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Abstract 

High-end PC monitors and TVs continue to increase their 
native display resolution to 4k by 2k and beyond. At the same 
time, high dynamic range formats demand higher bit depth for the 
underlying color component signals. Subsequently, uncompressed 
pixel amplitude processing becomes costly not only when 
transmitting over cable or wireless communication channels, but 
also across on-chip image processing pipelines that access 
external memory units. We recently presented a block-based non-
linear memory compression architecture for text, graphics, and 
video enabling multi-dimensional error minimization with context 
sensitive control of visually noticeable artifacts. The underlying 
architecture was constrained to a small block size of 4x4 pixels. To 
increase compression ratio as well as image quality, we propose a 
novel approach that converts image amplitudes into a pair of 
discrete structure and magnitude quantities on a pixel by pixel 
basis which has been inspired by structure tensor analysis. 
Graceful degradation of image information is controlled by a 
single parameter which aims at optimally defining sparsity as a 
function of image context. Furthermore, we apply error diffusion 
via a threshold matrix to optimally diffuse the residual coding 
error. A detailed error distribution analysis and comparison with 
our previous algorithms highlights the effectiveness of our new 
approach, identifies its current limitations with regard to high 
quality color rendering, and illustrates algorithm specific visual 
artifacts. 

Introduction  
Describing challenging engineering problems in tensor space 

has most often led to superior overall system performance most 
often due to modeling the underlying natural, physical, or 
biological phenomena in multidimensional differential parameter 
space. Therefore, we hypothesize a beneficial outcome of using the 
power of tensor analysis in image processing algorithms that target 
optimal adaptation to human vision and human visual perception, 
especially for video streams composed of natural scene content. 
Moreover, since color imaging is very often based on concurrent 
but independent multidimensional color component processing, we 
may also more easily observe critical differential errors between 
color components. As a result, highly suitable control and 
correction methods can be preciously elaborated in local and 
global context of image data.  

Unfortunately, mastering tensor algebra demands 
understanding higher levels of functional abstraction than linear 
algebra. Investing in such additional mental effort can often be 
circumvented, especially in image processing, where simple 
amplitude quantities across a regular 2-dimensional (spatial) or 3-
dimensional (spatio-temporal) pixel matrix constitute the input 
domain as well as the final output domain. Moreover, reaching a 
higher level of functional abstraction is very often linked to having 

to apply an increased number of operations per pixel which 
becomes prohibitive in most consumer devices that need to well 
minimize processing bandwidth and power consumption. For 
example, when looking at structure tensors, we already have to 
transform a single pixel amplitude quantity into a structure 
quantity and a magnitude quantity that operate concurrently on a 
pixel by pixel basis. 

In a more general context, we are interested in specifically 
developing block based image compression architectures that 
enable context sensitive control of visually noticeable artifacts as a 
function of compression factor. Compared to well-known image 
compression methods such as JPEG, MPEG, or HEVC standards, 
which can achieve high compression factors, we aim at low 
compression factors in the range between 1.5 and 4. However, the 
fundamental architectural challenge arises from an implementation 
at a fraction of the cost of well-known compression methods. 

So, shouldn’t we stop dead right there when it comes to 
competitive performance of real-time consumer applications? 
Maybe not, especially when having grasped the unique opportunity 
of combining long term engineering experience of an applied 
mathematician (who had never worked on image processing tasks 
before) and a system architect dedicated to exploring advanced 
nonlinear functionalities in computational image processing. There 
are several intuitively predominant enigmas waiting to be lifted: 
(1) how useful are structure quantities towards avoiding some of 
the most common visually noticeable artifacts; (2) how well can a 
nonlinear structure & magnitude descriptor generate an optimally 
sparse representation of visual image information; (3) how well 
can the underlying computational method be optimized for highly 
efficient visually adaptive processing in local context; (4) how 
gracefully image degradation behaves visually as a function of 
image data compression factor; (5) how complex the emerging 
computational method  becomes in terms of number of operations 
per pixel; (6) in view of all of the above, what are the most 
interesting publications in research and development addressing 
tensor based image processing tasks. 

The breadth of structure tensor based image compression 
proposals address scenarios of high compression effort with 
compression factors in the range of 10x to 100x. In such scenarios, 
structure tensor processing on the encoder side is preceded by a 
Gaussian kernel that filters noise. Structure tensor processing on 
the decoder side is followed by an interpolation method mostly 
based on iterative total variation. The achievable image quality 
across low compression factors remains unknown and the overall 
computational complexity appears out of reasonable range.  

