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Abstract
In this paper we investigate the usage of depth maps as a

structure to represent a point cloud. The main idea is that depth
maps implicitly define a global manifold structure for the under-
lying surface of a point cloud. Thus, it is possible to only work on
the parameter domain, and to modify the point cloud indirectly.
We show that this approach simplifies local computations on the
point cloud and allows using standard image processing algo-
rithms to interact with the point cloud. We present results of the
application of standard image compression algorithms applied on
depth maps to compress a point cloud, and compare them with
state-of-the-art techniques in point cloud compression. We also
present a method to visualize point clouds in a progressive man-
ner, using a multiresolution analysis of depth maps.

Introduction
3D data acquisition has been an active research field over

the last years. High resolution devices are able to acquire
scenes composed of billions of points. Clouds of points are
often transformed in polygon meshes, one of the most popular
representation for 3D models. In particular triangle meshes,
simple, flexible and widely supported by graphics hardware.
With high resolution acquisitions, the resulting meshes are huge.
The handling and common processings such as transmission or
visualization become complex, or just impossible, even with
workstations. Therefore in many industrial domains, visualizing
point clouds directly becomes common, and the compression of
such data has been an active field of research for one decade.

Our current work focuses on the transmission and the visual-
ization of massive point clouds on different types of devices (com-
puters, tablets, smartphones...). The key problem is to adapt the
quantity of information to transmit and/or display, in function of
the performances of the user devices and the bandwidth limita-
tions. In this context, data compression is a well-suited tool.

The problem with point clouds is that they are not structured
and have no topology. They are difficult to handle, because
of the lack of connectivity information. Even the basic notion
of neighborhood for a point is problematic. Therefore all the
prior methods of compression for point clouds build their own
structure before encoding [11, 2, 13, 4, 5, 15, 8].

However, this regularity exists natively in the data generated
by multiple 3D acquisition devices, namely depth maps. A depth
map is a grayscale 2D image, representing the distance from each
sample to the scanning device during an acquisition. Every non-
black pixel is representing a point in the scene captured (black
pixels representing the background).

A point is defined by its 3D coordinates {x,y,z}. In a depth
map, a pixel is defined by one single coordinate {d}, the distance

from the camera. Indeed, the image is sampled on a regular lattice,
the coordinates {i, j} of the pixel in the image are implicit, and do
not need to be stored. To project points from the map to the 3D
space, one matrix is needed for each depth map (16 real numbers).
Its cost is negligible, in comparison with the map cost. Thus,
depth maps are naturally more compact than point clouds, as long
as 1

3 of the total number of pixels represent points in R3.
Depth maps do not provide only geometric information.

They also define a parameterization domain and a segmentation
related to the different points of view (position and orientation of
the system during acquisition). So numerous techniques of image
processing can be used to process the associate point clouds.
Moreover, their regular lattice enables efficient wavelet filtering,
as in the classical 2D image domain.

Considering these nice properties, we choose to investigate
the use of depth maps as an alternative representation of point
clouds, and aim to develop algorithms based on this specific struc-
ture. In this paper, we present our preliminary works in the con-
text of visualization, and of compression.

The rest of the paper is organized as follows. We first present
some recent methods of compression for point clouds. The fol-
lowing section explains how a set of depth maps can be used as a
parameterization domain for point clouds. Then, we present two
scenarios where image-based algorithms can be used to process
point clouds easily. First, we show how multiresolution analysis
of a set of depth maps enables LOD and view-dependent visu-
alization of point clouds. Second, we explore the use of image
coders to compress a point cloud, by compressing its associated
set of depth maps. In particular, we compare the RD (Rate Dis-
tortion) performances of several image coders and of one state of
the art point cloud compression method.

State of the art
As introduced before, a point cloud is only a set of samples

distributed in a 3D space. It has no structure, no topology.
Therefore, in the domain of compression, all the recent methods
use a multiscale structure to represent a point cloud before
encoding it.

Sphere hierarchy In 2000, the authors of [11] suggest to handle
massive datasets by using a bounding sphere hierarchy. Then,
each sphere encodes its position relatively to its parent sphere.

Octree-based methods In 2002, the authors of [2] propose to use
a high resolution voxel grid, and to progressively coarsen it by
merging 8 (2x2x2) blocks. To reconstruct the initial resolution
grid, one byte is used to select which ones of the 8 merged blocks
contain points. Later, [13] and [4] present similar methods that
embedd the point cloud in an octree. The bounding box of a point
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cloud is recursively subdivided, and each cell is encoded with a
prediction scheme depending on the configuration of the children
cells.

