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Abstract

This paper documents the development of a low-cost 2.5D
printing machine. The machine is being developed specifically to
consistently print combined colour and texture on to 2D surfaces.
The proposal is not so much to produce a painting machine in
emulation of the act of human expression, rather, to produce a
digital machine capable of consistently producing physically tex-
tured prints. Therefore the research also looks to develop accom-
panying software and data representation for a cohesive workflow
toward future 2.5D printing technology and its creative applica-
tions.

Introduction

This paper documents the development of a 2.5D printer
and the associated software. The research investigates the ability
to physically print combined colour and texture onto a 2D sub-
strate. The motivation is to explore human-analogous gestures for
medium deposition, toward a digital machine capable of physi-
cally reproducing painterly styles and to produce visual effects
which exploit the character of materials used. Our inspiration is
the work of old masters of painting, able to describe complex vi-
sual details with relatively few strokes[17].

To develop and investigate such a machine requires data to
drive its operation. Based on available resources the digital im-
age (jpg, png, etc.) has been selected as the research input. From
the digital image a software process generates an interpretation
as a composition of three dimensional vectors. These vectors are
then transformed into operational instructions for the 2.5D print-
ing machine. This paper documents the machine and software
process as the basis for future work.

To generate vectors from a digital image, Non-Photorealistic
Rendering (NPR) and its subset Stroke Based Rendering (SBR)
have been studied. NPR encompasses a body of computational
techniques to produce synthetic figurative or abstract art[9], as
well as alternative functional rendering for applications such as
Computer Aided Design [8]. The principle output of NPR al-
gorithms has been images rendered to a digital display (a com-
puter monitor). Whilst NPR and SBR methods often incorporate
sophisticated models and simulations of mediums[7][1][23][5],
implements[3] and substrates[2], the final rendered product flat-
tens any layers and depth into a 2D render for the digital display.

The presented research adapts and applies an NPR tech-
nique to produce actual paintings through a vector driven 2.5D
printer. Often NPR techniques are designed to emulate famous
painterly artist styles such as Matisse, Van Gogh, Seurat [24],
Kandinsky [25]; as well as genres of mark making including
calligraphic[16][20], line drawings[18][12], pen and ink [22],
hatching[11], spot colour[19], watercolour[5][11], op-art[12], and
anthropo-centric expression such as machine-vision based emo-
tional awareness[4].

We hypothesise that these prior works, whilst authored to
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generate data for a 2D digital display, may encapsulate useful in-
formation within their processes for machine operation. A key
challenge in adaptation is that a physical machine is constrained
to make a time-ordered progression of marks, and must work
with the limitations of physical materials. Mistakes can not be
easily erased, and unlike purely software implementations there
are no convenient filters to blend or rearrange the order of lay-
ers as a post-process. This paper documents the development of
a machine that in the future could accept varying painterly styles
of reproduction from software such as the NPR and SBR exam-
ples given, or otherwise operate from image file formats that store
printing data as 3D vector compositions rather than pixels.

Painting & Drawing Machines

This paper advances the idea within digital printing that it
is possible to render simultaneously both colour and texture in-
formation through gestural based deposition. This departs away
from the common progressive-scan technologies such as inkjet or
electrostatic, or stepwise decomposition methods like four-colour
separation and half-toning. This paper concerns the ability to con-
sistently print reproductions, rather than developing a machine
imbued with creativity to generate unique works of art. The re-
search contributes towards a 2.5D printing machine that operates
on the basis of vectors and direct write technology, normally asso-
ciated to additive layer manufacturing which deposit, fuse or bind
materials along paths of object geometries.

There is a history of computer controlled machines able to
create expressive marks. Most famously, the artist Harold Cohen
has developed algorithmic abstract art tied to physical realisation
by various machines, known as Aaron [10]. More contemporary,
eDavid[15][6] is an industrial robotic arm programmed to sim-
ulate a human painting process, incorporating a visual feedback
system to iteratively analyse, generate and place brush strokes
marks to approximate a source image. Similarly, Kudoh et al[14]
utilise an advanced humanoid robot, with multi-sensory feedback,
to further model how humans paint as a physical iterative pro-
cess. Paul[21] is a machine which incorporates an expert model
of sketching methods, and is a robotic embodied emulation of the
authors own artistic drawing style.

The above examples are evaluated as a whole by how well
they appear painterly or stylised in their output. The presented
research makes a distinction in the specific emphasis of approach;
to develop a machine capable of producing texture in the added
dimension in the form of relief on the 2D surface (2.5D). The
proposal is not so much to produce a painting machine in emu-
lation of the act of human expression, rather, to produce a digital
machine capable of consistently producing textured prints. There-
fore the research also looks to develop accompanying software
and data representation to produce a cohesive workflow toward
future 2.5D printing technology and its creative applications.
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Methodology

The developed methodology operates from a digital image
and derives further information to generate brush strokes. Figure
1 is used throughout this article as a point of discussion.

