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Abstract

We propose an original technique to sample surfaces gen-
erated by stereoscopic acquisition systems. Our motivation is to
simplify the long and fastidious sampling pipeline, for such ac-
quisition systems. The idea is to make the sampling of the sur-
faces directly on the pair of stereoscopic images, instead of do-
ing it on the meshes created by triangulation of the point clouds
given by the acquisition system. More precisely, we present a
Sfeature-preserving sampling, done directly in the stereoscopic im-
age domain, while computing the inter-sample distances in the
3D space, in order to reduce the distortion due the embedding in
R3. We focus on Poisson-disk sampling, because of its nice blue
noise properties. Experimental results show that our method is a
good trade-off between the direct sampling methods that are time-
consuming, and the methods based on parameterizations that al-
ter the final sampling properties.

Introduction

Acquisition systems are now able to create massive point
clouds, to ensure the preservation of the finest details. Conse-
quently the resulting meshes are also dense, most of times over-
sampled, and cannot be easily managed by any workstation or
mobile device with limited memory and bandwidth.

To overcome this problem, many methods of mesh simplifi-
cation [1], remeshing [2, 3], resampling [4], etc. have been devel-
oped during the last two decades, to reduce the size of geometrical
data and to make their process easier, or just... possible. However,
it could be relevant to tackle the problem upstream, i.e. during the
acquisition process.

The motivation of our current work is to simplify the long
and fastidious sampling pipeline, here for the specific case of
stereoscopic acquisition systems. In this paper, we generate the
sampling pattern of the final surfaces directly from the stereo-
scopic images, instead of making it on the meshes created by
triangulation of the dense point clouds at the output of the stereo-
scopic systems. Hence, the generated 3D data are usable with-
out any additional resampling stage, and the number of sampling
points can be controlled from the beginning of the acquisition.

Challenges and contributions
To enable the sampling of surfaces directly in the stereo-
scopic image domain, there are two challenges to overcome:

1. The sampling of surfaces directly in the stereoscopic im-
ages is similar to a parameterization-based approach, as the
stereoscopic images represent a parameterization domain of
the surface geometry. We benefit from the advantage of such
an approach, which is the implicit connectivity of the sam-
pling domain. The drawback is that parameterization gener-
ally leads to distortion, once the sampling embedded in the
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3D space. In other words, the quality of sampling patterns in
the parameterization domain can be significantly decreased
when moving from parameterization domain to the surfaces.
To tackle this problem, we propose to compute the distances
between samples in the 3D space, as the corresponding 3D
coordinates are known for each pair of pixels in the stereo-
scopic images. Thus, our method can be seen as an hybrid
blue noise sampling method, driven by the connectivity of
the stereoscopic images, but computing the real distances
between samples in the 3D space.

2. We would like to preserve the geometrical features of the
scanned surfaces in the sampling pattern. Inspired by [5],
we propose to extract these features directly from the stereo-
scopic images, by detecting the corresponding feature lines
in the stereo images.

In this paper, we focus on Poisson-disk sampling that
received considerable attention in computer graphics because of
its nice blue noise properties [6], and its capability to avoid alias-
ing artifacts [7]. Indeed, a Poisson-disk distribution generates
sampling patterns that satisfy a uniform distribution (a minimum
distance is ensured between samples), but irregular within the
domain (the samples do not lie on a spatial regular lattice). These
characteristics are particularly relevant for many applications
such as rendering, imaging, texturing, geometry processing and
numerical simulations [8], [9], [10]. However, our approach
could be easily extended to other sampling patterns.

There are several prior works about the blue noise
(re)sampling of surfaces. Two kinds of approaches exist: directly
on the surfaces [11, 4], or on a 2D parametric domain of the
surfaces [12]. As expected, the first approaches are efficient in
term of sampling quality but are time-consuming, because of
the computation of geodesics over the surface (to estimate the
distances between samples). The second approaches overcome
the issue relative to the computation of geodesics, but the gener-
ated patterns may suffer from distortion as the parameterization
must be computed. Finally, our hybrid method benefits from the
advantages of these two kinds of approaches.

