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Abstract. Models that researchers often use for the dehazing
task are based on the Koschmieder law. In this article, we use
the STRESS (Spatio-Temporal Retinex-inspired Envelope with
Stochastic Sampling) model for the dehazing task. In our work, we
demonstrate theoretically and empirically how the parameters in
the STRESS framework can be set for dehazing. We then propose
a new algorithm for haze removal, based on the model of the
(STRESS) framework, which combines edge detection and Hidden
Markov Model (HMM) to solve the problem. Experiments show that
our approach yields more visibility—based on some metrics and
psychophysical tests—than most of the state-of-the-art approaches.
c© 2016 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.1.010409]

INTRODUCTION
Outdoor applications of visual media such as broadcasting
winter sport events, video surveillance, and driver assistance
systems1 are frequently shot in adverse weather conditions
in the presence of atmospheric particles2 which cause fog
or haze. On the other hand, fog or haze is very useful in
the artistic domain3–5 through simulation or painting for
instance. In the Renaissance, the painter Leonardo da Vinci,
in his book Treatise on Painting, employed for the first time,
the term aerial perspective—also known as atmospheric
perspective. Narasimhan and Nayar,6 define this painting
technique in the following terms: Colors become weaker in
proportion to their distance from the person who is looking
at them. Here, in this work, we propose an algorithm which
will allow us to get more visibility for an image taken in hazy
or foggy conditions. Phenomena such as haze, fog, dust, mist,
and cloud are technically classified as aerosol, a colloid of fine
solid particles or liquid droplets in air or another gas which
can be natural or not.7 Fog and forest mist, for instance,
are classified as natural phenomena whereas haze, dust, or
smoke are classified as artificial ones. These phenomena
differ mainly in the types and the sizes of the particles
involved and their concentration in space.2 According to
Ref. 9, a theory that explains haze or fog phenomena well, the
Mie scattering theory or the Lorenz–Mie theory,10 derived
from the Maxwell’s equation. The Mie scattering model, by
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allowing an explanation of the white color of cloud, differs
from the Rayleigh theory which allows the explanation of
the blue color of the sky. McCartney8 explains that the
Rayleigh scattering model breaks down when particle size
becomes larger than around 10% of the wavelength of the
incident radiation. At that point, the Mie scattering model
approximates the phenomenon better.9 Due to the high
number of parameters to be considered, Simonot and his
colleagues11 divide the main scattering model roughly into
two main categories: (1) single scattering and (2) multiple
scattering. Single scattering refers to a particle which scatters
the light once.

In this article, we propose to use the STRESS frame-
work13—we show in a previous article54 that STRESS,
considered as an image enhancement algorithm, could be
seen as a good heuristics for the dehazing task.

In the next section, wewill present some relevant articles
related to our procedure, followed by the theoretical part and
the method that we propose. The section Experiment and
Resultswill describe our experiment setup and finally, we will
conclude and give an idea of what could be the future work.

STATE OF THE ART
Dehazing algorithms are often divided into twomain groups.
The first group could be those algorithms which based
their analysis more on an image processing approach than
a physics one and the second group could be the ones which
worked directly with the physical model. That is precisely the
reason why we can now argue that there exist three major
types of dehazing algorithms:

• The first group belongs to the image enhancement
group algorithms, where dehazing is done by using
image enhancement techniques such as histogram
equalization, homomorphic filter, wavelet transform,
Retinex algorithms, ACE,12 STRESS,13 luminance, and
contrast enhancement.
• The second group of algorithms for dehazing purpose

takes mainly into account a degradation model to
remove haze from hazy images. Most of the algorithms
in this group, considered as a state of the art for
dehazing, used this approach due to the fact that
they take into consideration the haze physical model
to restore the haze-free image. There are two main
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approaches used for this second method of dehazing.
The first approach is the stereo or the multi-views
approach where the depth of the haze or other types of
data are estimated by using two or more images.2,6,15
The other one uses a single image.
• The third group is the one which uses a combination of
both the first group and the second group. The work of
Refs. 14, 16 illustrates perfectly this algorithm process.

In this part, we will begin our reviewwith the first group,
followed by the third group, and the second group will be
presented at the end.

From the first group, people are often using histogram
equalization and other image enhancement algorithms such
as Retinex and ACE. Most of the time, these algorithms
are combined with insight from the second category. One
main characteristic of the first group is that they are
physiological/heuristical basis and often point operator or
point process; some of them can use neighborhood operator
as well. For those which are based on point process, some
information or statistics can be collected globally and for
others, local information is taken into account as for the case
of Land/McCann’s Retinex algorithm.

For the third type, some authors17 proposed to use
mainly an image enhancement based approach, by combin-
ing an adaptive Single Scale Retinex (SSR) with the Dark
Channel Prior (DCP), developed byRef. 18. The idea consists
of the establishment of a relationship between the depth
and the Retinex scale factor: a small scale gauss filter is
well suited for far objects whereas for near objects, we have
the inverse procedure.19 To take their decision, they have
estimated beforehand the transmission in the same way as
in Ref. 18. The second algorithm related to the third group is
developed in Ref. 16. Here also the Retinex is used. Authors
in Ref. 19 designed an algorithmwhere the physical model of
haze is mixed with a Retinex and an adaptive filter approach.
The algorithm works in three steps. The first one consists
of the estimation of the airlight by selecting, as in Ref. 18,
the 0.1% of brightest pixels in the dark channel. The second
employs a Retinex method to extract the antibrightness
image of HIS (Hue–Saturation–Intensity) color space. The
third step involves the estimation of the transmission thanks
to the computation of the antibrightness. After all this, the
recovered scene is estimated. In Ref. 14 the authors used the
YCbCr—Y for luminance and two chrominance components
Cb and Cr , representing the blue- and red-difference chroma
components, respectively—instead of HIS as previously.
In this work, the authors assessed the transmission by
using a multiscale Retinex, and the airlight, by following
a procedure as defined in Ref. 18. The last algorithm of
the third group that we present, is the work of Galdran
and colleagues, as described in Ref. 20. In this algorithm
based on ACE, the airlight and the transmission are loosely
estimated, respectively by taking the maximum intensity for
each channel—almost the same procedure is adopted in
Ref. 18—and by 1/2. The dehazing task is then switched into
an optimization problem and the haze-free image is restored.

