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Abstract 

We develop and implement a fuzzy logic algorithm able to 
determine which areas of the CIE-Lab color space correspond, 
with different weights, to which conventional color names (red, 
green, blue, yellow, magenta, purple, brown, etc.)Parameters of 
the underlying model are estimated using data derived from a 
psychophysical experiment. The resulting color naming 
application will benefit developers of computer vision and image 
classification applications, graphic designers, imaging hardware 
and software manufacturers, and other companies and individuals, 
including those involved in publishing, advertisement, and 
commercial photography. 

Introduction  
Knowledge in the area of color naming is valuable in the 

context of computer vision, image classification, and various other 
aspects of machine learning. Color naming is also important to 
graphic designers, imaging hardware and software manufacturers, 
image quality experts, color scientists, and other companies and 
individuals, including those involved in publishing, advertisement, 
and commercial photography. 

Berlin and Kay [1] researched verbalization of color in 
numerous natural languages and postulated the existence of 
universal color categories. They described a set of 11 basic color 
categories found in most evolved languages. In English, these 
basic categories are named white, gray, black, yellow, orange, red, 
pink, purple, blue, green, and brown. We followed the fundamental 
approach of Berlin and Kay. However, with the needs of imaging 
scientists in mind, we have grouped white, gray, and black colors 
in one category named neutral, substituted magenta for pink, and 
expanded two of the original category names to purple/violet and 
blue/cyan.  

Benavente et al. [2] used a nearly identical set of categories in 
their study that involved slicing the standard quasi-uniform 
CIE-Lab color space [3] at several constant values of L. (They kept 
pink. Our neutral category corresponds to their achromatic 
category.) Following the approach pioneered by Mojsilovic [4] and 
Seaborn et al. [5], they formulated the task of color categorization 
as a decision problem described within the framework of the fuzzy 
set theory proposed by Zadeh [6]. For the 2D L-slices, Benavente 
et al. built parameterized color membership functions μ(a,b). They 
pointed out that, ideally, color memberships “should be modeled 
by three-dimensional functions,” i.e. functions from CIE-Lab to 
[0,1], and characterized finding such parametric functions as “a 
very complicated task.”  

Our paper aims to fill the gap using a novel technique that 
employs 3D convex hull [7], a well-known computational 
geometry algorithm utilized for the purpose of color gamut 
characterization by Guyler [8]. 

Benavente et al. based their learning data set consisting of 
1617 samples on the classic Munsell Book of Colors [9] measured 
using the standard D65 illuminant. We chose a modern set of 1755 
color solid chips coated by PANTONE [10] measured and viewed 
under the standard D50 (5000K) illuminant, which is closer to our 
regular white daylight most of the time, D65 being more consistent 
with the sunlight at noon. For details on fine distinctions between 
the D50 and D65 illuminants, along with the newer ID50 and ID65 
illuminants, the reader is referred to the comprehensive monograph 
by Hunt [11]. 

Our paper is structured as follows. The next section 
characterizes our learning data set in more detail. The section after 
that expounds the fuzzy logic approach to color categorization. The 
psychophysical experiment used to generate the data for building 
the model is described next. We then explain our novel technique 
for generation of 3D color membership functions based on the 3D 
convex hull algorithm. Finally, the conclusions are reported and 
future work directions are discussed. 

Learning Data Set 
For our psychophysical experiment, we selected a 1755-color 

set of PANTONE solid chips coated. According to the 
manufacturer, the colors in the new edition are presented in a 
“chromatic arrangement.” The modern PANTONE technology 
uses 18 ink bases to ensure very high reproducible gamut volume. 
A photograph of the book containing the chip set is shown in 
Fig. 1.  