»

Figure 1. The digital source image used as discussion for this methodology,
with areas of interest annotated as A and B.

The source image is used through the methodology as a
reference for original colour information. From the source im-
age, texture directionality and edge strength are extrapolated and
stored per pixel. A segmentation of the image is generated using a
combination of the colour information, texture directionality and
edge strength information. Lastly, the segmentation, texture di-
rectionality and edge strength maps are used to generate brush
strokes as vectors to send to the 2.5D printing machine. These
process are given in overview in figure 2, and are detailed in the
following sub-sections.
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Figure 2. An overview of the brush stroke generation process. At (A) a

digital image as a colour refence and pixel position, (B) an image convolution
and colour difference are used to derive texture directionality and relative
edge strength, (C) colour information, edge strength and texture direction-
ality are used to generate a spatial segmentation of the source image - an
optional down sampling process may discard information from A and B prior
to segmentation, (D) information at steps B and C inform the generation of
brush strokes to print.

Once the processes for segmentation and brush stroke gener-
ation have completed once, a render is presented through a graph-
ical user interface (GUI), shown in figure 3. The GUI provides ac-
cess to the underlying variables and allows the user to re-segment
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the image, or alter stroke parameters per segmentation to generate
new brush strokes. The segmentations are presented to the user as
layers to print, ordered by edge strength (highlight priority). The
user is able to make their own creative interpretation of the image,
and the order layers are printed, which can be consistently physi-
cally realised as editions by the 2.5D machine. The GUI provides
calibration for the physical machine and operation controls.

Figure 3. A screenshot of the graphical user interface. The render can be
inspected per layer and at differing resolutions. Buttons and sliders around
the render expose algorithm variables, machine calibration and machine op-

eration controls.

2.5D Printing Machine

A low cost wood router kit with 3 degrees of freedom (X, y
and z) has been modified to carry a paint brush (or other depo-
sition tool). The machine has a printable area of 310 by 260mm
and a range of 40mm vertically. RepRap 3D printer electronics
the machine accepts the GCode protocol to determine movements
and speed of operation. Currently the machine does not have any
sensors other than mechanical switches to home the coordinate
system. The machine does not have automated colour changing
or a continuous loading mechanism for the brush. Instead a hu-
man operator mixes a colour manually, from which the printer
is programmed to return to the pot location and reload the brush
after a number of applied strokes.

Edge Detection and Texture Directionality

Edge detection and Texture Directionality are key compo-
nents of the presented methodology. Edge detection and tex-
ture directionality are determined through the image convolution
and colour difference calculations originally presented Kasao et
al[13], with the exception that HSV (hue, saturation, brightness)
has been used instead of CIELAB colour-space, and the texture
angles determined are not discrete whole number values in range
[0:15] and instead retain continuous value in the range [0:7]. The
relevant equations are stated here as adapted for clarity:

Cij=PFj*M;_ (D
Lij=Pj*xM3_; 2)
-1 -1 -1 -1 0 1
My =0 0 0| Mo=|-1 01 3)

1 1 1 -1 0 1

Where C;; is the result of the image convolution matrix M3_;
about the pixel P; at position 7, j within a 2D source image, and
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L;; is the result of the image convolution matrix M3_5 about the
pixel P;;j.

From equations 1, 2 and 3, equation 4 is used to determine
texture directionality (7;;) of a pixel at position i, j within a 2D
image and equation 5 is used to determine edge strength (E;;) of
a pixel at position i, j within the a 2D image.

B L T
Tj=tan™ (Z2)+(3) “)
ij
E;ji = log(L}+C*+1 5
ij=1log(Li; +Cij+1) (5)

Edge strength and texture directionality values are then di-
rectly associated per pixel in the image, later used to segment the
image and to derive brush strokes.
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Figure 4. Four examples of derived texture directionality, each marked with
the radius of adjacent neighbouring pixels included for an average direction-
ality weighted by edge strength.

Down Sampling

The current methodology operates at a resolution of one
pixel per mm relative to the working envelope of the 2.5D printer.
The brush as a deposition tool has not been effective at sub-
millimetre resolution. Therefore a high-resolution digital im-
age (dots-per-inch) has a redundancy (excess) of information in
machine-reproducable pixels per mm. However higher resolution
images are desirable as they are more data informative for the al-
gorithms to discern texture. For the later segmentation process it
computationally efficient to selectively discard pixel data.

