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Abstract. Retargeting approaches aim at providing a unified
framework for image rendering in which both the intended scene
luminance and the actual luminance of the display are taken into
account. At the core of any color retargeting method, a color vision
model and its inverse are employed. Such a color appearance model
should be invertible and cover the entire luminance range of the
human visual system. There are not many available models that
meet these two conditions. Moreover, most of these models are
developed based on psychophysical experiments over color patches,
and many have never been used for complex images due to their
complexity. In this article, a color retargeting approach based on the
mesopic model of Shin et al. [“A color appearance model applicable
in mesopic vision,” Opt. Rev. 11, 272–278 (2004)] is developed to
work with complex images. The authors propose an inverse model
for complex images to compensate for color appearance changes on
dimmed displays viewed in a dark environment. Their experimental
results using both quantitative and qualitative evaluations show
a discriminative improvement in the perceived color quality for
mesopic vision. The proposed method can be incorporated into
image retargeting techniques and display rendering mechanisms.
c© 2016 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.1.010410]

INTRODUCTION
With emerging new technologies such as quantum dots and
organic light emitting diodes (OLEDs), display technology
has been advancing quickly, giving users a broader color
perception experience. OLED displays have a larger gamut

Received June 30, 2015; accepted for publication Nov. 16, 2015; published
online Jan. 7, 2016. Associate Editor: Marius Pedersen.
1062-3701/2016/60(1)/010410/12/$25.00

area compared with conventional CRT and LCD displays,
and therefore they have great potential for high-quality
images with low power consumption.1 Due to their emissive
pixel structure, OLED displays exhibit high contrast ratios,
and high and constant color gamuts at all gray levels.

In today’s world, every individual spends a great deal
of time in front of displays in various applications such
as consumer electronic devices (e.g., smart phones, tablets
and laptops), the automotive industry,2 and virtual reality
interfaces (e.g., head-mounted displays). Working with
bright displays raises power consumption and eye strain
issues which affect customer satisfaction. For example, it
has shown that using e-Readers with backlighting interferes
with the human circadian rhythm.3 Moreover, watching
TV or any bright display in dark conditions brings about
negative impacts such as eye strain and reduces the lifetime
of the display. Dimming the display is a trivial solution
to the issues; however, it reduces the visual clarity, and
especially the perceived quality of colors in images. Hence,
a compensation algorithm should be employed to preserve
the color appearance quality of a dimmed display.4

Shin et al.5 proposed a fully adjustable color appearance
model built upon psychophysical experiments performed on
color patches in mesopic vision. The model adjusts percep-
tual attributes such as white preference, color saturation and
rod contributions to different luminance levels. In this article,
we propose a color retargeting algorithm based on Shin’s
model. To the best of our knowledge, this model has not
yet been employed in any real image rendering algorithm.
Additionally, we develop the inverse model of Shin’s, and our
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result clearly indicates an improvement in color appearance
using this nonlinear model. The main contributions of this
article are as follows:

(I) applying the Shin CAM to a real world image,
(II) developing the inverse of Shin’s model,
(III) developing a color retargeting approach based on

Shin’s model,
(IV) perceptual rendering of dark images and compensat-

ing color deviations imposed by the human visual
system while viewing a dimmed display in the dark.

We make the following assumptions and limitations in
the proposed algorithm: first, the display should be viewed
with a dark surround and the influence of the surround is
not considered in themodel; second, themodel does not take
the size of stimuli into account; third, spatial and temporal
properties of the human visual system are not addressed
in the Shin model (i.e., pixels are treated as independent
in the image). Hence, the proposed framework can be
combined with image retargeting methods4 to model our
visual mechanisms more thoroughly. The proposed method
is examined quantitatively and qualitatively; the results are
promising and show that our method performs well in both
simulation and compensation modes.

BACKGROUND
The ultimate goal in display manufacturer is to produce
perceptual displays that create natural images for viewers.6
To achieve this goal, visual system mechanisms such as
contrast, luminance and color perception have to be taken
into account in display rendering units.7,8 Tohave perceptual
displays, it is vital to know human color perception
mechanisms and to be able to model them thoroughly. The
model should be comprehensive enough to take into account
all aspects of human color vision in all visual conditions such
as different light levels.9