 
Figure 1. PANTONE solid chips coated 

The chips were measured using a handheld GretagMacbeth 
Eye-One Pro spectrophotometer ran under the auspices of X-Rite 
ColorPort 1.5.4 software. The CIE 1931 Standard Colorimetric 
Observer (2-degree observer) measurement data was recorded for 
both D50 and D65 standard illuminants. The spectrophotometer 
was tested and calibrated prior to the beginning of measurements 
and re-calibrated after each sheet (approximately every 7 
measurements). It is worth noting that the median ΔE76 color 
difference between the D50 and D65 data points for the set is 3.1, 
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just above the approximate JND (just noticeable difference) of 2.3 
[12], with the maximum at 11.6. 

We have also measured an older set of 1123 PANTONE solid 
chips coated [13] with the same spectrophotometer. For the 1099 
colors that the two sets have in common, the median ΔE76 color 
difference is 4.7, with the maximum value at 25.6 and other values 
above 20 found mostly in the yellow region, where the color 
differences were noticeable, but unlikely to impact color category 
attribution. The photographs reproduced in Fig. 2 illustrate this 
situation by showing two color strips detached from sheets of old 
chips and placed over the corresponding sheets of new chips. 

 
Figure 2. Old PANTONE chips atop new ones 

Different techniques for measurement of color gamut volume 
are known [14], but the absolute volume numbers are not as 
important for this study as sampling uniformity and complexity of 
the reproducible color gamut shape. Projection of PANTONE 
colors with 70≤L≤80 on the (a, b) plane is shown in Fig. 3. 

 
Figure 3. Projection of PANTONE colors with 70≤L≤80 on the (a, b) plane 

Finally, we measured substrate white points for both chip sets 
in CIE-Lab coordinates. They proved similar: (95.95, 0.95, -5.5) 
for the new set and (94.7, -0.23, -0.3) for the old one. This 
measurement was performed to supplement the lack of white 
among PANTONE colors. 

Fuzzy Logic Approach 
The term fuzzy logic refers to the logic of fuzzy sets. The 

concept of a fuzzy set [6] is a natural generalization of the classical 
notion of a set. In fuzzy set theory, the classical sets such that each 
element either belongs or does not belong to a set are called crisp 
sets. A fuzzy set A consists of a crisp set X and a membership 
function μA: X→[0, 1], where 1 describes the situation when an 
element of X belongs to A, and 0 means the opposite. X is called 
the universal set of A. In our application, for example, fuzzy logic 
allows us to categorize a yellow-green color as 50% yellow and 
50% green, or 60% yellow and 40% green, depending on its CIE-
Lab color space coordinates. The more general restriction on the 
membership functions involved in formalization of the color 
naming task for n color categories Ck, k=1,…,n, can be expressed 
by the formula  

∑ 𝜇𝐶𝑘

𝑛
𝑘=1 (𝒔) = 1, (1) 

where a sample s corresponds to a point in the CIE-Lab color 
space. In our case, n=9 and  

𝐶𝑘 ∈ {
𝑁𝑒𝑢𝑡𝑟𝑎𝑙, 𝑌𝑒𝑙𝑙𝑜𝑤, 𝑂𝑟𝑎𝑛𝑔𝑒, 𝑅𝑒𝑑, 𝑀𝑎𝑔𝑒𝑛𝑡𝑎,
𝑃𝑢𝑟𝑝𝑙𝑒𝑉𝑖𝑜𝑙𝑒𝑡, 𝐵𝑙𝑢𝑒𝐶𝑦𝑎𝑛, 𝐺𝑟𝑒𝑒𝑛, 𝐵𝑟𝑜𝑤𝑛

}.  (2) 

Each observer in our psychophysical experiment was asked to 
assign exactly one color category to each PANTONE color. (More 
details about the psychophysical experiment will be provided in 
the next section.) The resulting histograms for the samples were 
then converted to estimates of the corresponding membership 
function values as follows, using the approach first proposed by 
Dubois and Prade [15].  

If all observers agree that a sample s belongs to the category 
Ci, then we estimate μCi(s) = 1, and the other membership function 
value estimates for the sample s are zeros. Otherwise, the 
percentages of responses placing s in color categories Ck, k=1,…,n, 
are normalized to [0, 1] to become member function value 
estimates meeting the criterion from Eq. (1).  

