Choice of distance metrics for RGB color image analysis

Amadou T. SANDA MAHAMA ${ }^{1,2}$, Augustin S. DOSSA ${ }^{1}$, Pierre GOUTON ${ }^{2}$
${ }^{1}$ Université d'Abomey-Calavi, Institut de Mathématiques et de Sciences Physiques, Porto-Novo, Benin, BP 613
${ }^{2}$ University of Burgundy, Laboratoire Le2i, Dijon, France, BP 47870

Abstract

Many image clustering algorithms use distance metric in the process of taking decision. When dealing with color images, a distance metric will be used to decide whether two pixels or regions are closed. Colorimetric distances proposed by CIE(Commission Internationale de l'Eclairage) are often used in Lab color space because it is a uniform chromaticity space. However, $R G B$ color space is useful to image processing and instead of converting color image from $R G B$ to another color space before processing, it might be interesting to have the same or better results without changing the color space. In our work, we implement different distance metrics and compare the result of k mean clustering algorithm in $R G B$ color space to the one in $L^{*} a^{*} b^{*}$ with the colorimetric distance. Two evaluation criteria have been used and we conclude that being in RGB color space and choosing adequately the distance metric, we obtain better segmentation results.

Keywords: distance metric, color image, color space.

Introduction

In many color image segmentations algorithms the metric distance is used to compare two color vectors or two regions. In most of cases, the color space used is the ones considered as perceptually uniform. These color spaces was proposed in 1976 by CIE [1].
So the color image segmentation algorithms often convert color images from RGB space to $L^{*} \mathrm{a}^{*} \mathrm{~b}^{*}$ or $\mathrm{L}^{*} \mathrm{u}^{*} \mathrm{v}^{*}$ color space and then apply the Euclidian distance metric for colors comparison. In our work, we maintain the image in RGB space and then use various distance metrics to determine the one that gives the best results for image segmentation. We present the color spaces and distance metrics. K-mean algorithm will enable us to conclude.

Color spaces

In color image classification or segmentation, one of the frequently encountered problems is to find the color space so that distance is proportional to one's ability to perceive changes in color.
RGB color space results from the transformation of the spectral power distribution in a three-dimension vector. This color space is device-dependant and gives sometimes negative values. CIE has proposed XYZ color space to overcome these drawbacks. Many other color spaces have been adopted in industries.
MacAdam has demonstrate that CIE chromaticity diagram presents limitations: this representation is non-uniform[2]. He's deduced from the former a uniform representation. Later in 1976 there was a large industry agreement on two standards CIELAB (L*a*b*) and CIELUV ($L^{*} \mathrm{u}^{*} \mathrm{v}^{*}$). The uniformity in these color spaces permit to define the colorimetric distance which is proportional to color difference.

Distance metrics

A distance is a [3] function d with nonnegative real values, defined on the Cartesian product $\mathrm{E} \times \mathrm{E}$ of a set E . It is called a metric on E if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{E}$:
$-\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if $\mathrm{x}=\mathrm{y}$ (the identity axiom);
$-d(x, y)+d(y, z) \geq d(x, z)$ (the triangle inequality);
$-\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ (the symmetry axiom).

Minkowsky distance

Minkowsky distance is a general form of many other distance measures.
$d(x, y)=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right|^{\mathrm{p}}\right)^{1 / \mathrm{p}}$

Euclidian distance

This distance is a Minkowsky distance for $\mathrm{p}=2$. It measures straight-line distance between two points.

$$
\begin{equation*}
d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} \tag{2}
\end{equation*}
$$

Canberra distance

Introduced in 1966 [4] and modified in 1967, this distance is useful for data scattered around an origin.
$d(x, y)=\sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|}{\left|x_{i}+y_{i}\right|}$
Each term of the summation has value between zero and one. In the particular case of the numerator and the denominator equal to zero, the term is defined equals to zero.