For the remainder of this section, some of the second
type of algorithms will be presented. In the work of Fattal,
as we can see in Ref. 21, the assumption is that the
shading and the transmission function are locally statistically
incorrelated. The dehazing issue is solved by estimating
mainly the transmission twice and by finding a good
approximation of this parameter in iterative fashion. The
airlight is roughly estimated first and refined later, and finally,
the haze-free solution is deduced from these computations.

In his work in Ref. 23, Tan made two assumptions to
master the haze physicalmodel: the haze-free image hasmore
contrast than the hazy image and the airlight tends to be
smooth. From this perspective, the airlight parameter is the
main parameter estimated. The others are then deduced from
that point. Reference 18 introduces the Dark Channel Prior
(DCP or DC) concept. The prior is stated as follows: In most
of the non-sky patches considering a haze-free image, at least
one color channel has some pixels whose intensities are very
low and close to zero. From this definition, the transmission
and the airlight are estimated. Finally, the haze-free image
is computed. The work in Ref. 24, is built on a series
of assumptions making authors infer the atmospheric veil
and have a first restoration. They then refined the solution
by applying corner smoothing and tone mapping. In his
articles,25–27 Gibson and his co-authors use the (DCP) that
they customized, by slightly adding new hypothesis. Finally
in Ref. 28, the main authors of previous articles use a locally
adaptive Wiener filter to speed up the fog removal process.

Other interesting works, about dehazing using a physical
model, are within Refs. 2, 34–37. In the next section, we will
present the STRESS framework and show how we could use
it for the dehazing task.

MODEL ANALYSIS ANDMODEL DEVELOPMENT
In this section, we will present the STRESS framework. We
will see that the introduction in the STRESS framework
of the concept of minimum envelope will allow us to
solve the problem on near objects of the scene. Later on,
we will combine this characteristic, in addition to Hidden
Markov Model (HMM) and edge detection to solve a more
general problem. There are two variants of Koschmieder haze
physical law used in the literature. The first is as follows:

I(x)= J (x)t(x)+ (1− t(x))A(x), (1)

where I is the observed image, J is the scene radiance, A the
global atmospheric light, and t the medium transmission.
Here too, there aremany approaches to solve this hazemodel.
The goal here is to remove the fog by estimating, J , A, and t .
This first expression can be found in Refs. 18, 21.

The second widely used formula or its variant is
presented in Ref. 6 and a variant in Refs. 23 or 24:

E = I∞ρe−βd + (1− e−βd)I∞, (2)

where I∞ represents the sky intensity and the term e−βd
represents the transmission with β being the scattering
coefficient of the atmosphere; it represents the ability of a unit
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(a) (b) (c)

Figure 1. From left to right Original image (a), result with DCP in middle (b) and STRESS with parameter ni = 150 and ns = 5 (c). Image taken in
Gjøvik—Lake Mjøsa—at the beginning of the winter 2014–2015. As we can see, the fog on near objects is well removed, far objects still have fog and
we do not obtain any saturation effect with (c), that we have in the case of (b).

volume of atmosphere to scatter light in all directions and d ,
the depth of the scene point from the observer.

STRESS
The STRESS framework13—Spatio-temporal Retinex-
inspired Envelope with Stochastic Sampling—has many
applications.13,37,38 In this part, we will deal with
constructing the enhancement of a hazy image and by
doing this, we are going to elaborate on the stretching part
of the framework. The STRESS algorithm is derived from
two previous works.39,40 As in Ref. 39, the envelope concept
is used but instead of using just the maximum envelope, the
authors also designed the minimum envelope. As we will see
in the following lines, the minimum envelope approximates
the haze physical model well for some scenarios. From
Ref. 40, the random spray technique is mimicked. The spray
is a circular patch centered at the current pixel p0, in which
the samples pi (6= p0) are taken in order to reconstruct
the initial signal. For a given iteration, all the samples are
different from each other. The framework uses a locality and
globality principle. Let us take a look at the formal definition
of the two envelopes Emin and Emax:

smax
i = max

j∈{0...M}
pj; smin

i = min
j∈{0...M}

pj

ri = smax
i − smin

i ; vi =

1/2 if ri = 0,

(p0− smin
i )/ri else

r̄ =
1
N

N∑
i=1

ri; v̄ =
1
N

N∑
i=1

vi

Emin
= p0− v̄ r̄; Emax

= p0+ (1− v̄)r̄ = Emin
+ r̄

(3)
where,

• pj is a pixel taken in the spray and different from p0 (the
current pixel) with j being the current sample;
• i the current iteration and N (or ni) the total number of
Iterations;
• M (or ns) the number of samples for a given iteration i;
• vi the relative value of the center and the averaging
ranges ri;

• Emin (resp. Emax) the minimum envelope (resp. the
maximum envelope).

NewModel
The first experiment that we did on this project is related
to the comparison between some spatial color algorithms as
in Refs. 41, 42 and some of state-of-the-art algorithms.18,24
More than 200 images were processed. This first experiment
visually shows that STRESS removes the haze at least for
near objects and ACE12,42—as well as STRESS—gives a
nonsaturated effect on dense haze. An example is given in
Figure 1. The other point is that some dehazing articles have
already used ACE, but not STRESS.

