
Digital Image Segmentation for Object-Oriented Halftoning
Zuguang Xiao a, Mengqi Gao a, Lu Wang a,1 , Brent Bradburn b, Jan Allebach a

aSchool of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, U.S.A.
bHewlett-Packard Co., Boise, ID 83714, U.S.A.

Abstract
The electrophotographic (EP) process, which is widely used

in imaging systems such as laser printers, is susceptible to print-
ing artifacts if we render the smooth areas of the images with high
frequency halftone screens. However, applying low frequency
halftone screens over the whole page will restrict the ability to
render the fine details [1]. The solution proposed by Park [2]
et al is to apply different frequency screens to different parts of
the page – also referred to as object-oriented halftoning. But it
requires a correct object map to be generated. With miscella-
neous segmented objects in a given image, an object map will
classify all the image objects into three categories: raster (pic-
tures or photos), vector (background and gradient) and symbol
(symbols and texts), with raster and symbol objects considered as
high frequency objects and vector objects as low frequency ob-
jects. An overall improvement of the print quality can be achieved
if symbol and raster objects are rendered with high frequency, and
vector objects with low frequency. Although the object map can
be extracted from the page description language (PDL) directly,
some components may not be correctly classified [1]. To obtain a
correct object map from the page image, not the PDL, an object
map generating algorithm is proposed in this paper. The algo-
rithm uses a strip-based processing, which only requires a strip of
the image to be buffered. And it is very memory efficient, making
it ideal for hardware implementation.

1.0 Introduction
An object map is a matrix of labels, indicating what type of

object each pixel belongs to. Figure 1(b) shows an example of
the object map of the input image Figure 1(a). Three types of ob-
ject are represented by different color codes in Figure 1(b): red
for raster objects, blue for symbol objects, and green for vector
objects. Different objects in an input image have different proper-
ties: A symbol object is usually small, and has sharp edges and a
smooth interior. A vector object is usually large, and it is smooth.
Raster objects can be either large or small, and they are always
very rough. Only the two features – the size of an object and the
roughness of an object are needed to classify a component. To
classify all image objects into symbol, raster, and vector objects,
if we can identify symbol and vector objects, the remaining un-
classified objects will be raster objects. Symbol objects can be
partitioned into symbol edge objects and symbol interior objects.
So three binary images – one to find the symbol edge objects,
one to find the symbol interior objects, and one to find the vector
objects, are generated for connected component analysis.

To be suitable for hardware implementation, the choice of
the connected component algorithm requires: a small number of
passes, no random memory access, and minimal complexity and

memory usage. The classic two-pass connected component al-
gorithm [3], which is a two-pass raster order scanning process,
satisfies all these requirements except for its tremendous memory
consumption. The amount of memory depends on the complexity
of the image, but is limited to the size of the image. However,
if we only process a strip of the image at a time with the classic
algorithm, the amount of memory will be reduced to the size of a
strip, which is a big savings. But the discontinuities between two
strips need to be taken care of. To further push down the memory
consumption, a label recycling mechanism will be introduced. In
addition, we use a union-find data structure with path compres-
sion to ensure fast memory access and efficiency for resolving
label equivalence.

This paper2 is organized as follows: In Section 2.1, we will
first talk about how to generate the three binary images for con-
nected component analysis. Section 2.2 will introduce the classic
two-pass connected component algorithm; and its data structure
will be described in Section 2.3. Section 2.4 will explain how to
adapt the classic algorithm for strip-based processing and how to
achieve memory efficiency. The top-level hardware architecture
for our algorithm is described in Section 2.5. At last, we will pro-
vide some results of the algorithm and a performance analysis in
Section 3.

(a) Input Image. (b) Object Map (red for raster; blue
for symbol; green for vector).

Figure 1: An input image and its object map.