Squared chords distance

Squared chords distance measure de dissimilarity between two vectors.

$$
\begin{equation*}
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\sqrt{\mathrm{x}_{\mathrm{i}}}-\sqrt{\mathrm{y}_{\mathrm{i}}}\right)^{2} \tag{4}
\end{equation*}
$$

Chi-Square Distance

This distance is mainly used when dealing with qualitative variables.
$d(x, y)=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-y_{i}\right)^{2}}{\left|x_{i}+y_{i}\right|}}$

Chebychev distance or Queen-wise distance

Chebychev distance is a particular case of Minkowsky distance where $\mathrm{p}=\infty$. It is a measure of dissimilarity.

$$
\begin{equation*}
d(x, y)=\max _{i=1}\left|x_{i}-y_{i}\right| \tag{6}
\end{equation*}
$$

Manhattan or city-block distance

Manhattan distance is a particular case of Minkowski distance where $\mathrm{p}=1$. Manhattan distance is the distance between two points when a grid-like path is followed.
$d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

Mahalanobis distance

Mahalanobis distance is based on the correlation between two variables.
$d(x, y)=\sqrt{(x-y)^{T} C^{-1}(x-y)}$
Where C is the covariance matrix.

Cosine distance

It measures the degree of similarity of two vectors. His absolute value ranges from 0 to 1 . When this value approaches 1 , it means that the two vectors are getting closer. Commonly used in highdimensional vector spaces for information retrieval and text mining.
$\cos (\theta)=\frac{x \cdot y}{\|x\|\|y\|}$

CIE colorimetric color difference

After creation of CIELAB, CIE $1976 \Delta \mathrm{E}_{\mathrm{ab}}$ color-deference formulas have been defined based on Euclidian distance. In 1994 and 2001 the CIE94 $\Delta \mathrm{E}^{*}{ }_{94}$ and CIEDE $\Delta \mathrm{E}^{*}{ }_{00}$ formulas were published respectively to improve the first one [5].
In our work we focus our analysis on the two last color-difference metrics.

CIE94 $\Delta \mathbf{E}^{*} 94$

The philosophy results from the fact that Lab color space is not totally uniform. So some weighting functions and parametric factors have been added to improve the first formula.
$\Delta \mathrm{E}_{94}^{*}=\sqrt{\left(\frac{\Delta \mathrm{L}^{*}}{\mathrm{~K}_{\mathrm{L}} \mathrm{S}_{\mathrm{L}}}\right)^{2}+\left(\frac{\Delta \mathrm{C}_{\mathrm{ab}}^{*}}{\mathrm{~K}_{\mathrm{C}} \mathrm{S}_{\mathrm{C}}}\right)^{2}+\left(\frac{\Delta \mathrm{H}_{\mathrm{ab}}^{*}}{\mathrm{~K}_{\mathrm{H}} \mathrm{S}_{\mathrm{H}}}\right)^{2}}$
Where
$\Delta \mathrm{L}^{*}=\mathrm{L}_{1}^{*}-\mathrm{L}_{2}^{*}$
$\Delta \mathrm{a}^{*}=\mathrm{a}_{1}^{*}-\mathrm{a}_{2}^{*}$
$\Delta \mathrm{b}^{*}=\mathrm{b}_{1}^{*}-\mathrm{b}_{2}^{*}$
$C_{i}^{*}=\sqrt{a_{i}^{* 2}+b_{i}^{* 2}} \quad i=1,2$
$\Delta C_{a b}^{*}=C_{1}^{*}-C_{2}^{*}$
$\Delta H_{a b}^{*}=\sqrt{\Delta a^{* 2}+\Delta b^{* 2}+\Delta C_{a b}^{*}{ }^{2}}$
$\mathrm{S}_{\mathrm{L}}=1$,
$S_{C}=1+K_{1} C_{1}^{*}$
$S_{\mathrm{H}}=1+K_{2} C_{1}^{*}$
$\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{H}}=1$ use to be unit.
The value of the weighting factors K_{L}, K_{1}, K_{2} depend of the application
For graphic arts $\mathrm{K}_{\mathrm{L}}=1, \mathrm{~K}_{1}=0.045, \mathrm{~K}_{2}=0.015$
For textiles $\mathrm{KL}=2, \mathrm{~K} 1=0.048$, K2 $=0.014$