Highly relevant foundations of our current problem statement 
have been described in [1]. Structurally adaptive low pass and high 
pass filtering methods use nonlinear structure tensors in context of 
local pixel neighborhood.  Another interesting use case in temporal 
domain has been presented in [2]. A structure tensor framework 
serves as a detector of motion structure components in video 
sequences facilitating blind video quality evaluation in wavelet 
domain. 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-351.1



 

 

In more general terms and challenges, image texture and noise 
regions are considered as highly difficult structures to be 
compressed. Subsequently, more specific solutions have been 
proposed [3] that offer excellent visual image quality at high 
compression ratios, but with elevated processing cost. 
Unfortunately, in view of low compression factors, such solutions 
appear hard to be scaled down to obtain highly reduced 
computational complexity.     

Continuing from the point of view of computational 
complexity, a first proof of concept and successful implementation 
has been described in [4]. The architectural simplicity was based 
on parametric exploration of a nonlinear domain using sorting of 
pixel amplitude values within a block of 4x4 pixels. The nonlinear 
system behavior enabled randomized spreading of residual error 
amplitudes. Such spatially and temporally randomized error 
amplitudes are less visually noticeable as long as medium and high 
error amplitudes remain sparse. Without significant increase of 
algorithmic complexity, a new error minimization strategy 
improved PSNR rating up to 12 dB [5]. Encouraged by the 
achieved high performance in image quality with compression 
factors in the range of 2x, we also became highly interested in 
exploring the potential of nonlinear structure tensor analysis.     

In the remaining sections we first discuss fundamentals of 
discrete structure & magnitude processing inspired by analytical 
structure tensor processing, followed by a demonstration of the 
novel nonlinear method’s efficiency towards image data 
compression which includes analysis of significant distribution 
functions as well as key ideas of adaptation to various types of 
image content. Furthermore, we introduce block based advanced 
scan path processing as well as block based advanced color 
component processing. Finally, we draw a conclusion and envision 
related work still ahead. 

Fundamentals of discrete structure & magni-
tude processing inspired by analytical struct-
ure tensor processing  

Before we discuss details of our novel approach of 
representing image information in discrete quantities that 
demonstrate surprisingly high precision and highly reduced 
computational effort, we review the underlying aspects of 
analytical structure tensor processing, since it provided us with a 
significant level of inspiration that could not have been leveraged 
otherwise. 

Analytical structure tensor processing 
In search of a simple and cost efficient computational method 

targeting image data compression, we were interested in better 
understanding some of the key properties of structure tensors. Thus 
we simply formulated the structure tensor in context of a spatial 
neighborhood spanning just across 2x2 pixels.  

Eq. 1 and Eq. 2 summarize the fundamental mathematical 
relationship between image amplitudes 𝑓(𝑥, 𝑦) at positions relative 
to the actual center position (𝑥𝑖 , 𝑦𝑗) and their structure tensor 
(Eq. 2) to calculate the associated eigenvalue and eigenvector 
angle which can be derived from Eq. 2, whereas 𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑦 
represents the local image gradient amplitude in vertical direction 
and 𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑥 represents the local image gradient amplitude in 
horizontal direction. 

𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑦 = 𝑓(𝑥𝑖, 𝑦𝑗) − 𝑓(𝑥𝑖 , 𝑦𝑗−1)

𝛿𝑓(𝑥𝑖 , 𝑦𝑗/𝛿𝑥 = 𝑓(𝑥𝑖 , 𝑦𝑗 − 𝑓(𝑥𝑖−1, 𝑦𝑗 
 (1) 

The eigenvalue of the matrix equation (Eq. 2) represents the 
gradient magnitude of its vector norm and the eigenvector angle  
is defined as the angle between the 𝑥 axis and the vector norm as 
illustrated in Figure 1, where for example the contour of a disk 
segment (red) is being tracked. 

| 
(𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑥)

2
𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑦 ∗ 𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑥

𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑦 ∗ 𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑥 (𝛿𝑓(𝑥𝑖 , 𝑦𝑗)/𝛿𝑦)
2  | (2) 

At each pixel position we are primarily interested in the 
orientation of the contour’s isophote, ideally showing a value equal 
to zero. We are also interested in estimating the maximum gradient 
magnitude in that location which doesn’t necessarily always 
coincide with the vector norm (showing perpendicular to the 
isophote orientation). For example, some types of image objects 
like corners may generate ambiguity. We will discuss such 
scenario in more detail in the section where we focus on specifics 
of discrete processing of structure components. 

 
Figure 1. Illustration of relationships between Cartesian coordinates (x,y), the 

vector norm, its vector angle , and its isophote in reference to a contour of a 
disk segment (red). 