In order to derive continuous membership functions from the 
statistical estimates computed for our set of samples, we had to 
choose a curve to describe the transitions between color categories. 
The simplest approach would result in the membership functions 
plotted along the a axis looking like those shown in Fig. 4. 

 
Figure 4. Simple one-dimensional membership functions 
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However, for the case of the border between two categories, 
we decided to adopt and adapt the approach of Benavente et al. 
that involves fitting the experimental data with a parameterized 
sigmoid function 

𝑆1(𝑥, 𝛽)  =  
1

1+𝑒−𝛽𝑥
, (3)  

where β is the parameter controlling the slope of the transition 
from 0 to 1 seen in Fig. 5, where dE denotes ΔE76 color difference 
measured along the x axis, which can be provisionally visualized 
as an imaginary “straight line” in the CIE-Lab color space. 

 
Figure 5. Sigmoid logistic function 

This variety of sigmoid functions is also known as the logistic 
function. In our interpretation, the “line” actually consists of two 
straight segments, one of which connects the point of interest to the 
closest point that belongs to the closest color category, and the 
other one connects the former to the closest point that belongs to 
the second closest color category. More details on how the initially 
one-dimensional approach is extended to 3D will be provided later, 
in the section on 3D color membership function generation. 
Meanwhile, we’d like to point out that other S-shaped functions 
were available, including the error function erf(x) plotted in Fig. 6. 

 
Figure 6. Error function 

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
. (4) 

Now that the reader has the general idea of what we’re going 
to do with the experimental data, let’s describe our psychophysical 
experiment in more detail. 

Psychophysical Experiment 
In this experiment conducted in a controlled lab at Purdue’s 

West Lafayette campus, the observers were instructed to examine a 
series of 254 PANTONE solid color chip sheets that were 
presented to them one-by-one in the order that the chip 
manufacturer characterized as “chromatic arrangement.” Each chip 
sheet represented between 4 and 7 colors, displayed in the viewing 
booth under the standard D50 lighting conditions. 

An advertisement describing the goal and procedure of the 
experiment was posted on campus. It was also sent out to EISL 
members publically via email using the EISL mailing list. 

Before the experiment, the observers were given an Ishihara 
colorblindness test. People who did not have normal trichromatic 
color vision or were not able to understand the instructions were 
excluded from subject pool. The number of subjects was capped at 
30. The subjects signed the informed consent form. They were not 
paid for taking part in the experiment. 

The viewers were asked to assign one and only one of several 
color categories to each PANTONE color examined. The assistant 
recorded their replies and presented the next sheet.  

Each color chip sheet was shown once. Each session of the 
experiment lasted up to 30 minutes.  

At the beginning of the session, each participant was assigned 
a unique “observer ID” that his/her answer set was associated with 
for the purpose of subsequent data processing and analysis. 

The color categories were listed in the Charge to Observers 
document as follows. 

a. NEUTRAL 

b. YELLOW 

c. ORANGE 

d. RED               

e. MAGENTA 

f. PURPLE/VIOLET 

g. BLUE/CYAN 

h. GREEN 

i. BROWN 

The observers were informed that the NEUTRAL category 
grouped together WHITE, GRAY and BLACK colors. 

The observers occasionally suggested other category names 
for future work, such as olive, beige, pink, terracotta, rosy, 
aquamarine, turquoise, teal, and navy blue. 

3D Color Membership Function Generation 
We began data processing by building nine 3D convex hulls 

of the CIE-Lab sample points corresponding to the PANTONE 
solid chips coated that all observers agreed to place in the same 
color category. The top-down view of the resulting convex hulls 
visualized using intuitive color coding to set face colors of the 
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triangles that these surfaces consist of according to their respective 
color categories is shown in Fig. 7.  