The vector and motion emphasis of this research takes prior-
ity over colour. Therefore the down sampling algorithm operates
on the edge strength information of the image as the basis to retain
texture directionality, and lastly colour. For each new pixel in the
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down sampled image, the pixel with the strongest edge strength
from the region of redundant pixels is preserved. The texture di-
rectionality and colour information is copied without modifica-
tion. As a result of selectively down sampling by edge strength
colour information at this intermediary stage in the whole process
appears noisy, as shown in figure 5.
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Figure 5.
rescaled using Cubic Interpolation through GIMP 2 software. Right, the same
image selection down sampled by preserving pixels by edge strength, ex-
hibiting noisy colour information.

Example output from down sampling. Left, image selection

K-Means Segmentation

A k-means clustering algorithm has been implemented based
on the work of Kasao et al[13]. K-means clustering progressively
divides a dataset, in this case pixels of a digital image, into a pre-
determined number of segmentations. The algorithm generates
segmentations that are mutually exclusive image regions analo-
gous to a paint-by-numbers template. The algorithm determines
segmentations through a combinatorial evaluation of pixel spa-
tial position in the image, colour, texture directionality and edge
strength. The segmentations are not strict contiguous spatial map-
pings and instead group pixels of specifiable characteristics from
the source image. Figure 6 shows figure 1 after segmentation into
25 regions, and thus 25 colours. Note that the coloured segmen-
tations vary in total size, and can also be distributed across the
image (non-contiguous).

At initialisation a fixed number of segmentation regions are
evenly mapped in a grid like manner across the source image.
Each segmentation is classified by the mean properties of the pix-
els assigned to it. In each iteration, individual pixels are compared
against the mean pixel properties for each segmentation, and re-
assigned to the closest matching segmentation. As the algorithm
progresses the orderly spatial mapping of segmentations degener-
ates with respect to the weight of the other evaluated pixel prop-
erties.

At each iteration, the mean properties of a whole segmenta-
tion alters through the gain or loss in assignment of pixels. The
progression of the algorithm is monitored by how many pixels are
reassigned at each iteration. When no pixels are reassigned the al-
gorithm has determined an absolute segmentation of the dataset.
In other words; every pixel, by it’s evaluated properties, would
not better fit an alternate segmentation. It is possible that the al-
gorithm oscillates between an unresolvable set of segmentations,
therefore the user is able to monitor and abort the process via the
user interface.

Zhttp://www.gimp.org
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Figure 6. The source image segmented into 25 regions, with average colour
per segmentation on the left.

A pixel is evaluated against a selected segmentation by the
sum of Euclidean distance of six variables; x coordinate distance
between a pixel and the segmentation centroid x coordinate (Dy),
y coordinate distance between the pixel and the segmentation y
centroid coordinate (Dy), a pixel edge strength (E;;) versus the
segmentation mean pixel edge strength (D, ), a pixel texture direc-
tionality (7;;) versus the segmentation mean texture directionality
(Dy); and the distance in colour space between a pixel hue, sat-
uration and brightness value, against the average hue, saturation,
and brightness of the segmentation (Dj,, Dy, and Dy, respectively).

The calculated values Dy, Dy, D, D4, Dy, Dy and Dy, are
multiplied by gain values set at initialisation to provided weighted
values, Wy, Wy, W, Wy, Wy, Wy, W), respectively. By multiplica-
tion, gain values of less than one reduce the influence of a prop-
erty, whilst gain values larger than one increase influence. The
gain values are fixed for the whole image (not varied per pixel
calculation).

The gain values are exposed via the user interface software
allowing a user to preferentially influence the segmentation be-
haviour. For example, an image can be segmented with little re-
gard for pixel spatial relationship (gain for Dy, D) as small values,
such as 0.01), and high regard for texture directionality and edge
strength (gain for D,,D, as large values, such as 2.5). The fol-
lowing calculation therefore occurs between each pixel and every
segmentation per iteration of the algorithm:

Dps:Wx+Wy+We+Wd+Wh+Wv+Wb (6)

Equation 6 is therefore used to determine if a pixel remains with
the current segmentation assignment or should move, by selecting
the minimimal distance value(D py).

Stroke Generation

The stroke generation process defines 3D vectors which the
2.5D printer will follow to deposit paint. There are several con-
straints to the generation of stroke marks which are customisable
through the user interface. Balancing the complexity of these vari-
ables has been left to a human operator for the current research.