Figure 2 shows an example test image of the Kodak image 
database together with the angle  of the eigenvector of the 
structure tensor as described in Eq. 2. The angular quantities  in 
the range of 0 to 2π have been converted to hue values in the range 
of Modulo[/2π,1] on a pixel by pixel basis. It may already 
become evident that this structural information appears 
surprisingly sufficient for the human visual system to decode 
image structure to the finest level, without any accompanying 
magnitude quantities. Consequently, we hypothesize that image 
structure quantities take precedence over gradient magnitude 
quantities which themselves take most likely precedence over 
image amplitude quantities. In other words, the HVS hardly cares 
about absolute luminance or chrominance values as long as the 
image content – presented by structure information – remains 
comprehensible. 

Because image gradient magnitude quantities seem less 
important than image structure quantities, we now pursue the idea 
of compromising precision of image gradient magnitudes while 
primarily preserving image structure quantities. Although the 
structure quantity cannot be considered independent of the 
precision of the gradient magnitude quantity, we can accept higher 
level of error tolerance on gradient magnitude quantities than 
image structure quantities, especially in context of non-stationary 
local neighborhood. So we want to firstly extract and preserve 
image structure information on a pixel by pixel basis while 
secondly minimizing the number of gradient magnitude quantities 
as a function of acceptable image quality.  

Besides, in the context of a predictor of image structure 
quantities, the structure tensor outperforms the well-known 
Median-Edge-Detector. The structure tensor method remains 
consistent across the entire frequency spectrum in terms of phase 
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response while, for example, the median of 3 adjacent pixel 
amplitudes imposes a severe phase change around 1/3 of its 
sampling frequency. 

 

 
Figure 2. A representative high quality test image (left) and its image structure 
quantities visualized as hue values representing the eigenvector angles at full 
spatial resolution (right). 

Before we proceed with the description of our novel discrete 
representation of image structure quantities and gradient 
magnitude quantities, we would like to address the dilemma of 
extrapolation in image amplitude domain followed by an elegant 
solution that emerges from within the gradient magnitude domain. 

Dilemma of extrapolation 
Image amplitude prediction by extrapolation remains 

suboptimal in context of linear filtering when using linear 
convolution kernels in temporal domain,. Figure 3 illustrates the 
extrapolation scenario. A common solution to this dilemma is 
based on convolutional high pass filtering by considering several 
image amplitude samples within the neighborhood of the center 
pixel position (𝑥𝑖 , 𝑦𝑗). However, if we would like to predict the 
amplitude APR of the center pixel with just the image amplitude 
APA of the closest pixel position to the left and the image 
amplitude APB of the closest pixel position to the right of the 
center position, the solution appears impossible to be formulated in 
amplitude domain with only relative quantities that should be 
constraint to the normalized range of [𝟎 … 𝟏], where this range 
represents the distance |𝑨𝑷𝑨 − 𝑨𝑷𝑩|. We would like to recall that 
the normalized range always holds in the interpolation scenario, 
where the amplitude APR is less or equal to APA and greater or 
equal to APB.  

 
Figure 3. Illustration of extrapolation dilemma in amplitude domain when 

considering normalized range of [𝟎 … 𝟏], equivalent to the absolute amplitude 
difference between APA and APB. 

Solution in gradient magnitude domain 
We overcome the dilemma of extrapolation by implementing 

the following solution. At first, we calculate the gradient 
magnitudes 𝑮𝑷𝑨 = |𝑨𝑷𝑹 − 𝑨𝑷𝑨| and 𝑮𝑷𝑩 = |𝑨𝑷𝑹 − 𝑨𝑷𝑩|. 
Secondly, we create a polarity bit POL that indicates whether we 

process an interpolation scenario or an extrapolation scenario. 
Thirdly, we pick the minimum of GPA and GPB and normalize it 
using the sum of the distances GPA and GPB, therefore obtaining 
the normalized minimum gradient magnitude quantity GPAN, as 
summarized in Eq. 3. We also introduce an error quantity ERR 
which represents the degree of error tolerance (maximum error) to 
the quantization step that will be discussed in the section dedicated 
to efficiency towards image data compression. Please also note 
that, by our own convention, GPA will always represent the 
minimum gradient magnitude in local context. Figure 4 illustrates 
the solution to the extrapolation scenario shown in Figure 3. Here 
we convert the amplitude of APB to APR+GPB. This step is 
seamlessly reversible with the help of ‘memorizing’ the associated 
polarity information. 