Now the question is: If STRESS is able to remove
fog on near objects or from a dense fog without getting
saturation effects in the sky as in the case of DCP, perhaps
we could use it to dehaze any kind of haze. So the
question which comes to our mind reads: if STRESS can
remove fog from any kind of fog then surely it can remove
fog from a homogeneous haze—even if in real world,
a homogeneous haze is extremely rare; we are making
this hypothesis for abstraction manipulation and because
STRESS processes each pixel the same way. We choose 10
natural images—images which do not contain haze—on the
internet and apply a thin layer on them with a different
density to simulate the (dense) homogeneous haze on them.
The experiment shows that the haze is well removed, as you
can see in Figure 2. The idea originates from these previous
experiments which show that there might be a link between
the STRESS model and the haze physical model. To check
this hypothesis, we will check the STRESS output with the
envelope values, which is expressed by:

PSTRESS =
P0−Emin

Emax−Emin . (4)

In the work23 as shown in Eq. (2), the haze model is a
bit different from Eq. (1). According to the formula in Eq. (2)
above and by changing some variables, we can rewrite the
model as follows:

I(x)= J (x)t1(x)+ (1− t2(x))A(x). (5)
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(a) (b) (c)

Figure 2. The original image (right), the synthesized homogeneous fog (middle), the haze-free using STRESS with ni = 100 and ns = 15 (right). For this
experiment, with homogeneous fog, we noticed that by taking more samples, the output of STRESS more closely resembles the original image. Original
taken from www.theguardian.com

Observation 1. The minimum envelope Emin in the STRESS
framework is a solution of the haze physical model defined in
Eq. (5).

The multiplicative factor t on the right-hand side in
Eq. (1) is replaced in the above formula by t1 and t2. So now
let us consider themodel expressed by Eq. (5). By considering
the two definitions of the envelopes Emin and Emax, we can
write:

p0 = Emax
− (1− v̄)r̄ (6)

p0 = Emin
+ r̄ − (1− v̄)r̄

p0 = Emin
+ [1− (1− v̄)]r̄ . (7)

FromEq. (7), we can find w̄ ∈ [0, 1] such that w̄ = 1− v̄.
Since we know that v̄ or r̄ are elements of [0, 1] from Ref. 48,
we can then write Eq. (7) as the following:

p0 = Emin
+ (1− w̄)r̄ . (8)

Let us pose now w̄1 = 1 and w̄2 = w̄. So the above
relationship can then be written:

p0 = Eminw̄1+ (1− w̄2)r̄ . (9)

In our case, Emin concords with the radiance J and p0 to
the input pixel value. We can therefore see the link between
Eq. (9) above and Eq. (5). Also from Ref. 18, it is said that the
transmission t ≈ 0 for a distant object. And from Ref. 22, we
know that a good estimation of the transmission parameter
should be such that t ∈ [0, 1], which obviously is the case for
our two pseudo-transmissions w̄1 and w̄2 here. At the same
time, we can notice that the first transmission term w̄1 does
not take into account the distant object since its value is fixed
at 1. The second transmission term w̄2 may take into account
the distant object. In fact, it represents the complementary of
v̄ in the interval [0, 1].

From this relationship, it is worth mentioning that
the minimum envelope Emin is compatible with the DCP
since this quantity can be assimilated to the local reference
darkness points in each chromatic channel.13

Model Development
Model Validation
If we approximate pSTRESS in Eq. (8) by Emin, then pSTRESS
is also solving the same model. Since we know that

pSTRESS ∈ [0, 1], by normalizing its final expression in Eq. (9),
we come back again on the initial definition of pSTRESS in
Eq. (4).

This validation should also take into account measure-
ment from real world to check out how close our model is
to the haze model for certain scenarios. For the purpose of
simplicity, in this article, we are not going to measure the
accuracy between the model behind STRESS and the haze
physical model. In fact, from Observation 1 and what we
develop below, one can say that the relationship in Eq. (8)
has nothing to do with the haze model, since t1 = 1 and
t2 ∈ [0, 1]. Therefore, it is good to underline in this case
the fact that the STRESS model is compatible with the haze
physicalmodel, but not equivalent to it. From the observation
above, it is still hard to saywhat has influence on the dehazing
process: is it the minimum envelope Emin or the relation that
we found between the two models? or perhaps both? That is
the main reason why we could not say that STRESS is part
of the second group: the accuracy of the model needs to be
computed before.
Remark 1. In the following, a given variable v will be said
low, when there exists ε0 ∈ [ 0, 1/2 ] such that v < ε0. A given
variable v will be said high, if there exists ε1 ∈ [(1/2), 1 ] such
that v > ε1. Also, we will implicitly or explicitly admit the
validity of the DCP for near objects and far objects.

Observation 2. If p0∈ [ 0, (1/2) ] then pSTRESS solves the
physical model defined in Observation 1.

From Ref. 13, we know that p0 = Emax at the global
maximum and p0 = Emin at the global minimum. So
Emax

∈ [0, 1] and Emin
∈ [0, 1] since p0 is normalized in

[0, 1]. If p0 is low then pSTRESS will behave as Emin since
pSTRESS is a stretching of p0 between Emin and Emax.

Another parameter which plays a great role in
the removing of the fog especially for near objects in
this section is the radius parameter R fixed such that
R = max(imagewidth, imageheight) = max(w, h). This kind
of sampling with R = max(w, h) can be compared to the
randomized global sampling method described in Ref. 43 in
some way.

Let us see now the impact that this parameter has on the
dehazing task. We know from Ref. 13 that the parameter v̄
represents the average of vi as you can see on the third line of
Eq. (4).
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Figure 3. C1 and C2 are two circles respectively with R = max (w , h)
and R =

√
w2+ h2 centered at p0, the left top pixel.

Observation 3. Setting the radius parameter R in the STRESS
framework for the dehazing task, such that R = max (w, h)
allows to remove fog from near objects at least.

Thanks to Observation 1, we just need to show here that
the transmission w̄2 is high. Since R=max (w, h), almost all
the pixel except p0 are candidate for the sampling step.