Overview

Figure 1 gives an overview of our hybrid sampling method.
Figure 2 shows the data produced all along the process. Let us
acquire a pair of stereoscopic images (Figure 2(a)). Our method
consists in four stages, described below.

1. Stereo matching The goal of this stage is to determine the
Pixels Of Interest (POI) region, which gives the part of the
physical object that can be reconstructed from the pair of
images [13]. The POI region is defined by a mask / (Figure
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(a) Left stereoscopic image. (b) Mask of the POI region.

Figure 2. From stereo images to 3D sampling pattern.
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Figure 1. Overview of our hybrid sampling method.

2(b)), which is a binary image where the white pixels de-
fine the POL. The POI region is only a subset of the stereo-
scopic images as it is impossible to capture the same set of
3D points from two different points of view.

2. Pixel classification Its goal is to detect the feature lines in
the POI region (Figure 2(c)). The subsequent sampling will
be driven by these feature lines to ensure that corners and
sharp features are preserved in the sampling pattern.

3. 3D position computation This stage consists in computing
the position, in the 3D space, of the pixels belonging to the
POI region, by triangulation [14].

4. Sampling This step distributes the 3D samples on the
scanned surface. The selection of samples is done in the
stereoscopic image domain (Figure 2(d)), but the distances
between them are computed in the 3D space to ensure the
blue noise properties of the final 3D sampling pattern (Fig-
ure 2(e)). Its geometrical features are also preserved because
the sampling is done on the feature lines first, and then on
the other parts of the POI region.

Description of our algorithm
Stereo matching

The stereo matching is a well-known technique to gather the
couples of pixels that correspond to a same point in the 3D space
through two cameras (see Figure 3). This set of pixels defines the
POI region, shown in green on Figure 3(c). In our algorithm, this
POI region allows us to generate a mask /, shown on Figure 3(d),
where the white pixels and the black pixels represent the pixels
belonging to the POI region, or not, respectively. This mask /
determines the surface that can be reconstructed in 3D space or,
in our case, sampled.

Pixel Classification

This classification allows us to detect the sharp features of
the acquired surface, in order to preserve them during its sam-
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(c) Detected feature lines.
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(e) Final 3D sampling pat-
tern (500 samples).

(d) 2D sampling pattern.

pling. As the sampling will be done on the stereoscopic images,
the idea is to classify the pixels in function of the curvature val-
ues of the corresponding 3D points. In function of its associated
curvature values, we check if a given pixel is considered as sharp
(belonging to a sharp feature on the surface), as a corner (belong-
ing to two sharp features) or as smooth (not belonging to a sharp
feature). Currently, the curvature values are calculated from the
3D normals in the 3D space with [5]. However, to operate on the
images directly, this technique could be replaced by the technique
of [15] that computes the 3D normals directly from stereoscopic
images.

For each pixel p(u,v) of the POI region, a tensor Ty (u,y) is com-
puted according to

u'=u+n v7v+n_> st

Tuw= Y Y NN )

w'=u—n vV'=v—n

N is the 3D normal associated to the neighbor pixel p’(u',v'),
and n depends on the size of the considered neighbor region
of p. Considering the three eigenvalues of this tensor sorted
by decreasing order of amplitude, 4; > A, > A3, the maximum
and minimum curvature values associated to each pixel are
given by the two smaller eigenvalues A, and A3, respectively.
A thresholding is then used to detect the high curvature areas:
if MJFM > 0.05 for a given pixel, its associated point belongs
to a hlgh curvature area. This stage is GPU-parallelized in our
algorithm.

At this step we only know if a pixel belongs to a high curva-
ture area: see the second row of Figure 4. We now have to detect
the sharp edges precisely. For this, we compute the skeleton (i.e.
the set of median lines) of the set of pixels belonging to the high
curvature areas, thanks to a parallelized technique based on [16].
Finally, a given pixel is classified in

(a) Left image. (b) Rightimage. (c) POI region.

(d) Mask 1.