2.0 Methods
2.1 Generating binary images

To segment a color image, a common method is to first apply
an edge detection filter, followed by thresholding. We use a Sobel

1Now with Google Inc., Mountain View, CA 94035
2Research supported by HP Inc., Boise, ID 83714.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.1



detection filter because it is simple, and easy for implementing
hardware speed acceleration [4]. It contains two 3×3 mask win-
dows, one to detect horizontal gradients and one to detect vertical
gradients:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 Gy =

+1 +2 +1
0 0 0
−1 −2 −1


The edge magnitude (EM) is defined as:

EM =
1
3 ∑

i=r,g,b

√
(Gx∗ image[i])2 +(Gy∗ image[i])2 (1)

If we threshold the EM (image) from the Sobel operation
with two threshold values, Ts edge (strong edge threshold) and
Tw edge (weak edge threshold), we will be able to generate the
following three binary images in Figure 2 from the input image
Figure 1(a).

(a) Strong Edge Map.
(EM ≥ T s edge)

(b) Non-Strong Edge
Map. (EM < T s edge)

(c) Non Edge Map.
(EM < Tw edge)

Figure 2: Three binary images from Sobel operation.

Figure 3: Overall algorithm structure.

The pixels we are interested in in each binary image are the
white pixels whose EM satisfy the threshold condition. By tak-
ing a closer look at each binary image, we can see that in Figure
2(a) all the white pixels are actually the edge pixels of symbol
objects and raster objects. If we could remove all the raster ob-
ject pixels, we will have only symbol edge pixels retained in the

first binary image. For the second image Figure 2(b), the white
pixels are the interior pixels of symbol objects, as well as raster
and vector objects. The objects that we want to find from this bi-
nary image are symbol interior objects. At last, the white pixels in
Figure 2(c) are also interior pixels; and our interest is to find vec-
tor objects only. If we have only symbol edge pixels in the first
binary image, symbol interior pixels in the second binary image,
and vector pixels in the third binary image, then the remaining
unclassified pixels will be raster. By using unique labels for each
type of the object, we will have the final object map. However,
this requires connected component analysis to extract the features
for classification, and a labelling process to generate those unique
labels. Figure 3 illustrates the overall algorithm structure. Con-
nected strong edge components (CSEC), Connected non-strong
edge components (CNSEC) and Connected non-edge components
(CNEC) are the connected set of the white pixels in each binary
image: SEM, NSEM, and NEM, respectively.

2.2 Classic CCL Algorithm
The connected component Labelling (CCL) algorithm is a

process that uniquely assign labels to each connected set of fore-
ground pixels in a binary image. The definition of connectivity
is shown in Figure 4. For 4-connectivity, which is in Figure 4(a),

(a) 4-connectivity. (b) 8-connectivity.
Figure 4: Neighborhood Connectivity Context.

if a foreground pixel is the Northern and Western neighbor of the
centered foreground pixel, then these two pixels are considered
as connected. Figure 4(b) shows an 8-connectivity neighborhood
context, where besides the Northern or Western neighbors, the
Northwestern and Northeastern locations are also considered as
connected neighbors. For our application, 4-connectivity is used
because it is less complex; and there is a significant difference in
the performance compared to 8-connectivity. So 4-connectivity
will be used for the remainder of the paper without further men-
tion. Each connected set of pixels is also referred as a connected
component. Sometimes, the labelling process is accompanied by
feature extraction, if we are interested in the properties of each
component. The classic two-pass connected component [5] that
will be incorporated into our algorithm is described in Figure 5.

Figure 6 shows an example of a binary image after being pro-
cessed by the classic CCL algorithm. Figure 6(a) is the input bi-
nary image with white pixels representing the foreground pixels.
Figure 6(b) contains the labels assigned after the first-pass. Dur-
ing the first-pass, we are also extracting features and recording
the equivalence if there are different labels in the neighborhood
context.

After the second-pass, as shown in Figure 6(c), each con-
nected region only has one unique label, which is the smallest
label among all the equivalent labels. However, for our applica-
tion, we are interested in finding only one type of object for each
binary image (symbol edges object for SEM, symbol interior ob-
jects for NSEM, and vector objects for NEM). So we only need

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.2



Figure 5: Algorithm 1 – Classic CCL.

(a) Original binary im-
age.

(b) First-Pass La-
belling.

(c) Second-Pass rela-
belling.