The case where roughly all vi = (1/2) is not very
interesting, because we know that means objects in the
middle of our image will be dehazed according to what we
said previously and also the radius R for that particular case
has no direct effect on w̄2. Now we turn to the other case.
Since we know R=max (w, h), we can say that smax

i and smin
i

represent well enough the max sample and the min sample,
which means that ri = smax

i − smin
i should be high (it is not

always the case, but often the case). Since we know also that
vi = (p0− smin

i )/ri, then vi should be less than 1/2 in that
case if p0 is a near pixel. w̄2 being the complementary of vi
in the interval [0, 1], it follows that w̄2 should be high. Also,
w̄2 concords with the transmission and we know that the
transmission is inversely proportional to the depth map. The
first transmission w̄1 = 1 takes already into consideration
near objects as we said previously. From this point of view,
we can see that with this configuration near objects are
well taken into account by the STRESS framework for the
dehazing task. (We can also use Observation 2 to show the
idea behind the observation: the pixel intensity of near object
are roughly very low. The DCP is also another argument.)

Observation 4. The optimal setting of R, which
allows to take into account near objects is such that
R=

√
image2

width+ image2
height =

√
w2+ h2.

Let us consider the following grid (Figure 3) as possible
shape (rectangle or square in any case) of our image.

Let p0 be the left top pixel,C1 represent a circle of radius,
R1 =max (w, h), and C2 a circle of radius, R2 =

√
w2+ h2.

With the configuration R = R2, all the pixels of the image
except p0 (the pixel in processing) are candidates for the
sampling step in STRESS algorithm. Taking R> R2 will not
increase the number of candidate samples and also taking
R< R2 will not necessarily consider all the pixels except p0,

Figure 4. The two circles have a radius r chosen such that
R/10≤ R = r ≤ R/2 where R =

√
w2+ h2 or R =max (w , h).

since R2 represents the diagonal of the rectangle image or of
the square image.

So, now let us assume that R = R2. It is also obvious
that the more pixel we consider for the sampling, more the
difference ri = smax

i − smin
i will be large. And that means,

we are making an accurate approximation of the global
airlight. And since we are considering near objects, p0 and
vi = (p0− smin

i )/ri will be less than 1/2. It follows that w̄2
should be high since w̄2 is the complementary of v̄ on [0, 1],
and the near object well dehazed.

From Observation 4, increasing the radius more than
R=
√
w2+ h2 will not improve what we already get for near

or far objects, so now let us consider how to reduce the radius.
For nonhomogeneous haze, we notice that non-sky

far objects are not accurately taken into consideration
by the STRESS framework for the configuration where
R=
√
w2+ h2 or R=max (w, h).

At first sight, we can guess that by taking a small radius,
it is possible to approximate the removing of fog on distant
objects accurately. One hypothesis here is that the haze is not
dense and we will make an experiment on a heterogeneous
one to see whether or not this setting could influence the
distant objects.

Empirically we also observe that for non-sky distant
objects, the pixel is also high with some variations due
to the Dark Channel Prior. When there is no sky it is
also quite difficult to make a difference between a non-sky
distant object and a sky region for the pixel situated on
the top of the image. Later on, we will come back to
this particular observation. Let r be the radius such that
(1/10)max (w, h)≤ R= r ≤ (1/2)max (w, h).

Observation 5. Reducing the radius R = r such that
(1/10)max (w, h) ≤ R = r ≤ (1/2)max (w, h) will allow
to remove fog from distant objects in nondense heterogeneous
haze.

Let us consider Figure 4 for the idea behind this
observation.

If we take the radius r small instead of taking R =
max (w, h), we can see that the distant object of the scene
will be well processed. In fact, the difference ri = smax

i − smin
i

is not going to be very large and will roughly be less
than 1/2 since we are considering a small spray and far
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Figure 5. General overview of how we model the outdoor hazy image.
The root represents the hazy image.We begin at a given leaf and back up
to the root. The nodes between a leaf and the root represent an attribute(s)
which will allow to refine and determine the real nature of the leaf namely:
the sky (or region with the same behavior like snow region), far objects,
and near objects. On the last node before the root, we apply a given
scale according to the nature of the leaf. An implementation of this tree
is showed in Figure 6; coarse and fine stand for coarse scale and fine
scale, respectively.

objects. (A far object has a pixel intensity often high and by
considering the dark channel for these regions, the difference
for neighborhood pixel is not huge.) Also, locally the airlight
will be well approximated. The nondensity of haze will allow
us to satisfy not only the presence of a background but also
the validity of the Dark Channel Prior in some way—The
DCP is not directly applied to the output image here but we
can easily see that the DCP prior is not anymore valid when
the haze is dense. The saturation that we get with dense haze,
by using Ref. 18 is already an empirical validation. The other
point is that the saturation effect tend to be stronger with a
small patch (small spray in our case for sky region).

Since ri is not large, at least the term 1/ri in the product
(p0 − smin

i ) ∗ 1/ri, will be high and making vi a bit high. If
also p0 − smin

i is large then vi is also high. It follows that w̄2
is low and the haze on distant object well removed. (We can
also used Observation 2: since the radius is reduced, all p0
closed to Emin are good candidates for the dehazing process.)

Empirically, we noticed also that near objects are not
really taken into account by small radius, but far objects have
a good processing for this configuration. Typically, for near
objects, we can easily see that the configuration in which
we reduced the radius such that R≤ (1/2)max (w, h) is not
going to improve the visibility of these objects in agreement
with what we show in Observations 3 and 4. Depending
on how the radius is set, we will work either on globality
or locality of the contrast enhancement. Now the idea is to
combine different radii in such a way that allows to dehaze
far and near objects. Subsequently, we will show how this
combination can be done theoretically.