Figure 3. Creation of the mask I, determining the POI region of a scanned
surface from the pair of stereoscopic images.
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Figure 4. Detection of the feature lines via our pixel classification. First
row: left stereoscopic images of three acquisitions called PIPE, Box and
WALL. Second row: detection of high curvature areas (in blue). Third row:
resulting classification after thinning. White, red and blue pixels represent,
respectively, the smooth regions, the sharp features, and the corners.

e corner if it is an intersection of several median lines;
e sharp if it lies on one median line;
e smooth otherwise.

The third row of Figure 4 depicts several results of classification
obtained with this method. We observe that globally our method
detects well the sharp features of the scanned surfaces.

3D position computation

This stage just computes the coordinates in R of the points
associated to the pair of pixels belonging to the POI region. It can
be done simply by triangulation [14], by using the position of the
pixels into the two stereoscopic images, and the parameters of the
projection function (3D — 2D) for the two cameras.

Sampling

As explained in Section Challenges and contributions, we
focus in this paper on the Poisson-disk sampling, also called blue
noise sampling. Poisson-disk sampling is a random process for
selecting a set of samples on a specific domain Q. Each point
must be located at a minimum distance d from any previous point
(see Figure 5). One popular technique for Poisson-disk sampling
is the Dart throwing (DT) [11]. Considering d = 2R the minimum
distance required between two samples, the DT consists in: i)
picking out randomly a sample s on the domain; ii) drawing a disk
of radius R around it; iii) verifying if this disk intersects another
disk. If no disk is intersected, the sample s is kept. Otherwise,
the sample is discarded (as the red disk in Figure 5). This process
is iterated until no more sample can be added on the domain, or
until a user-given number of samples is reached. If the radius of
the disks is constant, it is called a uniform sampling (Figure 5). If
the radius depends on a local function relative to the samples, the
curvature for instance, it is called an adaptive sampling (Figure 6).

Our method is inspired by the Dart Throwing for surfaces
proposed in [4]. This method is considered as a direct 3D sam-
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Figure 5.
shows a non-valid sample.

Uniform Poisson-disk sampling of a 2D domain. The red disk

Curvature
Figure 6. Adaptive Poisson-disk sampling of a 2D domain. The red disk
shows a non-valid sample.

pling method, because the sampling domain Q is the triangular
mesh associated to the surface sampled (no parameterization).
This method also takes into account the sharp features in order to
preserve them during sampling, and uses geodesics to guarantee
the output sampling quality. To preserve efficiently the sharp fea-
tures, this method puts samples on the pixels classified as corners,
then distributes samples among the pixels classified as sharp, and
finally distributes samples among the set of pixels classified as
smooth.

The method of [4] can be efficiently adapted to our setting:
the sampling domain Q becomes the POI region of the stereo-
scopic images, and the feature lines detected during the pixel
classification can likewise guide the distribution of 2D samples.
Nevertheless, even if the process is done in the 2D domain, we
still use the 3D coordinates associated to the pixels (computed in
a previous stage) to compute accurately the distances between
samples. Moreover, the radius associated to each sample must be
now computed in the image domain.

Therefore, to estimate as finely as possible the radius associ-
ated to a pixel in function of the number N of samples requested,
we first calculate the horizontal and vertical deviations, §; and §;
respectively, between samples when a uniform sampling pattern is
realized on an image. It generates a grid of samples of dimension
Ng, xN 5;- a8 depicted in Figure 7. N; and N; represent the number
of samples per row and per column, respectively (N; X N; = N).
As the sampling domain  is restricted to the POI region, the
distances §; and §; between samples along each dimension, are
shrunk by a factor #1501'5, with #POI the number of pixels of the
POI region.

A uniform sampling can be finally realized using the follow-
ing formulation for the radius.

R= %~max(5i,5j) S, @)

where S, is the spatial resolution of the scanner (0.3mm in our
case). To better preserve the geometrical features of the scanned
surface, we choose to make an adaptive sampling, with a radius
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Example of uniform sampling performed on one stereoscopic

depending on the curvature, according to the following equation:
1
R= g.max(5i73j).sr,(1+ecﬂz +eC.k3). 3)

Empirically, we put C = —8.0 for the sharp pixels, and C = —6.0
for the smooth pixels. In this formulation, the corner pixels keep
the minimum radius given by equation (2).

