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Abstract—In recent years, laser electro-photographic (EP)
printers are commonly used in both industry and households.
From an economic perspective, it is of great significance to
accurately estimate toner usage in order to get a full utilization
of each cartridge. A revised two-stage strategy is developed based
on the ‘black box ’model which demonstrate that the toner
deposition in the area occupied by each printer-addressable pixel
is strongly influenced by the values of the neighboring pixels.

For the first stage, the pixel-by-pixel absorptance is predicted
from the digital page image that is sent to the laser engine, and
trained from a set of printed and scanned pages. Then, during
stage two, the overall toner usage for input digital page can
be estimated by using a weighted sum method that adds up the
weight of every individual pixel of the whole page. The weights of
pixels are trained by using the measured toner usage of each page
in a set of training pages, and the histogram of the pixel values for
the predicted scanned pages in the training set. Compared with
the pixel counting method and our previous two-stage predictor,
the updated approach is not only more robust and accurate, but
also more suitable for hardware design.

Keywords—absorptance prediction, toner usage estimation, laser
electrophotographic printer.

I. INTRODUCTION

The cost of consumables, specifically toner cartridges, has
always been an area of concern for customers. The issue
becomes especially acute when the price of a complete set of
replacement cartridges approaches the cost of the new printer
itself. With the growing popularity of managed print services,
accurate control of the cost of consumables takes on an entirely
new urgency for the vendor.

When using a printer, it is undesirable that poor print quality
due to toner depletion or unexpected low levels of cartridges
caused by inaccurate prediction of toner rated life occurs
during a series of print jobs. For customers who do not have
a replacement on hand, this problem is especially important.
Additionally, when a printer outputs faded pages before the
cartridge reaches the end of life that the customer expect. He or
she tends to assume that they incurred unnecessarily high cost
for their cartridges. For improving the printing experience for
customers, a more accurate end-of-life prediction is necessary
to be implemented for cartridges, which will anticipate and
prevent the above situations. Therefore, an accurate toner usage
predictor is needed.

During the laser electrophotographic printing process, the
prediction of toner usage is not only influenced by a single

given printer-addressed pixel value, but also by the neighboring
pixels within an area. The interaction between neighboring
pixels is nonlinear and complex, which is the biggest challenge
of toner usage estimation. The size of a single pixel is smaller
than the spot size of a laser beam; therefore an overlap
between laser spot and individual pixels occurs. The process
of toner transferring from the developer roller to the organic
photoconductor drum, then to the intermediate transfer belt,
then to the media and finally to be fused to the media all
cause further toner spreading.

The accurate estimation of toner usage for laser electro-
photographic printing should not only consider the pixel-by-
pixel gray level in the digital image that needs to be printed,
but also take the spatial distribution of the neighboring pixels
for each pixel in the digital image into account. While current
pixel-counting approaches attempt to account for this in a
limited way, these methods are too simplistic to yield the level
of desired accuracy. For instance, U. S. Pat. No. 5,349,377 [1]
estimates the consumption of toner by analyzing the frequency
rate of 1s and 0s in the halftone image, and calculates the
weighting factors for different types of images. U. S. Pat.
No. 7,720,397 [2] introduces a method that accounts for the
diffusion effect caused by non-adjacent pixel groups. The
system determines a proximity factor that is indicative of
the number of independent pixel groups within each set of
eight adjacent pixels, and then computes toner usage based on
the proximity factor and pixel count for the page. The two
approaches listed above are not sufficiently comprehensive to
account for the complicated interaction between pixels.

Our updated two-stage method1 is developed based on the
traditional two-stage approach studied by Wang [3] and the
‘black box’ model investigated by Ju [4]. The first stage of
the updated method is to predict the pixel-by-pixel based
absorptance for all pixels in the digital input. During the
second stage, a weight will be assigned to each pixel based
on the absorptance value. Ultimately, the toner usage for the
entire input page can be predicted by accumulating the weights
for all pixels.

II. OUR APPROACH

In the EP process, each of the C, M, Y and K channels
is treated separately. This paper mainly describes the
implementation of the K channel. However, our algorithm
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should be broadly applicable to all four color channels.

A. Stage one: absorptance predictor
1) Training pages design

There are five training pages for stage one, which include
two text pages with different font sizes, one page with hor-
izontal and vertical lines and two 256 level monochrome
continuous-tone images. Figure. 1 displays each of the stage
one training pages. Each training page is quantized to 32 levels.

Figure. 1: Stage one training pages.