We can also notice that the sky will use a prior derived
from Ref. 17. The reason is that the General Dark Channel
Prior (GDCP)—see Ref. 57 for more details—could not be
valid in the sky, even for blue-sky, we observed that the DCP
can be valid. By taking a kind of contrapositive of the DCP,
we will have the following statement.

Figure 6. An implementation of Figure 5. We begin by checking the
presence or the absence of the sky region, followed by far or near objects.
On the right branch, we also check at the node No edge the width and
the height of the region.

Remark 2. Every color channel in haze-free image has pixel
with high intensity and close to 255, if we consider an image
with 8 bit per channel for sky region.

PROPOSED APPROACH
The key idea behind our approach here is inspired from
Ref. 44, where it is said concerning HMM that, many
complex images, scenes, and phenomena can be modeled
as combinations of simple pieces. The other articles which
also justify our method are the work of Refs. 45 and 46
for instance, where authors show that it is possible to
estimate a random field with a multiscale approach. Even
their approaches are different from what we are presenting
here, there is some significant similitude. Our work can be
compared to the works of Refs. 29, 30 as well. Our work uses
other ideas from the literature of course. The image will be
modeled as a graph, where each node will represent a given
state or attribute.

From what we develop above, we can see that STRESS is
solving already the homogeneous (i.e. uniform or stationary)
haze case (dense or not). The homogeneous case can be
viewed as a single Markov field since we assume there is a
single uniform layer that we have to find out. Now, about the
heterogeneous case. For the heterogeneous haze, we will also
have two cases: one is dense and the other nondense. Here
we will focus mainly on developing a model for nondense
haze. In fact for the dense case, it is not possible to get
more visibility with far objects, simply because the data is
not present and for that particular heterogeneous case, the
result given by the single scale STRESS is already, one of a
pleasing one. Also for that particular case, the dense part
will be considered as a sky region and we will process it in
the same way that we process the sky. This point will be
trivial afterward. Depending on how dense the haze is, we
might need to increase the number of samples of STRESS
framework parameter, in order to remove noise. The other
question is how to guess the number of samples necessary
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to remove the noise of a given dense haze. The answer to this
question will depend on the way we choose to implement our
case. In our case, wewill consider just a few samples (less than
6).

We can now imagine a model where we can see
the heterogeneous nondense haze as a superposition of
homogeneous haze layer with different density (without
being abrupt). It is worth noticing that both the visible
pattern and the hidden pattern actually represent two
different layers; the goal being to remove these hazy layers
to get the dehazed hidden layers. The challenge will then
be to guess which radius value corresponds well to the
removing of a haze for a given pixel. We can, for instance,
define a cost function which can allow us to choose
the best approximation among a finite set of possible
approximations. Let us assume that the coarsest scale is
given by R = max (w, h) or R =

√
w2+ h2 and the finest

one by R= (1/10)max (w, h) or R= (1/10)
√
w2+ h2. Let

p0̂,R be the approximation of p0 given by R and p0̂,r be the
approximation of p0 given by r , so we can write:

p0̂,R = PSTRESS,R ¯w1R + (1− ¯w2R)r̄R (10)
· · · = · · ·

p0̂,r = PSTRESS,r w̄1r + (1− w̄2r )r̄r . (11)

From the continuity criterion that a well-posed problem
should satisfy, the optimization problem match with the
following relationship:

|J − PSTRESS|<σ ⇒|p0− p0̂|< ε. (12)

p0̂,s represents a given scale s of the STRESS framework
and p0̂ corresponds to the approximation of p0 at the same
scale s. Since we are dealing with a multiscale approach, the
parameter J we are looking for can be obtained as follows:

J = argmax(PSTRESS,R, . . . , PSTRESS,r ). (13)

The problem we want to solve here is a nonstationary
problem. The idea is to carry out some piecewise cut of the
image in a such a way that each piece could represent a
stationary problem. In order word, we are going to solve the
problem by combining STRESS with Hidden Markov Model
(HMM) and solve the dehazing issue. Formally speaking,
the idea consists of using the Bayes rule in order to check
the probability of our hypothesis according to the observed
samples and by stating the following equation:

p(H |O)=
p(O |H) · p(H)

p(O)
, (14)

where H stands for the hypothesis (the final dehazed layer)
and O for the observation (the hazy input image). p(H | O)
is called the posterior probability or the probability of H
givenO, that is the probability of havingH after observingO.
p(O | H) is the likelihood and represents the probability of
observing O givenH . p(H) is the prior probability or simply
the prior and represents the probability of the hypothesis H
before O is observed. p(O) is the marginal likelihood. This

factor is the same for all possible hypotheses and can be
considered necessary only for normalization purposes. So
Eq. (14) can be also written:

p(H |O)= p(O |H) · p(H). (15)

Let us assume l being a set of hidden haze-free layers,
li is a given haze-free layer (corresponding to a visible layer)
in the image and let us say here that the number of layers
in the foggy image is |l| such that 1≤ i≤N and N ≥ 1. For
the problem we are discussing here, if we call I the observed
foggy image then we can express the posterior probability as
the following:

p(l1, . . . , lN | I)∝ p(I | l1, ) . . . p(I | lN ) · p([l1 · · · lN ]) (16)

or we can also write the following equivalent form:

p(l | I)∝
∏

1≤i≤|l|
p(I | li)p(l), (17)

where l = [l1, . . . , lN ] is a vector. In the literature to solve
Eq. (17), since we have a multiplicative factor, it is better to
use the logarithm function. In that case, the equation can be
written down as follows:

−log(p(l1, . . . , lN | I))=−log

 ∏
1≤i≤N

p(I | li)p(l)

. (18)
If we adopt the same notation as in Ref. 47 by separating

respectively in the likelihood term and the prior term, we can
then write the above relation as the following:

−log(p(l | I))=3(l)+5(l). (19)