Figure 6: Classic CCL algorithm.

two types of labels after the second-pass: Class 1 (C1) represents
a pixel that belongs to the type of the object that we are trying to
find; and Class 2 (C2) does not. As we can see from the example
provided in Figure 7, after the second-pass through the original
binary images in Figures 7(a) - (c), the relabelled images are also
binary images but only the pixels of interest to us remain. These
pixels are Class 1 pixels, represented by the white color in Figure
7(d) - (f). The classification of pixels will be discussed later.

(a) SEM. (b) NSEM. (c) NEM.

(d) Symbol Edges. (e) Symbol Interior. (f) Vector.
Figure 7: Images from edge detection, and CCL. (a) - (c) are the
three input binary images; (d) - (f) are the relabelled binary im-
ages after the second-pass of CCL.

2.3 Data Structure for CCL Algorithm
The data structure we use is a 1-D array that is similar to

the union-find data structure [6]. The 1-D array, referred to as
the component array in this paper, is initialized with its own in-
dex; and each array element is also mapped to a set of features
by a pointer. During the first-pass labelling, when a new label is
needed, we will scan through the component array from the small-
est index until we find an available element. Then, its index will
be used as the new label and a corresponding feature set will be
created, after which this element will be marked as unavailable.
For every white pixel encountered during the first-pass scan, its
corresponding feature set in the component array will be updated.

In the situation that an equivalence needs to be recorded, it is
achieved by first finding the root of these two indices, then mod-
ifying the content indexed by the larger root to the index of the
smaller root. At the same time, we merge the feature set of the
larger root to the smaller root. Figure 8 illustrates how the merg-
ing algorithm works. Whenever a component is merged to its root
component, its feature set will not be needed since the root com-
ponent now contains all the combined features. Hence the mem-
ory for that feature set can be removed from the heap. However,
the equivalence relation should always hold; and it will be opti-
mized by path compression to reduce the traverse distance from a
component to its root. For the future labelling of a pixel, instead
of directly taking the label from its neighbors, we will use the
root label of the neighbors; and only the feature sets of the root
components will be updated.

(a) Binary image for
first-pass labelling.

(b) Initialization. (c) After row 1.

(d) After row 2. (e) After row 3. (f) After row 4.
Figure 8: Illustration of how the component array evolves as we
do first-pass labelling row by row.

After the first-pass labelling of the whole page, we will clas-
sify all the root components in the component array before we
start the second-pass. The classification result is binary-valued,
either Class 1 or Class 2; and it is recorded in the feature set of
the root component. All the other components rooted at that com-
ponent will carry the same classification result. The classification
of all the root components can be done by a one-pass scan of the
component array, which has approximately linear time complex-
ity [7]. The algorithm is described in Figure 9. When all the
root components are classified, we start the second-pass, which is
described in Figure 10.

The main drawback of the classic CCL algorithm is its
large memory consumption. During the first-pass, the number
of unique labels will be determined by the number of unmerged
components in the whole page. For example, for the binary im-

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.3



Figure 9: Algorithm 2 – Classification of component array.

age in Figure 6(a), where there are only three disjoint regions,
seven labels are used during the first-pass. The number of labels
will then determine the length of the component array. Buffer-
ing all the labels and the whole component array until the end of
the page during the first-pass makes the algorithm impossible for
hardware implementation. However, if we look at the fifth row in
Figure 6(b), where the first white pixel is labelled with ”5”, com-
ponents 1-4 have ended already. Instead of continuing down to
assign labels, if we could classify those ended components and re-
label those previous pixels, then their labels would not be needed
anymore and could be recycled for the following pixels to use.
What’s more, the memory for their feature sets could also be re-
leased. Next, we will propose a strip-based processing method
that will be delineated in the following section.

Figure 10: Algorithm 3 – Second-pass of CCL.