𝑮𝑷𝑨𝑵 =
𝑮𝑷𝑨

𝑮𝑷𝑨+𝑮𝑷𝑩
= 𝟏 −

𝑮𝑷𝑩

𝑮𝑷𝑨+𝑮𝑷𝑩
± 𝑬𝑹𝑹 (3) 

The smaller the GPAN quantity becomes, the better we are 
approximating the ‘ideal’ isophote in relative quantities of pixel 
based local context, or, if looking at GPA and GPB concurrently, 
the larger GPB manifests itself as well. Therefore, if we search for 
the minimum gradient magnitude and the maximum gradient 
around the center pixel value to be predicted, we also seem to be 
using a powerful descriptor of local contrast that may easily enable 
minimizing the visibility of a voluntarily acceptable maximum 
prediction error ERR when remaining proportional to the just-
noticeable-difference (JND) quantity for example. Subsequently, 
perceptual quantization tone curves (mean local luminance) 
together with perceptual contrast sensitivity (local variance) (see 
ref [6]) may enable excellent guidance for minimizing visibility of 
local errors resulting from a digitally encoded (quantized) 
representation of GPAN, which we define as the GPAC quantity. 

 
Figure_4. Illustration of solving the extrapolation dilemma in gradient 

magnitude domain when considering normalized data range of [𝟎 … 𝟏], 
equivalent to the sum of distances  GPA and GPB. 

Discrete processing of structure components 
Instead of estimating the eigenvector angle representing the 

isophote at high angular resolution, we would like to elaborate the 
idea of simply defining several structure elements which represent 
basis vectors within a local 3 by 3 neighborhood. To this end, 
Figure 5 illustrates two fundamental basis vectors. The one on the 
left constitutes the well-known Cartesian grid (coordinate system) 
while the one on the right constitutes the Cartesian grid rotated by 
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45 degrees with a new basis of √𝟐  in reference to the unit spacing 
of the underlying pixel grid. To encode the selectable basis vectors 
pixel by pixel, a single bit is sufficient. We select the basis vectors 
that contain the minimum gradient magnitude and encode on 
which ‘branch’ of the basis vectors it is located by designating a 
second bit. Finally, we add a third bit that describes the polarity 
POL of the gradient magnitude only when the encoded gradient 
magnitude GPAC is greater zero. Summarizing this simple but 
surprisingly efficient structure scenario, we will spend at most 3 
bits per pixel to fully encode a local structure component 
composed of basis vectors, the relative location of the minimum 
gradient magnitude, and the minimum gradient magnitude’s 
polarity. 

 
Figure 5. Illustration of a set of two basis vectors enabling discrete orientation 
identification of most suitable minimum and maximum gradient magnitude 
pairs in local neighborhood. 

Taking the idea a step further for estimating the very best pair 
of minimum and maximum gradient magnitude in a local 
neighborhood of 3 by 3 pixels we could theoretically choose from 
a set of 28 basis vectors as shown in Figure 6. Each row shows a 
specific curvature with all possible orientations within each row. 
The set of curvatures also highlights that we are not at all restricted 
to orthonormal basis vectors, whether operating in 2-dimensional 
spatial domain or in vector spaces of higher dimensionality. We 
recently provided a theoretical performance analysis in the context 
of vectorized linear interpolation [7]. However, due to sequential 
processing constraints, such as raster scan mode, only the use of a 
‘single sided’ subset of these 28 basis vectors remains practical. 
With all this in mind, one could also add more basis vectors by 
extending the local neighborhood and using any suitable location 
of already encoded pixels. In other words, we propose using the 
discrete pixel grid to optimally define discrete structure quantities 
in local context. In more general terms, we recommend reusing the 
already existing discrete grid spacing to ideally define most 
suitable basis vectors on a pixel by pixel basis. 

 
Figure 6. Illustration of a set of 28 basis vectors enabling discrete orientation & 
curvature identification of most suitable minimum and maximum gradient 
magnitude pairs in local 3 by3 pixel neighborhood. 

Efficiency towards image data compression  
At first we would like to point out that the image data 

compression is currently defined by a single parameter which we 
baptized target threshold parameter TTP. TTP controls the 

compression effort - to be increased or decreased - as a function of 
number of normalized minimum gradient values below threshold, 
for example calculated on a frame by frame basis of a video stream 
to be compressed. In other words, the more normalized minimum 
gradient quantities reach below TTP, the higher the overall 
compression factor becomes. 

After having carried out careful simulation analysis across a 
significant number of natural images, we present our simulation 
results obtained from a most representative high quality test image 
of the Kodak image data base. 

Simulation results – obtained from a 
representative set of example images  

In search of demonstrating reasonable robustness in the 
presence of noise, we added 40dB of white Gaussian noise to the 
selected test image (fig. 2).  Although the PSNR metric is strongly 
debatable as an absolute image quality metric, it appears well 
suitable for algorithm performance analysis in relative quantities. 
Figure 7 illustrates the compression performance in PSNR 
quantities over a significant range of compression factors. The 
lower bound curve represents a simple version of the novel 
compression method, where each color component has been 
encoded independently. The upper bound curve represents an 
advanced compression scheme in which all three color components 
shall be processed concurrently with only one most suitable 
structure quantity per pixel to be transmitted.  