 
Figure 7. 3D convex hulls of color categories, top-down perspective 

While the neutral colors predictably formed a spindle-like 
shape around the L axis, it’s clear that some other divisions did not 
exactly follow the constant hue planes. It is especially difficult to 
see the convex hull for the brown color category under the orange 
and yellow ones in Fig. 7, so we provide the bottom-up view in 
Fig. 8 below to remedy that. 

 
Figure 8. 3D convex hulls of color categories, bottom-up perspective 

While the large gap between green and blue/cyan regions may 
indicate the need to introduce a separate 
cyan/aquamarine/turquoise/teal category of blue-green colors, 
some of the convex hulls shown in Figures 7 and 8 appear to 
intersect when, in fact, they don’t. Fig. 9 shows the gaps that 
separate the convex hull for the green color category from those 
for yellow, brown and neutral categories. It also offers a better 
view of the border between orange and brown. 

 
Figure 9. 3D convex hulls of color categories, an orthogonal projection 

The illustrations above also tell us that most of the volume of 
the gaps can be “filled” by membership function transitions 
between two color categories, e.g., yellow-green, orange-red, 
neutral-green. At the same time, we see that, in some cases, up to 
four nonzero membership function values may be needed to 
characterize a color, say, yellow-orange-brown-neutral, orange-
red-brown-neutral, or red-magenta-brown-neutral, the latter being 
something as mundane as black cherry. 

Before we continue to handle the transitions, let’s first 
observe that it is fairly straightforward to determine with good 
precision if a given point lies within a convex hull. Indeed, the 
center of mass of the vertices of the convex hull is guaranteed to 
lie inside it, by virtue of convexity. Furthermore, the sum of the 
volumes of all tetrahedra formed by the center of the mass and the 
triangular faces of the convex hull is the hull’s volume. If a point is 
located inside the convex hull, then the sum of the volumes of all 
tetrahedra formed by the point and the faces of the convex hull is 
also equal to that volume. If the point is located outside, then the 
sum is larger than the hull’s volume.  To take computational errors 
into account, we test if the difference between the two 
aforementioned sums is below a very small finite threshold. If a 
point is inside a convex hull for the color category Ci, we assign 
μCi(s) = 1. But what about the convex hull intersections? 
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Once the number of observers in our psychophysical 
experiment becomes sufficiently large, the convex hulls of the 
sample points such that μCi(s) = 1, i=1,…,9, will no longer 
intersect. Nevertheless, we implemented a redundant check that 
would simply assign μCi(s) = 1/m to a point belonging to an 
intersection of m convex hulls, for the values of i corresponding to 
any of the hulls that formed the intersection. For all other values of 
i, we assigned μCi(s) = 0 in order to meet the criterion from Eq. (1). 

In order to take care of the extrapolation to the outside area 
and the interpolations needed to fill the gaps between the convex 
hulls, we first observe that the computation of the minimum 
Euclidean distance from a point to a triangle in 3D is a well-known 
problem in computational geometry. Two practical solutions are 
given by Jones [16]. The surface of a convex hull consists of 
triangular faces, so we can now calculate the minimum distance 
from any point in CIE-Lab located outside of all convex hulls to 
each convex hull as the smallest of the minimum distances from 
the point to the convex hull’s faces. By the definition of the ΔE76 
color difference, the calculated distance is equal to the ΔE76 color 
difference between the point and the closest point that our model 
takes to belong to the color category corresponding to the convex 
hull.  

To develop a complete 3D solution allowing up to four 
nonzero membership function values per point, we impose three 
ΔE76 thresholds, T1>T2>T3.  

If the ΔE76 color difference between the point and the second 
closest convex hull exceeds T1, then our algorithm concludes that 
the second closest color category is too far away, so we assign 
μCi(s) = 1 for the value of i corresponding to the closest color 
category and μCi(s) = 0 for all other values of i. This provision 
solves the extrapolation part of the problem. We extrapolate by 
placing an outside point into the closest color category.  