The human visual systemworks in three differentmodes
called photopic,mesopic and scotopic vision. Photopic vision
refers to our vision in daylight situations (high light levels),
in which only cones are responsible for our vision. As the
light level falls off to a luminance of 10 cd/m2 (Ref. 10), the
visual system smoothly goes fromphotopic vision tomesopic
vision, in which both cones and rods contribute to visual
perception. In the so-called scotopic situation, the light level
is lower than the absolute threshold of cone photoreceptors,
and human vision is only mediated by rods. The photopic
condition has been the main focus of most color research,
and themesopic and scotopic conditions have receivedmuch
less attention.11–13

Color appearance models (CAMs) aim at reproducing
colors and color perceptual attributes of a simple stimulus as
the human visual system perceives it. The output of an ideal
CAM should match human color perception in all viewing
conditions. There are many CAMs available in the literature
such as Lab, CIECAM9714 and CIECAM02.15 However,
none of them are even close to the ideal model. Most
color appearancemodels have the following limitations: first,
they do not take spatial and temporal properties of the

human visual system into account; second, they model the
appearance of simple stimuli such as color patches;16 third,
they are developed for photopic conditions;17,18 fourth, they
assume that pixels are independent from each other.19

Image color appearance models (iCAMs) have been
proposed to fill this gap by incorporating spatial and
temporal vision to model the appearance of complex
stimuli.20 However, even these models do not work well in
the mesopic range. A case in point is the iCAM06 model
proposed by Kuang et al.,20 in which the rod contributions
are added to the cone responses uniformly. However, recent
studies show that the rod contributions to different channels
are not the same.21,22 Hence, the model used for mesopic
vision in image appearance models should be improved.
Moreover, existing iCAMs and CAMs are only able to
simulate (i.e., predict the appearance of the original scene
as a human observer perceives it) the appearance of stimuli.
In other words, they are not designed for compensating
(i.e., reproducing colors on a rendering medium with a
specific viewing condition tomatch the original scene colors)
appearance changes of stimuli rendered on different media
with different viewing conditions. For example, when a
bright scene is reproduced on a dark display, the contrast
degradation and the hue and saturation shift due to mesopic
vision will affect the visual appearance of the image content
significantly. In this case, a compensation algorithm should
be employed to retrieve the original image appearance.

An image retargeting technique intends to provide a
unified framework for both simulation and compensation
algorithms, and it can be thought of as a bidirectional image
color appearance model. Wanat and Mantiuk proposed
a retargeting method which consists of global and local
contrast retargeting units together with a color retargeting
block.4 The focus of our work is on the color retargeting
method, which is an inseparable part of image retargeting
algorithms. Every color retargeting method requires a color
vision model (responsible for predicting the color of the
original scene) for simulation purposes and its inverse for
compensation purposes.

Since, in theory, the scene and rendering device
luminance can be in any of the three photopic, mesopic
or scotopic ranges, the color vision model should be
viable for all luminance levels too. However, not many
models consider the mesopic and scotopic ranges and rod
contributions.18,23 Hunt proposed a color appearance model
which considers rod responses.24 Kwak et al. introduced
a lightness predictor for mesopic vision to address the
stimulus size effect in their model.25 The other presented
mesopic models are not CAMs since they do not take the
viewing conditions into account.We refer to them asmesopic
color vision models. Hence, color vision models cover a
greater number of models, which can be less general—in
terms of considering visual appearance phenomena—and
might have more limiting assumptions compared with
CAMs. Shin et al. introduced a mesopic model based
on psychophysical experiments on color patches.5 Cao
et al. proposed another mesopic vision model,21 which was
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employed in Kirk’s perceptual tone mapping operator for
low light conditions26 and in the color retargeting approach
proposed byWanat andMantiuk.4 Rezagholizadeh andClark
proposed a maximum-entropy-based spectral color vision
model for mesopic conditions.23 A comparison of four
algorithms that can realistically simulate the appearance of
night scenes on a standard display is presented in Ref. 27.

We have only a handful of color retargeting methods,
and none of them perform very well in simulating and
compensating images in dark conditions. Our method
concerns the introduction of a color retargeting approach
of Shin et al. based on the available mesopic model. An
eligible color vision model for color retargeting algorithms
should possess two main features: first, the model must be
applicable to the entire luminance range of the human visual
system (photopic, mesopic and scotopic vision); second, the
model must be invertible. We can add a third condition of
being computationally inexpensive, if the algorithm is going
to be used in real time. Taking the three conditions into
account, only Cao and Shin models would be qualified to be
deployed in a color retargeting framework. The Cao model,
however, has shown poor performance in reproducing colors
at low light levels over both color patches23 and complex
stimuli.4 This is mainly due to the linearity assumptionmade
in Cao’s model between the color and the illuminance, which
oversimplifies the color mechanisms of the human visual
system. Therefore, we study the Shin model to investigate its
performance as a color retargeting method.