To determine the disk areas associated to the samples in
function of the radius R, we use Dijkstra’s algorithm [17] to com-
pute geodesic distances between 3D points, while using the con-
nectivity of the 2D sampling domain Q. Hence, a disk does not
depend on the Euclidean distance between two given 2D sam-
ples, but on the sum of the lengths of the 3D segments defined by
the shortest path in the POI region, as shown in Figure 8. This
approach leads to better sampling distributions, as shown in the
experimental results.

3D Geometry

2D Connectivity

Figure 8. Computation of a geodesic distance on the surface defined by
3D points, driven by the implicit connectivity of the image domain.

Experimental results
Visual results

We first present two sampling patterns obtained with our hy-
brid approach. Figures 9 and 10 show the results obtained on two
models PIPE and BoX. For each model, we can see the distri-
bution of 500 samples (b) and 1k samples (c) superposed on the
left images, and the resulting 3D sampling pattern on the acquired
surface: (e) and (f). We observe on PIPE that the samples are dis-
tributed all over the surface as all the pixels belong to the same
class smooth. Note that some regions are not sampled because
of the reflectance, which prevents the matching of the pixels in
these regions. Concerning BOX, we observe that many samples
have been distributed along the feature lines, which allows us to
preserve the geometrical features efficiently. We can also see the
interest of our method on Figure 2(e) (page 2), with the model
WALL: corners and sharp features are globally well preserved.
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Analysis of the sampling quality

We now evaluate the efficiency of our hybrid method, in
term of sampling quality. We compare the properties of the
sampling patterns generated with our hAybrid method, and with
the 3D direct sampling method of [4] that we consider as ground
truth. We also compare our method with a "naive" 2D method
that consists in distributing the samples on the stereoscopic
images without taking into account the 3D geometry (when
the distances between samples are computed). It will highlight
the interest of our hybrid method that takes into account the
3D geometry even though the sampling is performed in the 2D
domain.

To evaluate the spectral quality of sampling patterns, a power
spectrum is usually used. It represents the distribution of distances
between samples. From a power spectrum, two statistics are then
computed: the radially averaged power spectrum (RAPS) and the
anisotropy. The RAPS assesses the radial distribution of the dis-
tances between samples, whereas the anisotropy evaluates the ra-
dial uniformity of the sampling pattern.

An ideal blue noise or Poisson-disk distribution has a RAPS
similar to a step function: a zero-region at low frequencies and a
flat high-frequency region. Between them, a sharp transition at
the cut-off frequency, proving that a minimum distance between
samples is respected. The ideal anisotropy is constant and low
beyond the cut-off frequency, meaning that the sampling is
directionally independent.

Figures 11 and 12 show the RAPS and the anisotropy of the
samples distributed with the three methods on PIPE and WALL.
The RAPS and the anisotropy are computed with the tool of [4].
We observe that a 2D naive sampling leads to patterns with poor
blue noise properties. The RAPS is far from a step function (a
minimal distance is not respected), and the anistropy is not flat.

The sampling properties of the patterns generated with our
hybrid method are more satisfactory. Their RAPS are close to
the RAPS of the 3D method and respect a minimal distance ef-
ficiently. On the other hand, the RAPS of our method oscillate
after the cut-off frequency (contrary to the RAPS of the 3D direct
method). This is mainly due to the acquisition noise that biases
the 3D normals and the size of the disks, consequently. But the
RAPS remain satisfactory. Moreover, the anisotropy curves of our
method remain flat, as the 3D direct method. On the other hand,
their magnitudes are higher.

Despite the higher anisotropy, this analysis shows that our
hybrid method generates sampling distributions with nice blue
noise properties, close to the 3D direct method, while preserving
the sharp features as well.