CIEDE $\Delta \mathbf{E}^{*} \mathbf{0 0}$

Given two colors in Lab color space ($\mathrm{L}_{1}, \mathrm{a}^{*}{ }_{1}, \mathrm{~b}^{*}{ }_{1}$) and ($\mathrm{L}_{2}, \mathrm{a}^{*}{ }_{2}$, $\mathrm{b}^{*}{ }_{2}$, we get the CIEDE $\Delta \mathrm{E}^{*}{ }_{00}$ color difference by:
$\Delta \mathrm{E}_{00}^{*}=\sqrt{\left(\frac{\Delta \mathrm{L}^{\prime}}{\mathrm{K}_{\mathrm{L}} \mathrm{S}_{\mathrm{L}}}\right)^{2}+\left(\frac{\Delta \mathrm{C}_{\mathrm{ab}}^{\prime}}{\mathrm{K}_{\mathrm{C}} \mathrm{S}_{\mathrm{C}}}\right)^{2}+\mathrm{R}_{\mathrm{T}} \frac{\Delta \mathrm{C}_{\mathrm{ab}}^{\prime}}{\mathrm{K}_{\mathrm{C}} \mathrm{S}_{\mathrm{C}}} \frac{\Delta \mathrm{H}_{\mathrm{H}}^{*} \mathrm{~S}_{\mathrm{H}}^{*}}{}}$
See details on steps to have the final result in [5].

Experiments and results

Despite the drawbacks of RGB color space, we've decided to maintain images in RGB color space and then vary the distance metrics for image segmentation using K-mean algorithm. We compare the results obtained with the ones in Lab color space. In Lab space, the metrics used are colorimetric distances.
We've used matlab 7 and twenty images picked from Berkeley database [6]. For evaluation of the segmentation results we've used Levine and Nassif intra-region uniformity and inter-region contrast criteria.
The intra-region uniformity is inversely proportional to the variance of a considered feature values of the pixels belonging to a region.
The inter-region contrast is computed between adjacent regions. It is assumed that a uniform feature value of two adjacent regions is the average of the feature values of these regions. See detail of the computation in [7].
The following tables give the segmentation evaluation results. The first three tables give the results the segmentation evaluation using K-mean and different distance metrics. The last table shows segmentation evaluation results when the colorimetric color difference CIE94 and CIEDE00 are used.
For each image, the distance metric that provided the best segmentation score is boldfaced.
Recall that the smaller Levine and Nassif intra-region uniformity criterion score is, the better the segmentation result is. The higher Levine and Nassif inter-region contrast criterion score is, the better the segmentation result is.

Table 1: Segmentation score in RGB space

	Euclidean		Cityblock		C o s i n e	
	intra	inter	Intra	inter	intra	inter
3096	2.45	0.05	1.58	0.05	4.09	0.09
8023	4.29	0.04	3.90	0.04	14.42	0.02
12084	5.68	0.08	10.38	0.08	14.52	0.05
14037	5.02	0.12	3.12	0.12	7.42	0.18
16077	8.43	0.08	7.17	0.08	29.11	0.03
19021	5.84	0.11	5.88	0.11	22.64	0.08
21077	7.69	0.06	7.29	0.06	25.51	0.06
24077	7.23	0.08	8.30	0.09	24.20	0.09
33039	6.76	0.10	6.04	0.11	10.82	0.11
37073	9.34	0.05	3.79	0.05	19.68	0.05
38082	1.85	0.10	1.82	0.10	6.23	0.08
38092	4.99	$\mathbf{0 . 0 7}$	5.71	0.08	52.46	0.04
41033	3.26	0.06	7.07	0.07	17.84	0.07
41069	3.44	$\mathbf{0 . 0 7}$	5.89	0.07	21.30	0.05
42012	3.45	0.09	5.86	0.10	8.41	0.13
42049	4.71	0.04	4.84	0.04	20.16	0.08
43074	2.23	0.07	3.14	0.08	10.01	0.03
45096	9.39	0.14	$\mathbf{5 . 7 9}$	$\mathbf{0 . 1 3}$	19.17	0.16
54082	4.02	0.07	3.70	0.07	8.44	0.08
55073	5.40	$\mathbf{0 . 1 3}$	6.75	0.13	19.82	0.15