Otherwise, if the ΔE76 color difference between the point and 
the third closest convex hull exceeds T2, then our algorithm 
concludes that the third closest color category is too far away, and 
we apply the parameterized fitting technique described earlier, in 
the section on the fuzzy logic approach. This case takes care of the 
gaps between two color categories. Nonzero values are assigned to 
the membership functions for the two closest color categories. 

Otherwise, if the ΔE76 color difference between the point and 
the fourth closest convex hull exceeds T3, then our algorithm 
concludes that the fourth closest color category is too far away. 
Let’s denote the distances from the point to the three closest color 
categories Δ1≤Δ2≤Δ3. Clearly, Δ1+Δ2≤Δ1+Δ3≤Δ2+Δ3. We apply the 
technique for two categories to each of the three category pairs and 
then calculate weighted averages of the resulting membership 
function values so that the values computed for the two closest 
color categories taken separately are weighted by 

𝑤1,2 =  
∆2+∆3

2(∆1+∆2+∆3)
, (5) 

the values computed for the closest color category and the 
third closest color category taken separately are weighted by  

𝑤1,3 =  
∆1+∆3

2(∆1+∆2+∆3)
, (6) 

 

and the values computed for the second and third closest color 
categories are weighted by 

𝑤2,3 =  
∆1+∆2

2(∆1+∆2+∆3)
. (7) 

Finally, if the thresholding process indicates that we need to 
accommodate four closest color categories, then we can denote the 
corresponding distances Δ1≤Δ2≤Δ3≤Δ4, apply the technique for 
three categories to each of the four possible category triplets, and 
then calculate weighted averages of the resulting membership 
function values so that the values computed for the three closest 
color categories taken separately are weighted by 

𝑤1,2,3 =  
∆2+∆3+∆4

3(∆1+∆2+∆3+∆4)
, (5) 

and so on. It is straightforward to extend our technique if 
there is a need to allow for five or more nonzero membership 
function values per point in the CIE-Lab space.  

Conclusions and Future Work 
We conducted a psychophysical study to determine how naïve 

observers verbalize colors (categorize color patches into several 
named color categories). The observers viewed a large subset of 
PANTONE color chips under standard D50 lighting conditions. 
The PANTONE color chips were measured using a 
spectrophotometer. A program was written to analyze the 
psychophysical and measurement data to characterize color space 
areas that correspond to color names. Another program was 
developed to interpolate/extrapolate based upon the previously 
obtained characterization in order to categorize CIE-Lab colors 
automatically, using fuzzy logic.  

Our results to date confirm that substantial portion (> 90%) of 
the reproducible CIE-Lab volume can be covered by about a dozen 
common color category names specified. One of the possible 
directions for future work involves adding more color categories to 
the model.  

More work is also needed to complete comprehensive 
validation of the model. By that, we intend to confirm that 
computational geometry can be used as a basis to fit a model from 
which color classification can be conducted with an improved 
efficiency/accuracy tradeoff than other methods available, for both 
the training and prediction tasks. 

We developed a novel technique for definition of 3D 
membership functions to model color categories in CIE-Lab. To 
the best of our knowledge, we’re also the first to investigate the 
use of the 3D convex hull in the CIE-Lab space for the color 
naming task. Given that the actual reproducible color gamuts are 
well-known to have concavities [14], another direction for future 
work would be toward making an attempt to relax the convexity 
requirement. 

Our methodology for psychophysical analysis over a large 
reproducible color gamut appears to be unique, along with our 
selection of PANTONE chips for the training set. Thus we believe 
our work will also produce a new dataset for use in future research. 

So far, we have utilized the older ΔE76 color difference metric, 
which was easy to incorporate into our model thanks to its 
geometric simplicity (Euclidean distance). Yet another direction 
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for future work would be to investigate if the newer ΔE00 color 
difference metric can be used to improve the performance of our 
fuzzy logic algorithm. 

Finally, part of our work involved analyzing the PANTONE 
colors under the D50 illuminant. It may be useful on its own and 
was previously unavailable. 
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