                          (6) 
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where λ is a balanced coefficient for the two terms. From their 
definitions it can be seen that the value of 𝐸𝑐 is related to all the 
involved points, and the value of  𝐸𝑟 grows with number of lattice 
points. Generally speaking, if a sparser lattice is adopted, λ should 
be set to a larger value. In our implementation, each TSDF volume 
includes 5123 voxels, the adopted lattice is with 93 control points, 
and λ is to 10 in all the experiments. By minimizing the overall 
cost function, the final global TSDF representation, as well as all 
the transformation parameters, can be calculated. 

Solution to Optimization Problem 
Due to the complicated description for our introduced non-

rigid transformations, as well as the uncommon form of the cost 
function, it is difficult to directly solve the optimization problem in 
Eqn. (6). Based on the idea of approximately replacing 𝑊𝑛(𝑇𝑛(𝐩)) 
by some already known values, an iterative solution framework is 
proposed in this paper. 

First we analyze the property of the weight associated with 
TSDF value. Generally speaking, it is calculated as follows. For a 
TSDF volume constructed by one depth map, if a point 𝐩 appears 
near the object surface and is assigned with a meaningful TSDF 
value, its weight is set to 1; otherwise, its weight is set to 0. Further, 
if a TSDF volume is constructed by multiple depth maps, the 
weight for a point 𝐩 is defined as the summation of its weights in 
the TSDF volumes corresponding to each depth map. From the 
calculation process, it can be inferred that the value of the weight 
𝑊𝑛(𝐩) changes slowly over 3D space. 

Then, we talk about the introduced transformation. Since a 
regularization term as Eqn. (5) is added in the cost function, 
smaller displacement 𝐬𝑛,𝑚  is preferred for the optimal solution. 
That is to say, it is probable that the points 𝐩 and 𝑇𝑛(𝐩) are close 
to each other. 

Considering the aforementioned two factors, we propose the 
following iterative solution for the optimization problem. In the 
beginning, we roughly take the place of 𝑊𝑛(𝑇𝑛(𝐩)) by 𝑊𝑛(𝐩), and 
deal with the cost function as 

          𝐸(1) = ∑ ∑ 𝑊𝑛(𝐩) (𝐹(1)(𝐩) − 𝐹𝑛 (𝑇𝑛
(1)(𝐩)))

2

𝐩𝑛

  

                         + λ ∑ ∑ ‖𝐬𝑛,𝑚
(1)

‖
2

𝑚𝑛

                                                     (7) 

In the (𝑘 + 1)-th (𝑘 = 1, 2, ⋯ ) round of iteration, we proximately 

replace 𝑊𝑛 (𝑇𝑛
(𝑘+1)(𝐩))  by 𝑊𝑛 (𝑇𝑛

(𝑘)(𝐩)) , thus the overall cost 
function is modified as 

   𝐸(𝑘+1) = ∑ ∑ 𝑊𝑛 (𝑇𝑛
(𝑘)(𝐩)) (𝐹(𝑘+1)(𝐩) − 𝐹𝑛 (𝑇𝑛

(𝑘+1)(𝐩)))

2

𝐩𝑛

  

                     + λ ∑ ∑ ‖𝐬𝑛,𝑚
(𝑘+1)

‖
2

𝑚𝑛

                                                   (8) 

It can be seen that if we set 𝑇𝑛
(0)(𝐩) = 𝐩, Eqn. (7) can also be 

integrated in Eqn. (8). Since the transformation 𝑇𝑛
(𝑘) has already 

been calculated in the last round, the value of 𝑊𝑛 (𝑇𝑛
(𝑘)(𝐩)) can be 

obtained in the (𝑘 + 1)-th round. In this way, the optimization 
becomes easier to be solved. 

Next, we discuss the solution to the simplified problem. For 
convenience, we omit all the superscripts, and use 𝑊𝑛(𝐪)  to 

substitute for 𝑊𝑛 (𝑇𝑛
(𝑘)(𝐩)) since it is just a constant. Thus, the 

general form of the cost function can be written as 

          𝐸 = ∑ ∑ 𝑊𝑛(𝐪) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩𝑛

  

                 + λ ∑ ∑‖𝐬𝑛,𝑚‖
2

𝑚𝑛

                                                           (9) 

The problem of minimizing 𝐸  can be treated as joint 
optimization for the global TSDF representation 𝐹(𝐩)  and the 
transformation parameters 𝐬𝑛,𝑚. In this paper, we use an iterative 
approach to solve it. 