2.4 Strip-based CCL Algorithm
If we define a strip to be a little bit taller than the height of a

regular text character and the same width as the input image, then
an input image can be divided into many strip regions, as shown in
Figure 11(a). The red lines are the strip boundaries that separate
every pair of adjacent strips. Now, an object in the binary image
can fall into one or several strip regions. We can group all the
objects by the number of strips they span. If a component crosses
fewer than two strip boundaries, it will be defined as a bounded
component, otherwise it is an unbounded component, like the one
at the bottom in Figure 11(a). For the three object types we have:
symbol, raster, and vector, a symbol object is usually small. So
it is expected to be a bounded component; and a vector object
which is usually very large is expected to be an unbounded com-
ponent. The raster objects can be either bounded or unbounded,
but can be distinguished by their roughness. The classification is
summarized in Figure 11(b).

For our first-pass labelling, it is the same as before, except
that we only label one strip at a time. But at the start, we label
the first two strips. Then, we classify all the root components

that are above the current strip boundary. Figure 12(a) indicates
that the first two strips have been labeled, and only component 1
and component 2 have been classified. Assuming component 1 is
classified as Class 1 (a component of interest) and component 2 as
Class 2 (not of interest), their classifications are recorded in each
root component in the component array. The second-pass will
start right after the classification is done; and only the previous
strip is processed, which is the first strip in Figure 12(b). The
reason why we do not process the second strip is that component
3 has not yet been classified. Figure 12(b) is the result after the
second-pass of the first strip. As we can see, all the labels in
the first strip have been replaced by their class labels. Also, if a
component ended in the previous strip, for example component
1 in Figure 12(b), its memory will be recycled; and its location
in the component array will be marked as available. The second-
pass will be followed by the first-pass labelling of the next strip. In
Figure 12(c), the label ”1” recycled from the previous component
is now used for this new component. The first-pass labelling of
the current strip and the second-pass relabelling of the previous
strip will alternate downward with a classification step between
each first-pass labeling and second-pass labeling until the whole
page has been relabeled.

There is a special case; and that is component 3, which is an
unbounded component. For an unbounded component, we will
force it to be classified at the second strip boundary it crosses, as
shown in Figure 12(c). The classification is based on the features
of the pixels that are above its second boundary. In this example,
we do not take the bottom two pixels in Figure 12(c) into consid-
eration when we classify component 3. Also, when we label strip
4 in Figure 12(e), instead of assigning label ”3” to the to bottom
two pixels, we will assign the class label directly, since compo-
nent 3 has already been classified. This allows the class labels
to carry across the strip boundaries, and prevents label ”3” from
propagating all the way down the page, and being unavailable for
recycling.

Even if we recycle components at each strip boundary, there
are still a lot of components, such as single pixel components that
are not of interest to us. However, these still need the memory
maintained before we reach the strip boundary. An extra function
is added to our algorithm that will check at each row all the root
components to determine which of them have already ended. This
can be done by comparing the maximum vertical coordinate of a
root component to the row counter, which is pointing to the cur-
rent row to which we are assigning labels. If a root component
has ended on the current row, we could classify it right away. And

(a) Binary image separated
into strips.

(b) Classification of objects.

Figure 11: Illustration of strip-based processing. (a) is the binary
image with strip boundaries. (b) is the classification algorithm.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.4



(a) First-pass on strip
1&2.

(b) Second-pass on strip 1. (c) First-pass on strip 3.

(d) Second-pass on strip 2. (e) First-pass on strip 4. (f) Second-pass on strip 3.
Figure 12: Strip-based processing.

if the classification result is Class 2, we will free and recycle this
root component, as well as all its leaf components; but the labels
(the same as the indices of their associated components) remain
unchanged. This allows us to recycle those unneeded components
more frequently. However, during the relabelling process of the
second-pass, it is possible that a pixel has no component asso-
ciated with it because its associated component may have been
freed. If this is the case, this pixel will be classified as Class 2,
because only a Class 2 component will be freed during the first-
pass. If a pixel does have a component associated with it, it does
not imply that this pixel is a member of this componenft. We will
have to compare the location of this pixel to the vertical range of
this component. If the pixel is outside of this range, it implies
that this pixel is not a member; and thus it should be classified as
Class 2. Otherwise, the pixel is a member of this component; and
it should carry the same classification result as the component. An
example of this algorithm is provided in Figure 13.

Figure 13: Recycling of labels.