The graph reveals three highly important performance 
features: (1) asymptotically approaching the maximum PSNR 
value towards a compression factor equal to one, (2) highly linear 
PSNR variation at high compression factors, and (3) less than 5 dB 
reduction in PSNR rating over more than 5x range of compression 
factors. Please also note that this range of compression factors is 
based on images having 8 bit pixel amplitude resolution. 
Interestingly, the compression factor will scale nearly linearly with 
pixel amplitude resolution. For example, images with 10 bit pixel 
amplitude resolution would achieve 25% higher compression 
factors when compared with 8 bit images. 

 
Figure 7. Compression performance in PSNR quantities of test image shown 
in fig. 2 with additive WGN of 40dB. The lower bound curve depicts a suitable 
range of compression factors when assigning structure quantities to each 
color channel separately while the upper bound curves Illustrates a suitable 
range of compression factors when assigning a single structure quantity to all 
three color channels. 

For the analysis that follows, we chose a moderate 
compression factor having a lower bound of 2.3x, respectively 
upper bound of 3.8x with a PSNR rating of 34.7dB which shall 
demonstrate visual and statistical performance in view of 
compression factors targeted for real time compression. 

Figure 8 compares the original image with the compressed 
version. The compressed image was obtained by calculating 
structure quantities for each color component separately, leading to 
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a compression factor of 2.3x. The image pair on the left shows the 
reference image together with the red channel’s hue coded 
eigenvector angle (leftmost position). The image pair on the right 
shows the compressed image and the red channel’s hue coded 
eigenvector angle with a compression factor of 2.3x (rightmost 
position). The reduced variability of eigenvector angle in local 
context manifests itself in dominant hue values across the entire 
image.  

We would like to also emphasize that the novel nonlinear 
method did not yet reveal any annoying visual artifacts even at 
high compression factors. We hypothesize that this is due to 
graceful pruning of prioritized local contrast quantities in context 
of visual masking. The graceful performance seems to be 
specifically revealed since we eliminated (1) visibility of 
blurriness (by escaping convolutional linear filtering), eliminated 
(2) visibility of blockiness, eliminated (3) visibility of mosquito 
noise, and (4) minimized visibility of contouring. 

 
Figure 8. Compression performance of a detail region from test image shown 
in fig. 2. The image pair on the left shows the original and its hue coded 
eigenvector angle quantities (red channel);   the image pair on the right shows 
the compressed version and its hue coded eigenvector angle quantities with a 
compression factor of 2.3 (lower bound) or 3.8 (upper bound - estimated). 

Figure 9 visualizes the red color component’s discrete 
structure quantities of the minimum gradient magnitude as well as 
the maximum gradient magnitude converted to color hue 
quantities. The image pair on the left shows the discrete structure 
components of minimum (leftmost position) and maximum 
gradient magnitude quantities without compression;   the image 
pair on the right shows the compressed version of the discrete 
structure components of minimum and maximum gradient 
magnitude quantities (rightmost position) with a compression 
factor of 2.3(lower bound) or 3.8 (upper bound - estimated).  

By comparing the compressed version with the uncompressed 
version we notice that preferred structure orientations appear in 
compressed mode which manifest itself in dominant global hue, 
both for the structure quantities of the minimum gradient 
magnitude as well and the maximum gradient magnitude. As 
expected, the structure quantities of maximum gradient magnitude 
show significantly more visually meaningful information.  

 
Figure 9. Compression performance illustrated in hue coded discrete structure 
quantities of a detail region from test image shown in fig. 2. The image pair on 
the left shows the discrete structure components of minimum and maximum 
gradient magnitude quantities without compression;   the image pair on the 
right shows the compressed version of the discrete structure components of 

minimum and maximum gradient magnitude quantities with a compression 
factor of 2.3 (lower bound) or 3.8 (upper bound - estimated). 

Analysis of significant distribution functions 
In context of analyzing overall achievable coding efficiency, 

we created several different distribution functions that enable 
improved understanding of system functionality from a statistical 
point of view. Moreover, possible issues can be more easily 
revealed. 

For best comparison results, in Figure 10 we first recall the 
cumulative pixel amplitude distribution derived from the red color 
component of the test image already shown in fig. 8. The revealed 
S-shaped curve – very typical for natural images – illustrates its 
challenges with regard to efficient quantization, due to varying 
slope in the center of the CDF. Most importantly, we need to 
consider that simple amplitude representation does not sufficiently 
reflect dominant functionality of human visual perception. The 
CDFs of image amplitude are practically indistinguishable between 
the reference image data and the compressed image data. In other 
words, no significant amplitude errors have been introduced by the 
underlying nonlinear compression method.  