The goal of this approach is to choose the posteriori,
which represents well what we are looking for (get a good
dehazed version of the hazy image). That is:

l̂ ∝ argmax p(l1, . . . , lN | I) (20)
∝ argmax pmulti_scale_STRESS. (21)

l̂ is called the maximum of the posterior probability
density function a.k.a theMaximumAPosteriori (MAP) and
stands for the best nonfoggy layer we are looking for. As for
the way we are designing our model, it is possible to see
l̂ as one of the best layer corresponding to a given visible
layer (i.e. l̂i more specifically) or as the best final layer of
the entire image resulting from the combination of each best
layer. So here we will take the last description as how we will
consider the formula Eq. (20). To solve Eq. (20), since we
have an ill-posed problem, in the literature, we have often
got to use some optimization algorithms like graph-cut or a
Laplacian regularization. In our case, the good news is that
with STRESS we can already find a good approximation of
the layers we are looking for as we show above in the previous
development: For near objects (near objects, sky region, and
regions which have the same behavior with the sky like large
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snow area. We will notice this in the following lines.), the
radius is R and for far objects the radius is r .

So now the problem can be summarized as the following:
For a given pixel in the input which single scale STRESS
represents the best layer for the dehazing task? For simplicity
purpose, we will solve the problem using a two scale. The
choice of the two scale can be justified by what we observed
empirically and the cost of the final solution. And there is still
a link between the STRESSmodel and the two-scale STRESS.
In fact, one can see that the two-scale STRESS can be viewed
as two envelopes, one representing upper-bound envelope
Emax
two-scale-STRESS and the other, the lower-bound envelope

Emin
two-scale-STRESS. Since the output pixel of the two-scale

STRESS is a potential solution of our problem, how are we
going to remember which one is the best? The formulation
of the DCP will help us to do it in some way. In this work we
do not use the DCP directly but our procedure seems to be
near to that idea. It is also good to remember that STRESS
does not consider patches in the rectangular way but in
the circular fashion. So the theoretical transition probability
corresponding to the coarsest prior to the finest one—the
coarse-to-fine transition probabilities 48—is as the following:

p(lk+1 | lk . . . l0)= p(lk+1 | lk), (22)

where (k + 1) ∈ {0, 1} and k ∈ {0, 1} (equivalently, we
can write (k + 1) ≡ 0mod 2 or (k + 1) ≡ 1mod 2 and
k ≡ 0mod 2 or k ≡ 1mod 2) since we are considering just
two scale. So from the definition of the prior in Eq. (22) the J
parameter we are hunting can be assessedwhen the following
formula holds for near and far objects:

argmax(|p0− p ˆ0,R|,|p0− p ˆ0,r |)∼min(PSTRESS,R, PSTRESS,r ).
(23)

Our idea for applying this transition is of course by
choosing the minimum pixel value (the dark channel) for
each channel between the results given by the two scale. One
drawback by choosing the dark channel and just two scale
(instead of multiscale) can be the smoothness issue of the
final output and also the scales can be mixed. Theoretically,
for far objects, we know that the output pixel intensity with
the radius r should be lower than the output pixel intensity
value with the radius R and we have the inverse scenario
with near objects. However, even if in practice, the previous
assertions are true for a majority of cases, it may happen
that they are false for some pixels. And for those cases,
by choosing the minimum pixel intensity value, the scales
output are going to be mixed since we have 3 channels (total
order versus partial order problem49). On the other hand, the
advantage of this modeling is simplicity.

There are many ways in the literature to detect the
sky as the one in Ref. 55; other segmentation approaches
such as graph-cut, Gibbs model, annealing, Local Binary
Pattern (LBP) can be used too. In our case, due to simplicity
purposes, we choose an edge detection approach that we
combine with the HMM idea.

The main idea behind the edge detection strategy (for
this first implementation) is that we notice in most cases in
hazy images and their corresponding haze-free images that
the sky a priori does not contain any edge since we do not
have cloud often in hazy images. And even if it is possible
to find clouds on a hazy image, they are very rare and their
proportions are not significant.

The second reason is that, the sky is on the top
region in the image, which means that the first edge which
can be found will belong to far objects in the case of a
nonhomogeneous haze and to near objects in the case of a
homogeneous haze.

The third reason why we choose the edge detection at
this stage can be assigned to the fact that in the image in
which we do not have the sky, we do have a high intensity
value for the pixel which is in the top lines of the image.
In that case, if we just consider a labeling with high pixel
intensity value for segmentation, we can easily make a false
detection—false positives—of the sky region. We are not
saying that our strategy is unquestionable but we will show
later in the experiment part that this approach is robust
at least for all images that we tested from state-of-the-art
dehazing articles and from our database.

Another strong reason is the fact that we want to check
quickly the hypothesis that we couldmake one the sky region
and still have an output which looks natural.

The decision of finding a potential sky region is based
on the fact that we do not have any edge on the top
of the image, the pixel intensity is also greater than 60.
Furthermore, the area which has these two attributes (no
edge and intensity >60) should represent at least 5% of the
total height of the image and 50% of the total width. We will
call this approach the trip concept.57

EXPERIMENT AND RESULTS
The experiment setup is almost the same as in Ref. 54,
except the fact that we design here our own algorithm for
dehazing based on the STRESS and we also consider here a
psychophysical experiment. In our experiment, we consider
three types of images. Images taken in Gjøvik, images from
NRK, and images from state-of-the-art algorithms. Gjøvik
pictures and the ones from NRK are initially very large and
make the computation time really high. To avoid this, we
reduce the original size to 1128 ∗ 751 for Gjøvik pictures and
1128 ∗ 635 for NRK pictures. All the codes that we have were
run on the followingmachine: Ubuntu 14.04 LTS, with 8GIB
of memory, Intel Xeon (R) CPU E31270 and 3.45 GHZ ∗ 8.
The number of images processed is more than 200.

For Gjøvik pictures, the original images have size of
4290 ∗ 2856 and format CR2 from a camera model Canon
450D. Then we use dcraw software to convert the initial
file into BMP files. From the obtained files, we use next
ImageMagick to resize all the image to 1128 ∗ 751.