As illustrated in Figure 13, after we have assigned labels to
the first row, the first pixel is assigned label 1; and it has ended
on the first row. We classify it and assume it is Class 2. Then its
component and label will be recycled immediately. The recycled
label will be used for the next pixel on row two. Assume it is also
Class 2, then the label will be recycled again for the next com-
ponent to use. Now if the last component has been classified as
Class 1, its component (component 1) and label (label ”1”) will be
retained; and label ”2” will become the next label to use. During
the second-pass, the top two pixels that have label ”1” are clearly
not the members of component 1 (the bottom three white pixels
are). However, these two pixels are not in the vertical range of
component 1, which spans from row 3 to row 5. Hence those two
pixels will be relabeled with Class 2 directly. In contrast, those
three adjacent pixels which are in the range will be relabeled with
Class 1, which is the same class that is assigned to component 1.

2.5 Basic Architecture
The architecture of our algorithm is shown in Figure 14. Row

Buffer has three rows of input image pixels. At each processing
cycle, only one row from the input image will be loaded to replace
the oldest row in Row Buffer. Once Row Buffer is reloaded, it will
be processed by Edge Detection Logic which will generate a row
of Edge Magnitude Data. The CCL logic will first threshold the
Edge Magnitude data, then perform first-pass labelling of con-
nected component algorithm on them. The communication be-
tween CCL Logic and Label Buffer is bidirectional, because the
labels in Label Buffer are the labels of the previous row, which
will be used as we are assigning labels to the current row. And
the labels assigned for the current row will be overwritten back
to Label Buffer. As we are assigning labels, the features of each
pixel are extracted to Component Array; and the equivalent com-
ponents are merged at any time when there is conflict in the neigh-
borhood context. After we have assigned a row of labels into La-
bel Buffer, those labels will be copied to the corresponding row in
Object Map. The above process is repeated until the set of rows

Figure 14: Basic architecture for strip-based algorithm.

in Object Map reaches a strip boundary. Row Buffer will stop
loading input pixels, when signaled by Control Unit. The latter
will command Classification Logic to classify all the components
in Component Array, then record the classification results back
to Component Array. After classification is done, Control Unit

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.5



will send a signal to Object Map to read the classification results
from Component Array to replace the labels of the previous strip,
which is the second-pass of the connected component algorithm.
This completes the processing of one strip. The remaining strips
will be processed in the same way.

3.0 Experimental Results
The test pages in Figures 15(a)-(b) have 6400×4928 pixels,

at 600 ppi. Figures 15(b)-(c) are the corresponding object maps.
The strip is set to a height of 80 pixels. For each object map, the
symbol objects are colored with blue, raster objects with red, and
vector objects with green. However, the symbol ”1956” in Figure
15(b) is colored with green in Figure 15(d). This misclassification
is caused by the fact that the symbol is an unbounded component.
Also, its interior is very smooth. But for our application, which
is object-oriented halftoning, this misclassification is acceptable
since if a symbol object is too big, it will behave like a vector
object: large and smooth. And it is more reasonable to render
those large smooth objects with low frequency screening.

For the classic CCL algorithm, the number of components
is bounded by the image size. For our algorithm, it is bounded
by the strip size. In addition, because we recycle those out of
interest components in each row, the number of components we
need to maintain is greatly reduced. In Table 1, we summarize
the results from the testing 10 pages. Each page is 6400×4928
pixels. The first test page is Figure 15(a), the second test page
is Figure 15(b), and the remaining test pages are not shown
here. The comparison indicates that our algorithm can reduce the
number of components by an average of 97.46%.

Table 1: Number of components required for the object map gen-
eration algorithm based on the classic CCL algorithm and the im-
proved CCL algorithm.