At first, all the transformation parameters 𝐬𝑛,𝑚 are set to 0, 
thus  𝑇𝑛(𝐩) = 𝐩, and Eqn. (9) can be written as 

          𝐸 = ∑ ∑ 𝑊𝑛(𝐪)(𝐹(𝐩) − 𝐹𝑛(𝐩))
2

𝐩𝑛

                                    (10) 

In this case, the global TSDF value for each point 𝐩  can be 
obtained, and the problem of linear least squares has a solution in 
closed form 

          𝐹(𝐩) =  ∑ 𝑊𝑛(𝐪)𝐹𝑛(𝐩)

𝑛

∑ 𝑊𝑛(𝐪)

𝑛

⁄                                   (11) 

With fixed 𝐹(𝐩), we need to calculate 𝐬𝑛,𝑚. It is obvious that 
in this case, the cost function can be decomposed into 𝑁 
independent terms 𝐸𝑛 (𝑛 = 1, 2, ⋯ , 𝑁) 

          𝐸𝑛 = ∑ 𝑊𝑛(𝐪) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩

+ λ ∑‖𝐬𝑛,𝑚‖
2

 

𝑚

(12) 

Thus the parameters for each transformation 𝑇𝑛 can be dealt with 
separately. For a given 𝑛, by concatenating all the parameters 𝐬𝑛,𝑚 
into one vector 𝐬𝑛, the optimization becomes a problem of non-
linear least squares. Let 

          𝑟𝑛,𝐩 = √𝑊𝑛(𝐪) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))                                   (13) 

          𝑟𝑛,𝑚,𝑡 = √λ 𝑠𝑛,𝑚,𝑡                                                                       (14) 

where 𝑡 = 1, 2, 3, and 𝑠𝑛,𝑚,𝑡 is the 𝑡-th element in the vector 𝐬𝑛,𝑚. 
Then we have 

          𝐸𝑛 = ∑ 𝑟𝑛,𝐩
2

𝐩

+ ∑ ∑ 𝑟𝑛,𝑚,𝑡
2

𝑡𝑚

                                                (15)  

The residual vector 𝐫𝑛 is defined by combining all 𝑟𝑛,𝐩  and 𝑟𝑛,𝑚,𝑡 
together, and its Jacobian matrix 𝐉𝑛  is calculated accordingly. 
Hence the problem of non-linear least squares can be solved by the 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-398

IS&T International Symposium on Electronic Imaging 2016
3D Image Processing, Measurement (3DIPM), and Applications 2016 3DIPM-398.3



 

 

Gauss-Newton method, in which the vector 𝐬𝑛  to be solved is 
updated as 

          𝐬𝑛
(𝑙+1)

= 𝐬𝑛
(𝑙)

+ Δ𝐬𝑛                                                                    (16) 

And the incremental vector Δ𝐬𝑛  is determined by the following 
linear equation 

          𝐉𝑛
𝑇𝐉𝑛Δ𝐬𝑛  = −𝐉𝑛

𝑇𝐫𝑛                                                                     (17) 

The case with fixed 𝐬𝑛,𝑚 is similar with that in the first step. 
The cost function can be rewritten as 

          𝐸 = ∑ ∑ 𝑊𝑛(𝐪) (𝐹(𝐩) − 𝐹𝑛(𝑇𝑛(𝐩)))
2

𝐩𝑛

                          (18) 

And its solution is 

          𝐹(𝐩) =  ∑ 𝑊𝑛(𝐪)𝐹𝑛(𝑇𝑛(𝐩))

𝑛

∑ 𝑊𝑛(𝐪)

𝑛

⁄                          (19) 

When the iterative calculation for 𝐹(𝐩)  and 𝐬𝑛,𝑚  has 
converged, the next around of iteration for minimizing  𝐸(𝑘+1) in 
Eqn. (8) goes on. At last, after obtaining the final global TSDF 
representation, 3D construction can be achieved by the existing 
algorithms such as marching cubes [16]. 