 

 

 

 
Figure 10. Cumulative distribution functions (CDF) demonstrating 
compression performance, derived from the red color component of the test 
image set shown in fig. 8. The blue curve refers to the uncompressed image 
and the red curve refers to the 2.3x compressed image: CDF of image 
amplitude (top), followed by CDF of minimum gradient magnitude and CDF of 
maximum gradient magnitude, and finally CDF of normalized minimum 
gradient magnitude (bottom). 
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Next, we compare the CDFs of minimum gradient magnitude. 
Approximately 20% of minimum gradient magnitude values are 
already zero in the reference image. However, the compressed 
image now contains about 80% of minimum gradient magnitude 
values at zero level. Moreover, CDF progression remains smooth. 

The CDFs of maximum gradient magnitude values 
demonstrate significant spreading of values indicating the presence 
of important structural image information. 

The CDFs of the normalized minimum gradient values reveal 
the most significant difference between reference and compressed 
image data which we consider as relevant evidence for proof of 
concept of our novel nonlinear compression method. As expected, 
the number of minimum gradient values – obtained via TTP 
thresholding – increase as a function of compression factor. 
Furthermore, the higher the compression factor the simpler 
becomes the nonlinear function that approximates the distribution 
of normalized minimum gradient magnitude values for optimal 
error minimization & binary encoding efficiency. 

Adaptation to various types of image content  
Flexible local adaptation to constantly varying image content 

is key to minimizing visually noticeable artifacts. Therefore, we 
consider three major categories of critical image content which are 
(1) homogeneous regions, (2) contour regions, and (3) 
texture/noise regions. To achieve improved visual image quality, 
we combined our novel differential error minimization method 
with a spatial error diffusion technique. However, instead of using 
advanced locally adaptive error diffusion concepts [8], we simply 
apply a threshold dither matrix enabling spatial error diffusion with 
significantly reduced visibility of visually noticeable artifacts 
versus ordered dither patterns that are more easily susceptible to 
objectionable moiré phenomena. 

Applying adaptive error diffusion 
The effectiveness of the dither matrix functionality is 

currently threefold: (1) we modulate the normalized minimum 
gradient magnitude quantity; (2) we spatially seed homogeneous 
regions with adequate gradient magnitude values; and (3) we 
spatially prune gradient magnitude values across high density 
texture and noise regions. 

Progressive quantization of normalized minimum gradient 
magnitude quantities 

At first we would like to recall that the image data 
compression is currently defined by a single parameter which we 
baptized target threshold parameter TTP. TTP controls the 
compression effort - to be increased or decreased - as a function of 
number of normalized minimum gradient values below threshold, 
for example calculated on a frame by frame basis of a video stream 
to be compressed. We advantageously add the normalized 
minimum gradient magnitude quantity and the dither matrix 
amplitude that has already been multiplied by the target threshold 
parameter TTP of the normalized minimum gradient magnitude. 

Processing homogeneous regions  
A dither matrix with 5 bit resolution provides spatial density 

increments in the order of 3% which appears highly suitable for 
spatially randomized seeding of normalized gradient magnitude 
quantities. Seeding in this context is equivalent of retaining 
normalized gradient magnitude quantities at specific locations 
defined by the threshold matrix values and the compression effort 
parameter.  

Processing texture & noise regions  
The same dither matrix also serves for spatially randomized 

pruning of gradient magnitude quantities in presence of high 
density texture or noise regions. Pruning in this context is 
equivalent of suppressing gradient magnitude quantities at specific 
locations as defined by the threshold matrix values and the 
compression effort parameter.  

Advanced scan path processing  
Until now, we have assumed a traditional raster scan path that 

progresses line by line over the entire image. However, a scan path 
which progresses macro block by macro block, using for example 
a macro block size of 8 lines by 32 pixels per line, appears highly 
suitable as well. Moreover, within each macro block we envision 
more elaborate scan paths in meander shape or helical shape. 
Particularly interesting seems a helical (spiral) scan path which 
starts in the center of the macro block and progresses to the 
boundary of the macro block. A small number of initial pixels in 
the center will be coded in amplitude quantities (providing stability 
to the nonlinear compression method) followed by structure & 
normalized gradient magnitude pairs all the way to the outmost 
pixel location within the macro block. In addition, scan path 
orientation could also be rotated by 90 degrees from one macro 
block to the next. Figure 11 shows two examples of helical scan 
paths starting from the center position (p1) of the macro block. 