Test
Page

Classic Improved Reduction

1 330906 8845 97.33%
2 285499 10072 97.47%
3 376013 11137 97.04%
4 206120 6692 96.75%
5 577283 10469 98.19%
6 363944 9675 97.34%
7 773979 12426 98.39%
8 449335 9381 97.19%
9 717915 12722 98.23%
10 217363 7196 96.69 %
Average 429836 9862 97.46 %

4.0 Conclusion
In this paper, we proposed an algorithm that processes an in-

put image one row at a time to generate an object map, which is
used for object-oriented halftoning to achieve better print quality.
The algorithm is a strip-based process, which only requires a strip
of memory buffered between the first-pass and the second-pass,
unlike the classic two-pass algorithm that requires the whole page
image to be buffered. To further reduce the memory, we recy-
cle unneeded components and labels at each row. The number

(a) (b)

(c) (d)
Figure 15: Example object maps generated by our strip-based al-
gorithm. (a)-(b) are the input test pages and (c)-(d) are the object
maps generated by our algorithm.

of components is significantly reduced by an average of 97.46%
with our algorithm. All the components will be classified as
symbol, raster, or vector depending on the number of strips they
span and their roughness. To render the image, we use high
frequency screening for symbol and raster objects, and low fre-
quency screening for vector objects. What’s more, an unbounded
symbol object, which behaves like a vector object, will be ren-
dered with low frequency, as well. The proposed algorithm is
hardware friendly, and suitable for hardware and ASIC implemen-
tation.

References
[1] Chen, Yi-Ting, et al. ”Segmentation for better rendering of mixed-

content pages.” IS&T/SPIE Electronic Imaging. International Society
for Optics and Photonics, 2013.

[2] Park, Seong Jun, et al. ”Halftone blending between smooth and detail
screens to improve print quality with electrophotographic printers.”
IS&T/SPIE Electronic Imaging. International Society for Optics and
Photonics, 2012.

[3] Rosenfeld, Azriel, and John L. Pfaltz. ”Sequential operations in dig-
ital picture processing.” Journal of the ACM (JACM) 13.4 (1966):
471-494.

[4] Kong, Weili, P. Cheng, and Zhuo Bi. ”Real-time Sobel edge detec-
tor.” Proceedings of the 6th PSU-UNS International Conference on
Engineering and Technology, 2013.

[5] Lifeng He, Yuyan Chao, and Kenji Suzuki. ”A run-based two-scan

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.6



labeling algorithm.” Image Processing, IEEE Transactions on 17.5
(2008): 749-756.

[6] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford (2001), ”Chapter 21: Data structures for Disjoint Sets”,
Introduction to Algorithms (Second ed.), MIT Press, pp. 498?524,
ISBN 0-262-03293-7

[7] Wu, Kesheng, and Ekow Otoo.” A simpler proof of the average case
complexity of union-find with path compression”. Technical Report
LBNL-57527, Lawrence Berkeley National Laboratory, 2005.

Authors’ Biographies
Zuguang Xiao

Zuguang Xiao is a Ph.D. student at Purdue University in Electrical
Engineering. He received his B.S. of Electrical Engineering degree from
Purdue University in 2013. His current research mainly focuses on image
processing, computer vision, and algorithms.

Mengqi Gao
Mengqi Gao received her B.S. in Electrical Engineering from Pur-

due University (2014), and is currently studying for the M.S. in Electrical
Engineering. Her primary area of research has been image processing,
image segmentation, and image quality evaluation.

Lu Wang
Lu Wang received her B.S. degree in Electrical Engineering from

Huazhong University of Science and Technology, Wuhan, China, in 2010,
and Ph.D. degree from the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN, in 2014. After graduating
from Purdue, Lu joined Google Inc. as a software engineer, where she
is currently working on Android camera technology. Her primary areas
of interests include image quality evaluation, computer vision, and image
processing.

Jan P. Allebach
Jan P. Allebach is Hewlett-Packard Distinguished Professor of

Electrical and Computer Engineering at Purdue University. Allebach is
a Fellow of the IEEE, the National Academy of Inventors, the Society for
Imaging Science and Technology (IST), and SPIE. He was named Elec-
tronic Imaging Scientist of the Year by IS&T and SPIE, and was named
Honorary Member of IST, the highest award that IST bestows. He has
received the IEEE Daniel E. Noble Award, and is a member of the Na-
tional Academy of Engineering. He currently serves as an IEEE Signal
Processing Society Distinguished Lecturer (2016-2017).

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-350.7