The random text training pages (1 and 2) consisting of
meaningless words as shown in Figure. 1 are generated
using the software, “Monkey Random Text Generator” [7].
All letters are chosen from the 52 letters of the alphabet
including all small and capital letters from “a” to “z” and
“A” to “Z”, and are written in Times New Roman typeface
with 12 point size. The Mixed line file (training page 3) has
horizontal and vertical lines with different line widths (1
pixel to 10 pixels). For each of the training pages, fiducial
marks are printed every 265 printer pixels for alignment that
helps to locate each pixel of interest. As shown in Figure. 2,
the size of a fiducial mark is 5 × 5 pixels and surrounded
by 25 × 25 pixels white space, which is a safe distance to
ensure that the fiducial marks do not influence the printed
absorptance of the page content. Inside of the 265 × 265
pixels fiducial-mark block, there is a 200×200 pixels analysis
area, where the printed absorptance of every pixel in the
analysis area will contribute to the training data. Absorptance
value ranges from 0 to 255, where 0 represents white and
255 represents black. In each training page, there are 20 rows
and 15 columns of analysis areas, which means that there
exist 200×200×15×20 = 12, 000, 000 pixels to be analyzed.

Figure. 2: A cropped portion of the text file.

2) Absorptance estimation

The designed test pages (with fiducial marks) are then
printed at 600 dpi by a target laser electrophotographic printer
at 600 dpi; then scanned at 1800 dpi by an Epson 10000XL
scanner. The actual scanned pages are calibrated using the
method of scanner gray balancing [8] in order to be consistent
with the appearance of the printed page. After calibration, the
gray values of scanned pages will be proportional to 1 minus
CIE Y (luminance) value scaled to lie between 0 and 1, and
will vary from 0 to 1. The size of a printer-addressable pixel
is 1

600 inch because the training page is printed at 600 dpi;
and the size of a scanner-addressable pixel is 1

1800 inch since
the scanner resolution is chosen to be 1800 dpi. Therefore,
every printer pixel corresponds to 3×3 scanner pixels; thereby
the absorptance of printed pages can be estimated through the
scanned pages.

Then, the center coordinates (centroid) of each fiducial mark
will be determined. The centroid of each fiducial mark is
calculated based on the spatial distribution of toner absorptance
throughout its corresponding mask region. First, the horizontal
and vertical centroids of the ith segmented fiducial mark are
calculated by

Cx,i =

∑
[k,l]∈Di

(k − 0.5)s[k, l]∑
[k,l]∈Di

s[k, l]
, (1)

and

Cy,i =

∑
[k,l]∈Di

(l − 0.5)s[k, l]∑
[k,l]∈Di

s[k, l]
, (2)

where Di is the corresponding binary mask for the ith

fiducial mark in the binary mask image. The binary mask
image is generated using the Otsu’s method. The parameter
s[k, l] is the absorptance value of the scanned image at the
pixel with coordinates [k, l]. The 0.5-pixel offset in both Eqs.
(1) and (2) shifts the effective coordinate location of each
pixel to its center.

3) Assigning dot configuration values (encoding)

Next, the coordinates for all printer pixels of interest in the
200× 200 analysis area will be determined based on the cen-
troids of the fiducial marks. The absorptance of each analyzed
printer pixel is measured by averaging the absorptance in the
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corresponding 3×3 scanner-pixel area. An index ranging from
1 to 25 is assigned to each pixel in the 5×5 predictor window,
the 17 contributing pixels that are shown in Figure. 3 have
indices [1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 25].
Since the absorptance of a pixel is influenced by its surround-
ing pixels, we consider a 5× 5 window:

• A dot configuration value will be assigned to the center
pixel in the 5×5 window based on the pixel values of all
17 contributing pixels and their positions in the window.
Each such pixel is an integer between 0 and 31 that can
be represented by 5 bits.

• Every pixel of interest in the input image will have a dot
configuration value that is represented by five numbers,
as described below.

As shown in Figure. 3, the center pixel is pixel No. 9.
The dot configuration value of the center pixel is formed by
five numbers a, b, c, d, and e that can be determined by the
following equations:

a = 210 × p(1) + 25 × p(2) + 20 × p(3),

b = 210 × p(4) + 25 × p(5) + 20 × p(6),

c = 220 × p(7) + 215 × p(8) + 210 × p(9)

+ 25 × p(10) + 20 × p(11),

d = 210 × p(12) + 25 × p(13) + 20 × p(14),

e = 210 × p(15) + 25 × p(16) + 20 × p(17),

where p(i) is the pixel value of the ith (i = 1,. . . ,17) pixel in
the window.

After assigning the dot configurations to all pixels of
interest, a table that contains the coordinates of the pixel, the
corresponding estimated absorptance, and the dot configuration
values will be built. Some of the dot configuration values
will be the same, the value is stored only once, and the
average estimated absorptance for the pixels that have the
same dot configuration values is recorded. The information
of the diplicate dot configuration values will be removed.
The stored dot configuration values are called the unique dot
configurations.