For NRK pictures, the original frames have size of
1920 ∗ 1080, we do exactly the same procedure as previously
except the fact that we use VLC software to extract images
from videos. The retrieved files have finally a size of
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Table I. Metric-based experiment on state-of-the-art images. In this table, as you can
see our method gives quite good results in terms of rate of new edges e , except for the
last column, where it has been out performed by STRESS.

e Snow Building Canon Lviv

DC 2.32 0.03 3.02 0.21
Fattal 14 1.79 −0.02 3.44 0.25
STRESS 2.77 0.05 2.83 0.40
Ours 4.22 0.07 3.44 0.34

Table II. Metric-based experiment on state-of-the-art images. Our method yields the
best visibility for images Snow and Canon. Since we have four images for this series, we
can say that our method is the best with this metric. In fact, for Lviv we have the second
best result and for Building, we are in the third place.

r̄ Snow Building Canon Lviv

DC 2.67 2.31 6.43 3.27
Fattal 14 3.92 3.13 6.29 1.52
STRESS 4.60 1.92 4.68 1.87
Ours 5.10 2.24 8.32 2.13

Table III. Metric-based experiment on state-of-the-art images. According to this metric
relative to the saturation rate, the proportion of saturated pixels in our method, after
dehazing, is always less than 2.5%.

σ Snow Building Canon Lviv

DC 0.04 2.60 1.23 1.73
Fattal 14 1.19 12.8 21.87 0.02
STRESS 0.39 1.52 0.31 1.92
Ours 0.57 1.82 0.50 2.22

1128 ∗ 635. In the following, we call our database, Gjøvik
pictures or NRK pictures.

In Ref. 53, the authors said that the variables e and r̄
should be high. σ should be low. The variable e represents
the rate of new visible edges between the original hazy image
and its restored (dehazed) version. This parameter allows us
to evaluate the proportion of edges which are in the restored
image but not in the original one. r̄ represents the geometric
mean of the ratio of Visibility Level (VL) and according to
Ref. 53, r̄ reflects the quality of the contrast restoration. The
last parameter σ illustrates the normalized rate of saturated
pixels in the restored image. As we can see in Figure 8,
column (e), the lastmetric σ does not really take into account
the saturation effect, the way it is supposed to do.

In the case of the psychophysical experiment (Tables IV
and VIII), we use a web-based tool for psychometric image
evaluation tool named QuickEval.56 It is good noting that
the experiment is made in an uncontrolled environment.
According to Ref. 57, research have shown small differences
between controlled (in a laboratory) and uncontrolled

Table IV. Psychophysical experiment on state-of-the-art images. The experiment shows
that DC and STRESS have more visibility than others. The good news for us, on this series,
is the fact that the variance is not huge between the best and the worst. We can say from
that perspective, there is no significant difference between the output produced by these
algorithms.

Z -score Snow Building Canon Lviv

DC 0.041 0.36 0.032 0.34
Fattal 14 −0.122 −0.043 −0.035 3.44
STRESS 0.064 0.038 0.027 0.059
Ours −0.017 −0.039 −0.12 −0.55

Table V. Metric-based experiment on our database. The best result for the e metric
along with this series is given by (e). Except for image NRK1, the performance of our
approach seems to be close to the best.

e NRK1 NRK2 Gj1 Gj2 Gj3

(b) 0.76 0.28 0.06 0.27 0.44
(c) 87.87 2.95 0.07 1.41 1.71
(d) 81.51 2.21 0.67 1.15 1.78
(e) 123.36 4.06 2.27 2.50 3.13
(f) 82.27 2.13 1.61 1.16 1.74
(g) 85.27 2.32 0.14 1.31 1.65
(h) 76.05 3.14 0.49 1.49 1.83

Table VI. Metric-based experiment on our database. Taking the r metric with this series
allows us to have the best result.

r̄ NRK1 NRK2 Gj1 Gj2 Gj3

(b) 1.42 1.45 0.77 1.36 1.24
(c) 3.92 2.34 1.56 1.96e−04 2.09
(d) 3.30 1.65 1.59 0.06 2.11
(e) 7.49 5.05 3.50 2.98 2.98
(f) 5.15 1.46 2.16 2.18 1.96
(g) 10.00 2.81 1.36 2.46 2.04
(h) 21.25 5.31 1.86 4.18 3.91

Table VII. Metric-based experiment on our database. Here also, for our approach the
proportion odf saturated pixels, according to the σ metric is less than 2.5%.

σ NRK1 NRK2 Gj1 Gj2 Gj3

(b) 0.00 0.01 3.93e−05 0.00 0.00
(c) 0.04 0.04 0.00 2.26 0.00
(d) 1.34 1.39 0.08 2.36 0.03
(e) 1.66 1.72 0.00 0.00 0.00
(f) 0.99 1.62 0.18 0.01 0.01
(g) 1.50 1.53 0.41 0.27 0.29
(h) 2.12 1.86 1.08 0.91 1.04
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(a) (b) (c) (d) (e)

Figure 7. From top to bottom on each line, the original image represents respectively Snow, Building, Canon, and Lviv. From left to right on each line,
we have the original image (a), DC or DCP (b), Fattal 14 (c), STRESS with ni = 150 and ns = 5 (d), our method using STRESS with the same parameters
(e). For the second line series, considering our method, we can see there is a smoothness issue on the immediate boundaries between the sky region and
the buildings. This issue can be solved by processing these immediate boundaries in different ways.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. From top to bottom, on each line, the original corresponds respectively to NRK 1, NRK 2, Gjøvik 1, Gjøvik 2, Gjøvik 3. For images taken in
Gjøvik, we can see the Lake Mjøsa—in winter 2014/2015. From left to right, we have original hazy image (a), McCann (b), ACE (c), Gibson (d), Tarel
(e), DCP (f), STRESS with ni = 150 and ns = 5 (g), and finally our method with the same parameters (h).

experiments (on the internet). In our experiment, 15 people
have done the experiment in the lab and 4 people on the web.
We do not notice a particular difference between these two

experiments, except the fact that the experiment takes less
time for people who have done it in the lab. Thatmakes sense,
since participants who did the experiment in the lab, have a
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Table VIII. Psychophysical experiment on our database. For this evaluation, as you can
see, our method gives always a positive Z -score for all three images which have been
evaluated. Here again, the goal is to rank images according to their visibility level.