Incremental simplification In 2004, a progressive decimation
scheme for point clouds is proposed by [15]. Pairs of points are
merged recursively, and a prediction scheme encodes the position
of merged points.

Segmentation-based methods The same year, an original ap-
proach is proposed in [8]. The authors develop a method that
segments a point cloud in several subsets, such as each subset
can be parameterized by a height-field. Hence, any still image
compression scheme can be used to encode these 2D data.

Theoretical foundations
The link between a point cloud defining a surface in 3D

space, and a depth map is given by a projection matrix M. For
each point v ∈ R3, it computes p ∈ R2, the position of the
projection of v in a depth map. This transformation is invertible
(M is an upper triangular matrix, with non-zero coefficients on
the diagonal), and enables the embedding of 2D pixels in 3D
space. The surface constructed by the embedding of every point
of a depth map is called a range surface.

This projection procedure is equivalent to the notion of pa-
rameterization in differential geometry. A range surface Sk corre-
sponds to a patch Ck ∈ R3 and a projection matrix Mk represents
a parameterization function ϕk, linking a patch Ck to a parame-
terization domain Ωk ∈ R2 (representing a depth map). Transi-
tion functions τϕi→ϕ j define the link between parametric coordi-
nates of points belonging to a common intersection between two
patches Ci and C j :

∀v ∈Ci∩C j, ϕ j(v) = τϕi→ϕ j (ϕi(v)), (1)

which is equivalent to :

∀v ∈ Si∩S j, M j ∗ v = M j ∗M−1
i (Mi ∗ v) (2)

Figure 1. Set of overlapping parameterizations (ϕi and ϕ j) connected by

transition functions τϕi→ϕ j [10]

Given this link, we can consider a point cloud as simply be-
ing an embedding of a set of depth maps and storing only these
ones in memory. This allows working in the parameterized do-
main to interact with point clouds, as done in [8] for compression,
or [9] for spectral processing.

Visualization
As introduced before, visualizing a point cloud using depth

maps is not more complex than visualizing the raw point cloud.
When rendering a model, points are projected on the screen and
become pixels. This is done by applying a matrix transform to all
points of the model, which will compute their position in the ren-
dered view. When rendering a point cloud from a set of depth
maps, only one additional step is needed to rebuild the point
cloud: the embedding of the pixels in R3. Considering that, we
only keep depth maps and projection matrices in memory, instead
of a set of 3D positions.

In this part we show how we can represent a point cloud pro-
gressively by applying a multiresolution analysis on each depth
map.

Multiresolution analysis
The wavelet transform [7] is a time-frequency transforma-

tion, decomposing a signal λ0 in

• a "low-frequency" signal λ−1, approximating the original
signal (average subsampling);

• a set of wavelet coefficients γ−1, representing the "high-
frequency" details removed to get the "low-frequency" sig-
nal.

This decomposition step is called analysis. It is an invertible
operation, allowing the perfect reconstruction of the original
signal. The inverse operation is called synthesis. In the case of
images, a dyadic decomposition is often applied: only the low-
frequency signal is decomposed at each level of resolution. This
representation is relevant for transmitting an image progressively:
a coarse version is first sent, and then the sets of coefficients are
sent to reconstruct the original image progressively.

To perform a multiresolution analysis, we use a lifting
scheme, which is an efficient implementation of the wavelet trans-
form [14]. The lifting scheme is composed of 3 different steps:

• Separation. A signal λi is decomposed in two subsets λi−1
and γi−1 gathering respectively the even and odd samples
(pixels in the case of an image) of the original signal;

• Predict. Odd samples values γi−1 are predicted using an op-
erator P from the values of λi−1. Prediction errors represent
wavelet coefficients and are stored in γi−1;

• Update. Values of λi−1 are updated using an operator U
based on the wavelet coefficients γi−1 obtained.

One advantage of the lifting scheme is to obtain the inverse
transform just by applying the preceding steps in the inverse order.
This process is generally repeated on the low-frequency signal
λi−1 until a given level of resolution. In the context of 2D images,
the lifting scheme is applied in a separable manner: it consists in
applying the scheme on every line and then on every column, pro-
ducing one low-frequency subband and three subbands of wavelet
coefficients (Figure 2).