Figure. 3: Assigning a dot configuration value to the center
pixel in the 5× 5 window of interest.

4) Obtaining pixel values from unique dot configuration

values (decoding)

The following method will be used to obtain the pixel
values of each of the 17 pixels by using the five numbers
that comprise a single dot configuration value. For example,
in Figure. 3, the pixel values of pixel No. 1, 2, and 3 will be
calculated based on the first value (a) of the dot configuration.

a

32
=

210 × p(1) + 25 × p(2) + 20 × p(3)

32
= 25 × p(1) + 20 × p(2)︸ ︷︷ ︸

quotient

+ p(3)︸︷︷︸
remainder

.

The remainder is the value of pixel No. 3.
Now, divide the quotient by 32, the remainder will be the

value of pixel No. 2.

25 × p(1) + 20 × p(2)

32
= 20 × p(1)︸ ︷︷ ︸

quotient

+ p(2)︸︷︷︸
remainder

.

Again, divide the quotient by 32, and the remainder will be the
value of pixel No.1. This method is repeated until the values
of all pixels of interest in the digital input are calculated.

Then, a vector with size of 32 will be created to store
the pixel values. If the pixel value is p(i) (p(i) = 0,. . . ,31),
a ’1’ is assigned to the (p(i) + 1)th element of the vector.
For instance, if the value of pixel No. 1 is 0, the vector will be:

1st element︷ ︸︸ ︷
1 0 ... 0 0 0 0︸ ︷︷ ︸

32 elements

Considering all 17 pixels in the 5 × 5 window, there will
be a long vector with size of 32× 17 storing the pixel values
of 17 pixels, where the first 32 elements represent pixel No.1,
and the last 32 elements represent pixel No.17. Since one dot
configuration can decode 17 pixel values, then if there are n
unique dot configurations, there will be a matrix as shown in
Table. I with size of n× (32× 17), where n is the number of
rows and (32× 17) is the number of columns.

TABLE I: Example of matrix that stores the pixel values of
all pixels of interest

1 2 . . . 32× 17

1 1 0 . . . 0
2 0 . . . 1 0
... 0 . . . . . . 1

n− 1 0 0 . . . 0
n 0 . . . 1 0

The absorptance predictor, which is also called a Look-
up table (LUT), is optimized by the least squares regression
algorithm [5],[6] based on the pixel values and positions of
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the 17 contributing pixels that are decoded by the unique dot
configuration and the relative average estimated absorptance.

Figure. 4: Stage one LUT optimization.

5) Generating the stage one look-up table by using least
squares method

In Figure. 4, assume matrix A is the matrix that stores
the pixel values, vector b is the matrix that contains the
average estimated absorptance, and the unknown x is the stage
one LUT that needs to be solved. The size of b is n × 1,
because there are n unique dot configurations. The equation
is simplified to be Ax = b. Then by using the least squares
method, the unknown x can be determined by:

x = (ATA)−1AT b

The LUT has 32 rows that represent 32 different pixel
values, and 17 columns stand for 17 different positions for
contributing pixels. For instance, in Figure. 5, pixel No. 1
is the first contributing pixel, and pixel No. 25 is the last
contributing pixel; thereby, pixel No. 1 takes the first pixel
position and pixel No. 25 is in position 17. The absorptance
predictor will be used to predict the absorptance of the center
pixel in each 5× 5 neighborhood.

6) Absorptance prediction

Since the absorptance of a certain printed pixel is influenced
by the distribution of its 5×5 surrounding pixels in the digital
image, the absorptance predictor is proposed as in Figure. 5. If
all the pixels within the 5×5 window have the same value for
32 level digital images, the average absorptance at the same
pixel value will be use to predict the absorptance of the center
pixel. The average absorptance is determined by averaging
the estimated absorptance of the center pixels whose 5 × 5
surrounding pixels are constant. Otherwise, the absorptance
predictor LUT will be applied to predictor the absorptance.

B. Stage two: toner usage predictor.
The toner usage prediction is a mapping from the absorp-

tance predictions to a toner usage prediction. The mapping is
built based on 45 training pages, which contain 1-pixel-wide to
10-pixel-wide horizontal and vertical lines pages, random text
with different typefaces, point sizes, and line spacings, and 8-
bit per pixel digital pages with different type of contents (text,
figures, and images).

Figure. 5: Structure of the absorptance predictor.

The actual toner usage is measured by printing 100 copies
of each test page to reduce the experimental error. The
measurement is implemented by splitting and weighting the
black cartridge before and after the 100-copy printing job.
Let’s denote the toner usage per single page as mtoner,i,
i = 1, ..., 45.