 

p29 p21 p10 p9 p9 p7 p20 p28 p36 

p30 p22 p11 p2 p1 p6 p19 p27 p35 

p31 p23 p12 p3 p4 p5 p18 p26 p34 

p32 p24 p13 p14 p15 p16 p17 p25 p33 

 

p33 p25 p17 p7 p6 p5 p16 p24 p32 

p34 p26 p18 p8 p1 p4 p15 p23 p31 

p35 p27 p19 p9 p2 p3 p14 p22 p30 

p36 p28 p20 p10 p11 p12 p13 p21 p29 

Figure 11. A helical scan path (top) and an alternative helical scan path that 
has been rotated by 90 degree around the center position p1 (bottom). 

Advanced color component processing 
Since we do not need to apply spatial filtering before carrying 

out any compression steps, we can effectively implement separable 
interleaved sampling. For example, a quincunx raster appears well 
suitable for the YCC 420 format which is most commonly used in 
video streaming. Therefore we have one YCC sub-grid (A) 
combining all three color components (YCC) and two additional Y 
sub-grids (B) & (C), which simplify managing single structure 
component quantities across variable number of color components. 
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Separate processing of (B) and (C) also regularizes selection of 
relevant pixels in their neighborhood – defined by the available 
basis vector sets – to calculate local gradient values and their 
respective normalized minimum gradient magnitude. Figure 12 
illustrates a possible layout of the 3 interleaved grids. 

Isn’t all the above engineering ingenuity most playful artistic 
color processing at its best?   

 

(A) (B) (A) (B) (A) (B) (A) (B) (A) 

(B) (C) (B) (C) (B) (C) (B) (C) (B) 

(A) (B) (A) (B) (A) (B) (A) (B) (A) 

(B) (C) (B) (C) (B) (C) (B) (C) (B) 

Figure 12. Advanced color component processing of YCC420 video format: 
For optimal compression performance, the 420 sampling grid has been 
separated into 3 different sub-grids (A), (B),and (C) – see text for details. 

Conclusion  
The novel nonlinear method enables significantly better local 

adaptation to non-stationary image information in context of 
human visual perception while accomplishing low computational 
complexity and preserving finest levels of structure and magnitude 
information. Error quantities are being processed in several 
complementary differential domains enabling advanced visual 
masking strategies. We also maintain full spectral bandwidth 
fidelity and optimal phase coherency by having eliminated any 
linear filtering or median filtering which was traditionally used to 
improve prediction and coding performance. Needless to say that 
less filtering also favorably translates into fewer number of 
operations per pixel. In addition, the new possibility of processing 
structure quantities and gradient magnitude quantities concurrently 
but independently enabled adjusting the underlying sparse 
representation of image information as a function of compression 
factor. Surprisingly, the associated image quality shows highly 
stable and relatively proportional to a varying compression factor. 
First estimates, which however still need to be confirmed, predict 
that compression factors of about 4x appear very reasonable for 
10bit video streams - without creating any visually noticeable 
artifacts. We presume that the substantially high computational 
efficiency has been achieved by focusing on minimum and 
maximum gradient magnitude pairs that are easily derived from 
discrete pixel amplitudes already present on the underlying grid of 
the pixel matrix. Such a discrete pair of minimum and maximum 
gradient magnitude seems to imitate astonishingly well relative 
local contrast perception of the human visual system. The resulting 
normalized minimum gradient magnitude quantity therefore offers 
an excellent solution for representing a powerfully adaptive 
coefficient in local context. 

We also imagine that the presented concept can be 
advantageously applied to multi-dimensional and multi-scale data 
sets of many other challenging engineering tasks achieving 
efficient computational performance and dedicated precision, 
especially where structural quantities represent important 
information in local context. 

Acknowledgment  
The intuitive desire of steadily pursuing the underlying key 

ideas enabling the discovery of most select discrete multi-
dimensional representation of image information in visually 
meaningful quantities, in quest of beneficially reaching beyond 
linear system theory, had been a highly challenging endeavor, not 
only from the engineering point of view, but also across project 
management and project financing matters. A huge thank you goes 
to the Electronic Imaging conference community members for 
their continuous mutual support spanning over more than 25 years. 
The extremely valuable interdisciplinary exchange of unparalleled 
scientific and technical knowledge has proven to be the very best 
platform to create and follow up on exaggerated ideas. May 
profound gratitude especially reach Bernice Rogowitz, John 
McCann, Reiner Eschbach, Gabriel Marcu, Alessandro Rizzi, Jan 
Allebach, Sheila Hemami, Damon Chandler, Mylene Farias, 
Michael Kriss, Peter Burns, Scott Daly, Al Ahumada, Beau 
Watson, and Sergio Goma for their fascinating personal interactive 
engagement as well as wonderfully stimulating and encouraging 
scientific support over so many years. 