Z -score NRK2 Gj1 Gj2

(b) 0.58 0.45 −0.21
(c) −0.21 0.37 0.53
(d) −0.91 −0.06 0.27
(e) −0.38 −0.42 −0.86
(f) −0.34 −0.51 0.65
(g) 0.30 0.07 −0.71
(h) 0.56 0.32 0.10

direct explanation of the instructions to follow from us. For
the experiment done in the lab, these 3 conditions have been
fulfilled. The presentation of stimuli is done via a monitor.
The area immediately surrounding the displayed image and
its borders has a neutral dark gray color.

In Tables I and V, where we compute the rate of visible
edges between the original image and the restored one, the
results given by STRESS and our method based on STRESS
are often quite good compared to others. The experiment
shows also that Ref. 24 seems to be well adapted to this
metric.When consideringNRK1 for instance, the only image
where we get almost theworstmetric, it seems that themetric
concords as well with what we get visually. As you can see,
there is a halo around the athlete in our output. On the worst
evaluation given by Retinex, the output effectively does not
look dehazed; Paradoxically, the output given by Ref. 24 has
halo as well, but their evaluation is the best for this series.

For the second metric that we use (Tables II and VI),
which reflects the quality of the contrast restoration, it seems
that STRESS and our method outperform the other as you
can see with NRK1. Since our main goal is to get more
visibility in bad weather, we can say that we are close to our
objective.

For the last metric (Tables III and VII), which should
reflect the proportion of saturated pixels in the output image,
it seems that, we have again contradictory results, since our
output images look less saturated than the output of Ref. 24
but they have got better evaluation than we have.

Considering state-of-the-art images (32 images in total),
this experiment shows that generally the metric-based
evaluation gives good results for 2/3 of parameters and
psychometric-based one gives an acceptable result consid-
ering state-of-the-art images. Taking into account images
from our database, the experiment shows that both the
metric-based and psychometric-based evaluation give good
results for our method.

It is also worth noticing that the work that we present
here has some limitation, for example, the pixel state
estimation with regard to the sky region. Moreover, we do
notmake any assumption on the input image, except that it is
hazy. At the same time, an image can look hazy but the noise
which makes it hazy is not related to the haze phenomenon.

So if the image which we are going to process look hazy,
then how accurate is the model (the haze physical model or
STRESS model) for enhancing the input image? And what
if the noise does not come from haze or fog but looks like
haze or fog? To answer the latter, in ongoing work, we make
a series of tests, where we place in front of a camera, and close
to it, a plexiglass, that we scratch with different intensities
to simulate the degree of haziness. The first conclusion is
that, we are losing a significant amount of data coming from
the scene in this scenario, so that our method is not able to
recover these lost data.We can also say that even STRESS can
dehaze a natural hazy image, it could not be used as a decoder
for any kind of hazy image. There is still a point which needs
more discussion as the assumptionmade on the sky region or
themodel thatweuse for dehazing task: howmuch the output
given by STRESS model is close to the ground truth? Here,
theories developed by McCann and Rizzi in Ref. 4 could
provide some answer to this question. One of these theories
is that when human vision looks at high-dynamic range
displays, it processes scenes using spatial comparisons.56

CONCLUSION
We develop in this article, a new dehazing algorithm based
on the STRESS model, which is similar to the classical one
developed in Eq. (1). We also validate our new algorithm
theoretically and empirically. From this, can we say that the
STRESS framework is a hybrid algorithm? To answer this
question, in a future work we are planning to measure the
accuracy of the STRESS model. It is also good to notice that
the haze model and the STRESS model are not equivalent;
and how the models are close to each other will be addressed
in a future work as well.

In the first part of our work, we show that the STRESS
framework can be seen as a good heuristics for the dehazing
task as far as homogeneous (or dense) haze is taken into
consideration.54 Furthermore, we demonstrate that we can
find some resemblance between the classical haze model
parameters in Eq. (2) and the model derived from STRESS.
As a consequence, the estimation problem of the dehazing
task falls into the state estimation of a given pixel.

In the second part, we then model the outdoor hazy
image in three regions where each represents a stationary
problem in the sense of Hidden Markov Model (HMM)
approach, namely: near objects, far objects, and sky region
(and region similar to the sky region as snow region). These
three regions can be seen as the state variables of our model
sharing a common attribute: the radius parameter of the
STRESS framework.

The radius parameter is crucial for the defogging
problem and helps us to have a good assessment of the other
parameters in the haze model that we develop. Therefore,
the airlight and the pseudo-transmission in our model are
estimated in two ways. The first one consists of assessing
these two parameters globally in the case of near objects and
sky region. The second one falls in with the estimation of the
parameters locally in the case of far objects.
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To achieve the globality and the locality principles, we
use the two-scale STRESS by defining two different radii.
Furthermore, these two radii are chosen in the way that we
can have an aerial perspective in the image output. Even if
we have some cases of failure, we show empirically that it
is possible to overcome some color fidelity case by having a
formal labeling of the hazy image, since dehazing does not
preserve the color fidelity.55 We show that ourmethod can be
better than some of the state-of-the-art approaches in terms
of visibility and using the metrics defined in Ref. 53.

In future work, we are planning to test our algorithms on
more images including fog simulated in the context of indoor
applications and also on video outdoor applications.
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