Implementation Issues 
In this part, first we talk about how to calculate 𝐉𝑛

𝑇𝐉𝑛 and 𝐉𝑛
𝑇𝐫𝑛 

in Eqn. (17). Due to the huge number of involved points, both the 
length of vector 𝐫𝑛 and the height of matrix 𝐉𝑛 are quite large. For 
more efficient calculation, let 

          𝐫𝑛 = [𝑟𝑛,1, 𝑟𝑛,2, ⋯ , 𝑟𝑛,𝑁𝐩
, �̅�𝑛

𝑇]
𝑇

                                                 (20) 

where 𝑁𝐩  denotes the involved point number, and �̅�𝒏  is a vector 
combining all 𝑟𝑛,𝑚,𝑡 together. Then the Jacobian matrix 𝐉𝑛 can also 
be partitioned into blocks as 

          𝐉𝑛 = [𝐉𝑛,1
𝑇 , 𝐉𝑛,2

𝑇 , ⋯ , 𝐉𝑛,𝑁𝐩

𝑇 , �̅�𝑛
𝑇]

𝑇
                                                  (21) 

where 𝐉𝑛,𝑖  (𝑖 = 1,2, ⋯ , 𝑁𝐩) and �̅�𝑛 are the corresponding Jacobian 
matrices for 𝑟𝑛,𝑖 and �̅�𝑛 respectively. Thus 

          𝐉𝑛
𝑇𝐉𝑛 = ∑ 𝐉𝑛,𝑖

𝑇 𝐉𝑛,𝑖

𝑖

+ �̅�𝑛
𝑇 �̅�𝑛                                                         (22) 

          𝐉𝑛
𝑇𝐫𝑛 = ∑ 𝐉𝑛,𝑖

𝑇 𝑟𝑛,𝑖

𝑖

+ �̅�𝑛
𝑇�̅�𝑛                                                         (23) 

The first parts of 𝐉𝑛
𝑇𝐉𝑛 and 𝐉𝑛

𝑇𝐫𝑛 can be calculated point by point, 
which only costs a few memory, and is convenient for parallel 
processing. According to the definition of 𝑟𝑛,𝑚,𝑡 in Eqn. (14), we 
can get �̅�𝑛

𝑇 = √λ 𝐈, where 𝐈 is the identity matrix. So the second 
parts of 𝐉𝑛

𝑇𝐉𝑛 and 𝐉𝑛
𝑇𝐫𝑛 can also be easily obtained. Further, in our 

implementation for Eqn. (4), for each point 𝐩 , only 8 nearest 
neighboring lattice points are assigned with non-zero interpolation 

coefficients. Therefore, when calculating the Jacobian matrix 𝐉𝑛,𝑖, 
there are at most 24 non-zero values in it, whose positions are 
determined by the index of the 8 nearest neighboring points lattice 
for point 𝐩. Once the positions are acquired, it is only needed to 
update the corresponding elements in 𝐉𝑛

𝑇𝐉𝑛 and 𝐉𝑛
𝑇𝐫𝑛. 

Next, we discuss how to efficiently solve Eqn. (17). It can be 
seen that the variable number is determined by the number of 
lattice points. Suppose the lattice consists of 𝑀  points, then the 
sizes of 𝐉𝑛

𝑇𝐉𝑛  and 𝐉𝑛
𝑇𝐫𝑛  are 3𝑀 × 3𝑀  and 3𝑀 × 1 , respectively. 

Although the scale of the linear equation is much smaller than the 
total involved point number, we can determine the values of some 
variables in advance, and further reduce the number of variables to 
be calculated. 

Since only the points near the object surface are assigned with 
meaningful TSDF values and used in the optimization framework, 
many lattice points are not included in the neighborhood of any 
involved points when a uniform lattice is adopted. For these lattice 
points, we have no information to find their transformations, so 
their corresponding displacements should be zero. This conclusion 
can also be inferred by quantitative analysis. Briefly speaking, if 
the 𝑚-th lattice point is not included in the neighborhood of any 
points near the object surface for the 𝑛-th individual TSDF volume, 
then the (3𝑚 − 2)-th, (3𝑚 − 1)-th, and 3𝑚 -th elements of the 
vector 𝐉𝑛,𝑖  (𝑖 = 1, 2, ⋯ , 𝑁𝐩) are zeros. According to Eqn. (22) and 
Eqn. (23), for the (3𝑚 − 2)-th, (3𝑚 − 1)-th, and 3𝑚-th rows of 
the matrix 𝐉𝑛

𝑇𝐉𝑛 , only the elements in the positions of (3𝑚 − 2,
3𝑚 − 2) , (3𝑚 − 1, 3𝑚 − 1) , and (3𝑚, 3𝑚)  are with non-zero 
values, and the (3𝑚 − 2)-th, (3𝑚 − 1)-th, and 3𝑚-th elements of 
the vector 𝐉𝑛

𝑇𝐫𝑛 are zeros. Thus, the calculated 𝐬𝑛,𝑚 must be a zero 
vector. 