Table 4: Segmentation score in Lab space

Table 2: Segmentation score in RGB space

	Chi-Square		Minkowski_5		Mahalanobis	
	intra	inter	intra	inter	intra	inter
3096	1.64	0.05	1.57	0.05	2.94	0.05
8023	4.05	0.04	4.03	0.04	8.51	0.03
12084	11.06	0.08	4.92	0.08	10.67	0.09
14037	3.07	0.14	5.00	0.11	8.06	0.13
16077	7.96	0.09	9.34	0.09	12.47	0.07
19021	10.84	0.11	13.15	0.12	14.17	0.11
21077	7.93	0.06	4.61	0.07	11.10	0.04
24077	7.84	0.08	6.61	0.08	23.66	0.09
33039	7.12	0.11	6.66	0.11	9.83	0.10
37073	5.24	0.06	3.58	0.08	14.04	0.05
38082	2.39	0.10	1.98	0.10	4.53	0.07
38092	7.48	0.08	7.68	0.08	22.44	0.04
41033	5.78	0.06	5.96	0.07	14.18	0.05
41069	5.98	0.07	6.35	0.07	12.72	0.05
42012	4.76	0.10	6.00	0.10	11.52	0.09
42049	4.41	0.04	5.84	0.04	11.21	0.05
43074	2.51	0.07	2.01	0.07	7.08	0.07
45096	8.60	0.12	8.45	0.10	24.95	0.22
54082	4.49	0.08	4.60	0.05	3.85	0.05
55073	6.60	0.13	5.50	0.12	13.80	0.09

Table 3: Segmentation score in RGB space

	Queenise		Squarredchords		C an b erra	
	intra	inter	intra	inter	intra	inter
3096	1.61	0.5	$\mathbf{1 . 3 9}$	$\mathbf{0 . 0 5}$	1.87	0.05
8023	4.25	0.04	4.53	0.04	$\mathbf{3 . 6 5}$	$\mathbf{0 . 0 4}$
12084	5.23	0.07	5.85	0.08	10.15	0.08
14037	4.38	0.11	3.42	0.15	$\mathbf{2 . 9 5}$	$\mathbf{0 . 1 2}$
16077	6.33	0.08	$\mathbf{5 . 0 8}$	$\mathbf{0 . 0 8}$	9.00	0.08
19021	$\mathbf{4 . 3 6}$	$\mathbf{0 . 1 0}$	6.43	0.11	9.11	0.11
21077	5.18	0.07	7.97	0.06	7.65	0.06
24077	7.58	0.09	7.39	0.08	7.55	0.08
33039	6.56	0.10	5.94	0.11	$\mathbf{5 . 8 5}$	$\mathbf{0 . 1 1}$
37073	3.80	0.07	9.67	0.06	$\mathbf{2 . 8 7}$	$\mathbf{0 . 0 6}$
38082	2.11	0.11	$\mathbf{1 . 6 0}$	$\mathbf{0 . 1 0}$	1.82	0.10
38092	5.93	0.08	5.08	0.07	5.35	0.07
41033	$\mathbf{3 . 1 4}$	$\mathbf{0 . 0 6}$	5.52	0.06	4.42	0.06
41069	3.60	0.07	3.68	0.07	3.61	0.07
42012	$\mathbf{3 . 0 3}$	$\mathbf{0 . 0 9}$	9.24	0.12	5.15	0.10
42049	6.5	0.04	4.71	0.04	4.58	0.04
43074	2.68	0.07	2.70	0.07	2.15	0.07
45096	14.67	0.10	12.27	0.12	8.75	0.12
54082	7.60	0.04	4.25	0.08	$\mathbf{3 . 0 4}$	$\mathbf{0 . 0 8}$
55073	5.47	0.11	6.13	0.13	5.93	0.13