Progressive point cloud representation
We now use a lifting scheme applied to a set of depth maps

defining a point cloud to get a lower resolution of it. The update
operator U preserves global properties of a signal through the dif-
ferent levels of decomposition (average value for example). In our

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.21.3DIPM-397

IS&T International Symposium on Electronic Imaging 2016
3D Image Processing, Measurement (3DIPM), and Applications 2016 3DIPM-397.2



Figure 2. Original depth map (left) and its wavelet transform (right).

context, this operator may alter the shape of the point cloud in 3D
space, by shifting severely the points of the lower resolution. We
chose to disable this step. Hence, the lower resolution of a point
cloud is inevitably a subset of the original points, and the fidelity
to the initial shape is preserved.

Figure 3. Original point (left) and a subsampled version after one level of

decomposition (right).

Levels of details (LOD)
This structure allows LOD and progressive transmission: a

first set of low-resolution depth maps is sent (via a network even-
tually) to the GPU, and then more or less details are sent in func-
tion of the device capabilities (and of the network limitations, if
transmitted).
View-dependent visualization

The structure chosen is really suited for partial data visual-
ization. As the point cloud is represented through different seg-
mentations, one can choose to visualize a subset of segmentations
only, depending on the current point of view during the visual-
ization process. This decimates the point cloud really fast, and
can achieve excellent results. For example, for a specific point
of view, it is possible to visualize the same information with only
some points (Figure 4). Given that the multiresolution analysis
is applied independently on each depth map, it also possible to
refine a point cloud partially, by decomposing each depth map at
a different resolution. It is also possible to display only a part of
the object, depending on the current point of view during the vi-
sualization process, as shown in Figure 4). The structure of depth
maps enables a really fast decimation of a point cloud, and achieve
excellent results.

Compression
To visualize a point cloud, it is necessary to have a file con-

taining all the information concerning it. The size of this file be-

comes huge when reaching hundreds of million points.
Depth maps are grayscale images, thus they can be com-

pressed similarly to other kind of images. Using our structure,
compressing a point cloud consists in compressing each depth
map independently. Considering that, we decide to investigate
the use of different image coders to compress point clouds.

JPEG2000 [3] is a well-known image coding algorithm
based on wavelets. It has some useful properties, like progres-
sive decompression (by reconstructing only some levels during
the multiresolution synthesis), lossless compression up to 16 bits
per pixel, and offer a good tradeoff between bitrate and quantiza-
tion error.

BPG [1] is a new image coder based on a subset of HEVC
(intra-frame encoding). It has already shown some interesting
results, producing files smaller than JPEG for a similar quality.
This algorithm also offers the possibility to compress images loss-
lessly, up to 12 bits per pixel.

Lossless compression
When restructuring point clouds, state-of-the-art methods

quantize the data, choosing representatives of points contained in
the leaf nodes. So even if a compressed point cloud can contain
the same number of points as the original data (in other words,
when each leaf contains 1 point only), the position of each point
is not conserved, introducing some error. Instead, we consider
the original data provided at the end of an acquisition as an input
to our algorithm, where pixel intensities are quantized to 16 bits.
We compare the bitrate obtained using different standard image
compression algorithms. Concerning BPG, the actual implemen-
tation is not able to encode more than 12 bits per pixel. Thus we
express the bitrate obtained with respect to the quantization error
introduced (quantizing from 16 to 12 bits per pixel).

Bits per point
Model JPEG2000 BPG

Bunny 6.236 3.275 (7.225e−9)
Buste 6.603 3.469 (7.744e−9)

Chinese 8.429 4.118 (7.569e−9)
Dragon 7.537 4.009 (8.649e−9)

Ramsesses 6.651 3.06 (8.281e−9)
Sphere 3.693 2.364 (5.041e−9)

Rates obtained after lossless compression of different mod-
els. BPG quantization error is indicated between parentheses
(with respect to the bounding box of the original point cloud).