To obtain the toner usage mapping, first the pixel-by-pixel
absorptance of the 45 test pages is predicted by using the
absorptance predictor. Then, the histograms of these predicted
scanned pages are calculated. The predicted absorptance is
expected to be related to the toner mass. Assuming that the
mapping can be constant within reasonably divided absorp-
tance ranges, the Lloyd-Max Algorithm is applied to the
histograms to obtain the absorptance bins and accumulate the
number of pixels that fall into each bin. Finally, the least
squares regression method [5],[6] is used to determine the
toner usage mapping table [wrange1, ..., wrangeM ]T based on
the selected bins and the histograms as shown in Eq. (3). The
toner usage mapping table is shown in Table II.

h
1
range1 . . . h1

rangeM
...

. . .
...

h45
range1 . . . h45

rangeM


i wrange1

...
wrangeM

=
jmtoner1

...
mtoner45

 (3)

Here M is the number of bins, and hj
rangei is the number

of pixels that fall in the i-th bin of the j-th training page.

III. IMPLEMENTATION OF THE TWO-STAGE APPROACH

Considering the entire system, Stage one uses the absorp-
tance look up table to predict the absorptance of the input 256
level digital monochrome image, and Stage two accumulates
the weight of each pixel based on the weight mapping table
to get the toner usage for the whole page. Figure. 6 describes
the overall algorithm of the updated two-stage method.
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TABLE II: Absortptance ranges and the corresponding toner
usage weights

Range
index

Range Weight Range
index

Range Weight

1 [1, 7) 0.0784 17 [129, 136) 0
2 [7, 16) 0.0238 18 [136, 145) 0
3 [16, 25) 0.0147 19 [145, 153) 0
4 [25, 32) 0.047 20 [153, 160) 0
5 [32, 39) 0.0584 21 [160, 169) 0.1659
6 [39, 48) 0.0004 22 [169, 178) 0.0022
7 [48, 57) 0.1945 23 [178, 185) 0.1914
8 [57, 63) 0.0684 24 [185, 194) 0.0345
9 [63, 73) 0 25 [194, 201) 0
10 [73, 81) 0 26 [201, 210) 0
11 [81, 88) 0.1275 27 [210, 218) 0.0709
12 [88, 96) 0.1221 28 [218, 225) 0.0953
13 [96, 105) 0 29 [225, 233) 0.3334
14 [105, 114) 0.3652 30 [233, 242) 0
15 [114, 122) 0.4562 31 [242, 251) 0.1288
16 [122, 129) 0 32 [251, 256) 0.0938

Figure. 6: Implementation of toner usage predictor.

IV. EXPERIMENTAL RESULT

Five-fold cross validation was performed to evaluate the
accuracy of the two-stage predictor. The 45 Stage two training
pages were divided into five groups with each group containing
nine representative pages. Each one of the groups is used as a
training set while the remaining four groups are testing sets.
The grouping procedure is randomized 25 times in order to
obtain more realistic results by taking the average of the total
125 trials. Figure. 7 shows the average absolute relative error
for each of the 45 training pages. Table III displays the mean
absolute relative error, the standard deviation, the maximum
and minimum absolute relative error across 45 pages.

TABLE III: Average prediction errors across 45 test pages

Mean absolute relative error (%) 2.23
Mean standard deviation (%) 1.20
Maximum relative error (%) 2.79
Minimum relative error (%) 0.36

The updated two-stage approach reduces the size of ab-
sorptance LUT and uses a more stable quantizer to build the

Figure. 7: Prediction error of each test page.

weight mapping table. Comparing the cross validation result
with that of our previous predictor [3], the standard deviation
of the mean absolute relative error for the updated two-stage
algorithm is 1.20%. However, the result for our previous
work is approximately 5 times larger, which proves that the
current algorithm provides a more stable result. Furthermore,
the updated two-stage algorithm is confirmed to be hardware
implementable because of the size reduction for the absorp-
tance LUT.

V. CONCLUSION

The ability to accurately estimate toner consumption plays
into numerous financial aspects of products. It is of great
importance not only for the printer/cartridge manufacturer, but
also for the customer who wants to fully utilize every cartridge
while providing great printed output.

Our two-stage toner usage predictor is for electro-
photographic laser printers. The predictor consists of an
absorptance predictor that determines the absorptance from
printed and scanned pages, and a toner usage map, which
converts the absorptance into toner usage. The predictor is
on 45 arbitrarily chosen test pages by using five-fold cross
validation. Our two-stage predictor yields a much more ac-
curate prediction of toner consumption and more consistent
predictions. also, very importantly, this two-stage predictor is
more suitable for hardware implementation than our previous
predictor [3].
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