	Euclidean		$\Delta \mathrm{E}^{*} 94$		$\Delta \mathrm{E}^{*} 00$	
	Intra	Inter	intra	inter	intra	inter
3096	$\mathbf{1 . 5 2}$	$\mathbf{0 . 0 5}$	1.91	0.05	1.55	0.05
8023	4.30	0.04	3.36	0.04	$\mathbf{3 . 3 5}$	$\mathbf{0 . 0 4}$
12084	$\mathbf{5 . 6 3}$	$\mathbf{0 . 0 8}$	7.37	0.09	9.01	0.09
14037	$\mathbf{3 . 6}$	$\mathbf{0 . 1 4}$	4.25	0.12	5.94	0.16
16077	5.50	0.06	7.69	0.07	$\mathbf{5 . 1 5}$	$\mathbf{0 . 0 6}$
19021	7.56	0.10	$\mathbf{6 . 8 8}$	$\mathbf{0 . 1 1}$	11.42	0.11
21077	$\mathbf{5 . 1 5}$	$\mathbf{0 . 0 6}$	6.98	0.06	5.32	0.06
24077	6.41	$\mathbf{0 . 0 7}$	10.00	0.09	11.03	0.08
33039	6.59	0.10	6.54	0.10	$\mathbf{5 . 7 4}$	$\mathbf{0 . 1 0}$
37073	9.63	0.05	4.65	0.05	$\mathbf{3 . 7 1}$	$\mathbf{0 . 0 6}$
38082	1.60	0.10	$\mathbf{1 . 4 8}$	$\mathbf{0 . 1 0}$	2.00	0.10
38092	5.00	0.06	$\mathbf{4 . 3 5}$	$\mathbf{0 . 0 6}$	4.41	0.07
41033	3.94	0.07	$\mathbf{3 . 8 8}$	$\mathbf{0 . 0 7}$	5.46	0.07
41069	3.48	$\mathbf{0 . 0 7}$	3.58	0.06	3.56	0.06
42012	3.22	$\mathbf{0 . 0 8}$	5.16	0.09	3.74	0.10
42049	4.41	0.04	$\mathbf{4 . 2 0}$	$\mathbf{0 . 0 4}$	4.36	0.04
43074	3.63	0.07	3.32	0.07	$\mathbf{2 . 2 8}$	$\mathbf{0 . 0 7}$
45096	8.60	0.14	8.87	0.12	11.84	0.14
54082	2.83	0.08	3.73	0.06	$\mathbf{2 . 5 3}$	$\mathbf{0 . 0 8}$
55073	6.55	0.13	8.27	0.12	8.64	0.13

Discussion and conclusion

Only $7 / 20$ of scores are better when we use the colorimetric difference metric in $L^{*} a^{*} b^{*}$ space.
The distance metrics squared chords, Canberra, Queenwise and Minskowsky $5(\mathrm{p}=5)$ give better results in RGB space.
Considering the sample of images on wish we work, Lab color space is not always the better color space for image segmentation. Better results are obtained in RGB color space with some distance metrics different from Euclidian distance. Depending to the image and the processing, we have to choose the more suitable color space and distance metric. Further experiments could be done to map image categories to most suitable distance metrics.

References

[1] Charles Poynton, A Guided Tour of Color Space, New Foundations for Video Technology Proceedings of the SMTPE Advanced Television and Electronic Imaging Conference), 1995, pages 167 180.
[2] D. Pascale, A review of RGB color spaces, 2003.
[3] Peter Grabusts, The choice of metrics for clustering algorithms, Proceedings of the 8th International Scientific and Practical Conference. Volume I1, 2011.
[4] Lance, G. N., Williams, W. T. , Computer programs for hierarchical polythetic classification ("similarity analysis"),. Computer Journal pp 60-64, 1966
[5] Gaurav Sharma, Whencheng Wu, E. N. Daalal, The CIEDE2000 Color-Difference formula: implementation notes, supplementary test
data and mathemetical observations, color Research and Applications, vol. 30, no.1, pp. 21-30, 2000.
[6] https://www.eecs.berkeley.edu/, the Berkeley Segmentation Dataset and Benchmark.
[7] Levine, M.D.; Nazif, Ahmed M., "Dynamic Measurement of Computer Generated Image Segmentations," in Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.PAMI-7, no.2, pp.155-164, March 1985.

Author Biography

Augustin S. DOSSA received his MS degree in physics from the Université d'Abomey-Calavi (2005) and then is pursuing his MS in Computer Science.

Amadou T. SANDA MAHAMA, received his MS degree in Computer Science at Université d'Abomey-Calavi (2009), he is PhD student at Université d'Abomey-Calavi and University of Burgundy (France).

Professor, Pierre GOUTON. has obtained a PhD in Components, Signals and Systems at the University of Montpellier 2 (France), 1991. He has integrated the Department of Image Processing in the Laboratory of Electronics, Data-processing and Images. Since his main topic research carries on the segmentation of Images by Linear methods or None-linear (mathematical morphology, classification), Color Science, Multispectral Images, Micro and Nano Sensor.