Already several years ago, Randolph Fox, a ‘retired’ 
colleague at STMicroelectronics, had attached to the new topic in 
providing magnificent handwritten tutorials on understanding 
tensor algebra in engineering applications, followed by many 
highly fundamental technical discussions having enabled 
fascinating inspiration from structure tensor analysis. Moreover, 
Mariano Bona’s excellent experience in discrete mathematics and 
control system theory and his limitless curiosity in applying his 
wonderful knowledge to the domain of digital image processing 
for the first time - just a year ago - let the discrete solution 
crystallize. Once again, like the year before, this novel 
development activity carrying significantly higher pre-estimated 
risk, could not have been sufficiently explored without Marina 
Nicola’s strong dedication to much more urgent project tasks, in 
which she succeeded brilliantly. For those reasons, may all three 
colleagues receive deepest appreciation. 

Last but not least, the project would not have been feasible 
without substantial funding from within the NANO2017 
framework. Therefore we would like to also express ultimate 
gratefulness to Mario Diaz Nava for having offered his 
extraordinary experience in project funding as well as having early 
on gained great confidence in the potential project outcome. 

 
 

References 
[1] Thomas Brox, J. Weickert, B. Burgeth, P. Mrázek, "Nonlinear 

structure tensors," Image and Vision Computing, vol. 24, no. 1, pp. 
41-55, 2006.  

[2] Michele A. Saad, Alan C. Bovik, "Breaking down the problem of 
blind video quality evaluation," in Proc. SPIE 9016, Image Quality 
and System Performance XI, pp. 90160N, 2014. 

[3] G. Jin, Y. Zhai, T. N. Pappas, and D. L. Neuhoff, "Matched-texture 
coding for structurally lossless compression," in Proc. Int. Conf. 
Image Processing (ICIP), pp. 1065 – 1068, 2012. 

[4] Fritz Lebowsky, "Optimizing color fidelity for display devices using 
contour phase predictive coding for text, graphics, and video content," 
in Proc. SPIE 8652, Color Imaging XVIII: Displaying, Processing, 
Hardcopy, and Applications, pp. 86520X, 2013. 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-351.7



 

 

[5] Fritz Lebowsky, Marina Nicolas, "Preserving color fidelity for 
display devices using scalable memory compression architecture for 
text, graphics, and video," in Proc. SPIE 9015, Color Imaging XIX: 
Displaying, Processing, Hardcopy, and Applications, pp. 90150M, 
2014. 

[6] Scott Daly, S. A. Golestaneh, "Use of a local cone model to predict 
essential CSF light adaptation behavior used in the design of 
luminance quantization nonlinearities," in Proc. SPIE 9394, Human 
Vision and Electronic Imaging XX, pp. 939405, 2015. 

[7] Marina Nicolas, Fritz Lebowsky, "Optimizing color fidelity for 
display devices using vectorized interpolation steered locally by 
perceptual error quantities," in Proc. SPIE 9395, Color Imaging XX: 
Displaying, Processing, Hardcopy, and Applications, pp. 939502, 
2015. 

[8] Altyngul Jumabayeva, Yi-Ting Chen, Tal Frank, Robert Ulichney, 
Jan Allebach, "Design of irregular screen sets that generate 
maximally smooth halftone patterns," in Proc. SPIE 9395, Color 
Imaging XX: Displaying, Processing, Hardcopy, and Applications, 
pp. 93950K, 2015. 

Author Biography 
Fritz Lebowsky received his MS (1985) and PhD (1993) in electrical 
engineering from the Technical University of Braunschweig, Germany. He 
began his professional career as a research and teaching assistant at the 
Institute of Telecommunications of the Technical University of Braun-
schweig in 1985. From 1991 he worked as a research and development 
engineer in the field of digital video processing at Micronas in Freiburg, 
Germany. In 1995 he joined Thomson Consumer Electronics Components 
in Meylan, France, as a development engineer modeling video processor 
networks as well as digital acquisition sub-systems for DVD ROM drives. 
In 2000 he joined the Imaging and Display Division of STMicroelectronics 
Inc. in San Jose, CA, developing advanced display engines for the PC flat 
panel monitor market. Since 2004 he is with STMicroelectronics in 
Grenoble, France, working on image quality improvement for consumer TV 
products.  

Mariano Bona received his PhD (1983) in applied mathematics from the 
Scientific University of Grenoble, France.  Since 1985 he is with 
STMicroelectronics, having primarily worked on front-end signal 
processing and speech compression. In 2015 he joined the research and 
development team focusing on innovative nonlinear image compression 
algorithms. 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-351.8