Time complexity

In order to evaluate the time complexity of our method, the
runtime of the stages pixel classification and sampling for the
three approaches is given in Table 1 for the models PIPE and BOX.
The values are obtained by averaging the runtime of 8 tests for
each object, with an Intel Core i3 (2.30GHz, 4GB RAM), and a
graphic card NVIDIA GeForce 610M (900MHz, 2GB VRAM).
We observe that the classification of our approach is as fast as the
2D approach (same technique, [5]), but also faster than the 3D
approach.
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(a) Left image. (b) Distribution of 500 samples on the left image. (c) Distribution of 1k samples on the left image.

(d) POI region. (e) Resulting 3D sampling pattern (500 samples). (f) Resulting 3D sampling pattern (1k samples).
Figure 9. Distribution obtained with our hybrid method on PIPE.

(a) Left image. (b) Distribution of 500 samples on the left image. (c) Distribution of 1k samples on the left image.

(d) POI region. (e) Resulting 3D sampling pattern (500 samples). (f) Resulting 3D sampling pattern (1k samples).

Figure 10. Distribution obtained with our hybrid method on BOX.
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Figure 11.
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(a) RAPS for 500 samples.

(b) Anisotropy for 500 samples.

(c) RAPS for 1k samples.
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(a) RAPS for 500 samples.

(b) Anisotropy for 500 samples.

(c) RAPS for 1k samples.

(d) Anisotropy for 1k samples.

Quality of the sampling distribution generated with a naive 2D method (blue), with our hybrid method (red), and with the 3D direct method of [4] for
PIPE. RAPS and anisotropy (in dB) are given for two densities: 500 and 1k samples.

Figure 12. Quality of the sampling distribution generated with a naive 2D method (blue), with our hybrid method (red), and with the 3D direct method of [4] for
WALL. RAPS and anisotropy (in dB) are given for two densities: 500 and 1k samples.
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Concerning the sampling, the runtime of our method is lower
than the 3D method for the densities of 500 and 1k samples, but
not for a higher density (5k). Nevertheless, when we consider the
global pipeline (from the acquisition to the sampling pattern), our
method is less complex than the 3D method as we do not have to
create the full point cloud and to triangulate it before applying the
3D method that needs a mesh as input.

Table 1: Running time (in seconds) for performing classifica-
tion and sampling with different methods.

Model | Density | Method | Classification | Sampling
Naive 2D 0.4496 0.53
500 Hybrid 0.4177 2.309
Direct 3D 0.748 3.931
Naive 2D 0.4336 0.577
PIPE 1k Hybrid 0.4174 3.869
Direct 3D 0.733 6.146
Naive 2D 0.4028 0.967
5k Hybrid 0,4334 19.610
Direct 3D 0.7334 8,143
Naive 2D 0.7221 0.966
500 Hybrid 0.7393 4.415
Direct 3D 0.905 5.428
Naive 2D 0.6909 1.046
Box 1k Hybrid 0.7379 7.722
Direct 3D 0.920 7.270
Naive 2D 0.7233 1.825
5k Hybrid 0.7380 35.864
Direct 3D 0.905 12.231
Conclusion

We presented in this paper a novel approach to sample sur-
faces acquired with stereoscopic systems. The novelty is to sam-
ple the surfaces directly from the stereoscopic images, instead
of making it on the reconstructed surfaces at the output of the
acquisition systems. To the best of our knowledge, no prior
work proposes such an approach, despite the advantage of con-
trolling the number of sampling points at the beginning of the
sampling/reconstruction process, to avoid oversampled data at the
end. We developed a hybrid method: the sampling is performed
in a 2D domain (as parameterization-based techniques) whereas
geodesic distances between samples are computed in 3D space.
Experimental results prove that our hybrid scheme produces sam-
pling patterns with blue noise properties, comparable to those
generated by 3D direct methods, and that the sharp features are
well preserved. Moreover, when considering the whole pipeline
from stereoscopic images to the final distributions, our method
is simple, and faster than 3D direct methods that take as input a
surface mesh, generated by triangulation of the point cloud, itself
given by acquisition systems.
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