IS&T International Symposium on Electronic Imaging 2016

Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications

©2016 Society for Imaging Science and Technology

The maximum possible length of a single brush stroke is de-
pendent on the actual paint loading and carrying capacity of the
real brush, the viscosity of the paint medium, the paint run-off
character of the brush to substrate, and whether the user wishes
the stroke mark to run dry (i.e. a dry-brushing technique).The
minimum and maximum width of the stroke mark is dependent
on the possible radial displacement of bristles of any given brush.
The variation in vertical height of a stroke mark across its length
is dependent on the reach of the bristles, as well as the desired
aesthetics of the mark making. Whilst these aspects can be repre-
sented virutally through the interface, the human user must cali-
brate their expectations via familiarty with the printing process.

In overview, stroke marks are determined per segmentation
and generated sequentially to form a list. The stroke generation
algorithm populates each segmentation region with brush strokes
independently, allowing for differing character. The number and
density of strokes is dependent on the user defined stroke length
and width characteristics.

Stroke generation can either happen at random points within
the segmentation, or ascend edge strength to leave highlighting
marks to last. After the generation process, the list of stroke marks
can be also be sorted spatially to reduce the travel time of the
printer brush. These are presented as variable options to in or-
der to not interfere with the creative process and character of the
output.

When generating brush strokes, all pixel locations within the
segmentation are potential location candidates from which to be-
gin a mark. Once a stroke mark has been made, pixels that have
become obscured under the width and length of the generated
mark are removed from list of possible candidates for future it-
erations.

Two variables, ‘bleed’ and ‘over-run’ are set in units of mil-
limetres and allow the operator to determine whether stroke marks
can interfere spatially, or continue in length beyond the segmen-
tation region. With bleed set to 0, stroke mark widths are limited
so that they do not spatially interfere with existing marks. With
over-run set to 0, the stroke mark length progression will be ter-
minated if the mark leaves the segmentation region. In this way,
the generated stroke length and width may not meet the maximum
length and width set by the user.

With these variables in mind, strokes are generated in the fol-
lowing way. A candidate point is chosen within the segmentation
region. The width of the stroke is increased until the maximum
width is reached, or the width interferes with another stroke (mod-
erated by bleed). The stroke generation then reads the texture di-
rectionality value for the pixel location, and increments position
in that direction. The process repeats for each new position un-
til the maximum stroke length is reached, or the mark occludes
another mark or segmentation region. This process happens it-
eratively until there are no remaining candidate points for stroke
marks. Figure 7 illustrates the result of the generation process,
incorporating variation in width and length of marks made.

A final variable, ‘texture smoothing’, allows for the attenu-
ation of the texture directionality value read per position during
stroke generation. For each position, texture smoothing sets the
radius of adjacent pixels to include in an average of directionality.
Each included pixel directionality is weighted by the pixels edge
strength relative to the segmentations maximum edge strength.
This average texture directionality is only computed from pixels
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Figure 7. Region A magnified, brush strokes generated from the source
image. Solid lines represent trajectory and length whilst circles are indicative

of the stroke width along the path.

within the same segmentation. Set at 0, texture directionality is
only drawn from the underlying pixel. The effect of this is shown
in figure 4.

Outcomes

The interpretation of the waterlilly photograph into a vector
based image has the following example characteristics. For an
print of 310x260mm, minimum stroke width of lmm and maxi-
mum width of 20mm, the image has a total of 4826 brush stroke
marks, the colour distribution is shown in figure 8. The highest
number of marks (434) is within layer 13, constituting the light
pink body of the petals. The lowest number of marks (24) is the
fine edge highlight of the petals coloured purple, visible in the left
most petal of figure 10. Figures 12, 11, and 9 provide examples of
paintings produced via the 2.5D printing machine and software.

400

300

200

100 I I I I I
II ”l I||

EEEEERERNEENR EEE N | |

Figure 8. After segmentation and stroke generation: a graph of the number
of strokes (y axis) per layer (x axis), with associated colours per layer.

Conclusions

This paper has documented the work to date on the develop-
ment of a 2.5D printing machine. The paper documents the soft-
ware processes that are used to provide operational data for the
machine. The software allows a user to alter the underlying al-
gorithm variables to produce a variety of expressive prints, which
are able to be consistently physically realised by the 2.5D hard-
ware. Future work will look at modelling mediums, substrate and
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Figure 9. A comparison of a watercolour (left) and acrylic (right), with the
selective omission of several layers for artistic effect.

Figure 10. A software render of all generated brush strokes. Note wide
marks within leaf elements, fine strokes for flower stamen.

Figure 11. Painting with acrylic and sparse marks.

Figure 12. Painting with acrylic and an oversized brush.
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stroke parametrisations, as well as improving the capabilities in
hardware, and formal analysis of outputs with regard to texture
reproduction.
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