As the displacements of some lattice points can be determined 
without solving Eqn. (17), only the left variables are needed to be 
calculated. In this way, the scale of the linear equation becomes 
smaller, which further accelerates the solving process. 

Experimental Results 
All our experiments are conducted on the RGB-D SLAM 

benchmark [17]. Different sequences of depth maps are used in the 
experiments. Since similar conclusions can be made, only the 
results for the sequence “fr1/desk” are illustrated in the paper. 

Two different experiments are finished. For the first one, each 
individual TSDF volume is constructed by multiple depth maps. 
The first 200 depth maps are adopted in the experiment. All the 
frames are evenly partitioned into 4 segments, and each individual 
TSDF volume is constructed with 50 frames by KinectFusion [2], 
[3]. The methods of weighted average integration as well as 
simultaneous localization and calibration (SLAC) [7] are used for 
comparison with our proposal. It should be noted that although 
range camera calibration is utilized in SLAC, the step of 
integration is still simply implemented by weighted average of all 
the individual TSDF volumes constructed by the calibrated depth 
maps. The final reconstruction results are illustrated in Figure 1. It 
can be seen that the overall performance of weighted average 
integration is the worst. By introducing non-rigid transformations 
in either point level or voxel level, both SLAC and our proposal 
can achieve better results. It is demonstrated that the object edges 
are well reconstructed by SLAC, while the result of our proposal is 
smoother, especially for the computer monitor. 

Furthermore, by placing two reconstructed models in the 
same coordinate space, as shown in Figure 2, we can see that the 
results of weighted average integration and our proposal coincide  
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Figure 1. Reconstruction results by (a) weighted average integration, (b) 
SLAC, and (c) our proposal. 

well, while there are obvious displacements between the results of 
weighted average integration and SLAC. Since point-level 
transformations are conducted in SLAC, this kind of unreasonable 
local displacements are inevitable, which will hinder subsequent 
step such as color mapping. As we only involve voxel-level 
transformations for individual TSDF volume correction, significant 
displacements do not appear. 

In the second experiment, the global TSDF volume is growing 
frame by frame. That is to say, with an incoming depth map, we 
need to integrate the TSDF volume constructed by all the frames 
coming before and the one corresponding to the new depth map. 
SLAC is not applicable for this case. Therefore, we just compare 
our proposal with the method of weighted average integration. The 
first 50 depth maps are adopted for the experiments, and some 
details of the final reconstruction results are illustrated in Figure 3. 
Since less depth maps are used, the reconstruction results are 
inferior to those in Figure 1. However, the performance of our 
proposal is also better than that of weighted average integration, 
which again demonstrates the effectiveness of introducing non-
rigid transformations for individual TSDF volumes. When we 
place the two reconstructed models in the same coordinate space as 
in Figure 4, we can see that they also coincide well and there are 
no unreasonable local displacements. 

 
(a) Results of weighted average integration and SLAC. 

 
(b) Results of weighted average integration and our proposal. 

Figure 2. Two reconstruction results in the same coordinate space. 

Conclusions and Future Work 
In this paper, by taking camera distortions into consideration 

for TSDF volume integration, a novel method based on voxel-level 
optimization is proposed. Since perfect alignment usually cannot 
be obtained, suitable non-rigid transformations are introduced for 
individual TSDF volumes to make them aligned better. According 
to the consistency of TSDF values of individual and integrated 
volumes, a comprehensive cost function involving both the final 
global TSDF representation and the transformation parameters is 
defined. An iterative solution is developed for the optimization 
problem, and some implementation issues for reducing memory 
cost and computational load are also introduced. It is demonstrated 
our proposal does not cause unreasonable local displacements, and 
is effective for more satisfactory 3D reconstruction. 

In our finished work, a uniform lattice is adopted for defining 
the introduced non-rigid transformations, and it remains the same 
for different TSDF volumes. However, in practice, the points with 
meaningful TSDF values are not evenly distributed in the whole 
3D space, and their distributions are different for each TSDF 
volume. Therefore, the interpolation results may not be accurate 
for all the points. If we want to better describe the transformations, 
more complex lattices should be utilized. In the future, we will 
focus on how to adaptively determine the most effective lattice for 
each TSDF volume, and complete its efficient implementation. 
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