Lossy compression
In terms of lossy compression, we cannot compare our re-

sults on the same data used in state-of-the-art works. We consider
depth maps at the original data instead of point cloud. Even if
we can generate depth maps from 3D models using a rendering
process, we will not have the same samplings as other methods
(comparing MSE is meaningless in that case). Nonetheless, we
can compare our approach with the one of [5], where the code
has been provided through the Point Cloud Library [12]. The loss
of quality is measured using peak signal to noise ratio (PSNR in
dB) as a function of the rate (in bits per point). To evaluate the
error, we use a criterion proposed by prior papers in the domain
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(a) 860 932 points (b) 281 166 points (c) 860 932 points (d) 281 166 points

Figure 4. View-dependent visualization of a point cloud. Selecting only a subset of depth maps reduces the number of points to display, for a similar visual

result. For a specific point of view, visualizing every depth maps (a) or only a subset of them (b) is nearly the same in terms of quality. (d) shows the point cloud

from a side view

of point cloud compression. We measure the root mean square
error RMS(S, Ŝ) between the original point cloud S and the de-
compressed point cloud Ŝ. The PSNR can be computed as :

20log10
dB

max(RMS(S, Ŝ),RMS(Ŝ,S))
,

where dB is the bounding box diagonal of S. RMS(S, Ŝ) is
computed by finding, for each point v of S, its nearest neighbor v̂
in Ŝ.

We can see that our image-based method has much better
results than the octree method of [5]. In this article, the authors
targeted a real-time compression scheme, to visualize a dynamic
point cloud. This method compresses a point cloud first, and then
only sends the differences between two point clouds, to reduce
the amount of data transmitted.

When comparing the different image-based coders, we can
see that BPG has better results than JPEG2000 at low bitrates
(Figure 5). On the other hand, JPEG2000 is able to reconstruct
point clouds much more precisely, being really close to the origi-
nal data (Figure 6). This is mostly due to the fact that BPG cannot
reconstruct perfectly the data, since it quantized the pixel values
to 12 bits.

Progressive decompression
Concerning JPEG2000, we are really interested in the pro-

gressive decompression, as it allows using the same algorithm to
compress data, and to obtain a progressive representation of point
clouds. However this algorithm uses specific wavelets :

• biorthogonal Cohen-Daubechies-Fauveau 5/3 (CDF 5/3) for
lossless compression,

• biorthogonal CDF 9/7 for lossy compression,

both updating the values of the low-resolution subband at
each decomposition level. For depth maps this is inconvenient,

because they are never seen as images, but as their embedding in
R3. Modifying these values alters the geometry of the point cloud
making it noisy (Figure 7). Those schemes smooth the values in
the low-frequency subbands (Figure 8).

It means that it is not possible to use the progressive aspect
of JPEG2000 in this scenario, even in the lossless case. However
this problem is only related to the fact that we were not recon-
structing using all the wavelet coefficients. In the case of a full
reconstruction, those problems only arise with high compression
rates, where the effect of the quantization is too strong.

Conclusions
We have presented a novel representation of point clouds us-

ing a set of depth maps and projection matrices. This structure al-
lows using standard image processing algorithms to interact with
point clouds.

We have shown that a progressive representation of a point
cloud can be built from a multiresolution analysis of depth maps.

Our results show that it is really interesting to use image-
based coder to compress a point cloud. Especially knowing that
any image-based coder can be used to encode depth-maps. But
they also demonstrate that it is not possible to use some specifici-
ties of the coders (like progressive decompression of JPEG2000)
due to the nature of their implementation. In our case, it would
be interesting to have a wavelet coder not updating the values of
the different low-frequency subbands. Thus it would be possi-
ble to visualize a point cloud resulting of a partially decoded file.
Which is really suited when some parts of the point cloud are not
visible, or too far from the camera.

Currently there is no control of the quality depending on a
geometric error. Image-based coder like JPEG2000 minimize an
error for a specific target bitrate, this error is computed in the
image domain. But this is not optimal, because depth-maps are
never seen as images, but only as their embedding in R3. It would
be much more interesting to minimize a geometric error in an
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Figure 5. Evolution of the PSNR as a function of the bitrate. JPEG2000 is able to reconstruct higher quality point clouds, but at equivalent quality, BPG has

a much lower bitrate. In comparison to the work of [5], for a similar error, our approach is able to compress point clouds at a much higher rate. The right-side

curves show how the error evolves on a real data (Kinect), using a depth map provided by [6].

Original point cloud 1.895 bits per point

0.9872 bits per point 0.6644 bits per point

Figure 6. Visualization of a point cloud (top-left) compressed at different rates (expressed in bits per point) using lossy JPEG2000.

image-based coder.
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