METHOD
Shin’s Color Appearance Model for Mesopic Vision
Shin et al. proposed a modified version of the Boynton
two-stage model with fitting parameters to account for the
rod intrusion in mesopic vision.5 The goal of the model is to
find the matching colors in the photopic range for the input
colors in themesopic range. The parameters of themodel are
obtained as a function of the luminance based on asymmetric
color matching experimental data. In their experiment, the
observer is presented with a Munsell color chip under
mesopic conditions and is asked to match the appearance of
that patchwith the simulated image reproduced by themodel
in the CRT display under photopic conditions. The model is
as follows.

1. The XYZ image (i.e., the RGB image which is
transformed to the XYZ color space) is input to the model
and is converted to the LMS space in the first step:

[X Y Z]t =Mrgb2xyz · [R G B]t ,
LMS= [Lp Mp Sp]t =Mxyz2LMS ·XYZ .

(1)

2. The LMS signals are substituted into the opponent
channel equations of the Boynton two-stage model:

A(E)= α(E)Kw((Lp+Mp)/(Lpw +Mpw))

+β(E)K ′w(Y ′/Y ′w)γ ,
r/g (E)= l(E)(Lp− 2Mp)+ a(E)Y ′,
b/y(E)=m(E)(Lp+Mp− Sp)+ b(E)Y ′,

(2)

Table I. Parameters of the Shin model.

Parameter Value

Kw 1
K ′w 78.4
γ 0.77

Table II. Transformation matrixes used in the Shin model.

Parameter Value

Mrgb2xyz , Ref. 28

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505



Mxyz 2LMS , Ref. 5

 0.155 0.543 −0.033
−0.155 0.457 0.033

0 0 1



Mopp2xyz , Ref. 5

1.008 2.149 −0.212
1 0 0
1 0 −1



where E represents the photopic luminance of the scene;
A(E), r/g (E) and b/y(E) are the achromatic, red/green and
blue/yellow opponent responses, respectively; the indices p
and w indicate ‘‘photopic’’ and ‘‘white point,’’ respectively;
Y ′ represents the scotopic luminance; α(E), β(E), l(E), a(E),
m(E) and b(E) are the fitting functions indicating the relative
contributions of the rod’s response to the opponent channels;
andKw andK ′w are themaximum responses of the luminance
channel in photopic and scotopic conditions.

3. Then, the opponent responses, A(E), r/g (E) and
b/y(E), are transformed back to the XYZ space and then to
the RGB space:

[Xm Ym Zm]t =Mopp2xyz · [A(E) r/g (E) b/y(E)]t , (3)

where Xm, Ym and Zm represent the mesopic XYZ values as
they can be seen in photopic conditions. The parameters of
the Shin model are selected according to Table I. Functions
(α(E), β(E), l(E), a(E), m(E), b(E)) are evaluated based
on interpolation over the given points in table 1 of Ref. 5.
The transformation matrixes used in the model are listed in
Table II.

Developing the Inverse of Shin’s Model for Compensation
As mentioned earlier, perceptual rendering necessitates
involving both a color visionmodel and its inverse. Given the
intended luminance of the original image, the forward color
appearancemodel—the Shinmodel in our case—predicts the
color perceptual attributes for a standard human observer.
The goal of the inverse model is to take the output of the
forward model (perceived original image at the intended
luminance based on the Shin model) and predict the
RGB values of the compensated image such that the color
appearance of this image rendered on a displaywith a specific

J. Imaging Sci. Technol. 010410-3 Jan.-Feb. 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.20.COLOR-323

IS&T International Symposium on Electronic Imaging 2016
Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications COLOR-323.3



Rezagholizadeh et al.: A retargeting approach for mesopic vision: simulation and compensation

Figure 1. Schematic of the Shin color retargeting method.

luminance value resembles the perceived original image.
Hence, in order to develop the inverse model, we feed the
color perceptual attributes of the forward model into the
inverse model (i.e., inverse Shin’s model) along with the
luminance of the target display and obtain the compensated
image to be rendered on the display. The schematic of this
perceptual model is shown in Figure 1.

To develop the inverse of this nonlinear color vision
model we carry out the following steps. First, the opponent
responses of the forward model (A(E), r/g (E), b/y(E)) are
fed to the inverse model. We assume that the compensated
image based on the display luminance, E, produces the same
opponent responses as the opponent responses of the forward
model to make a perfect match to the perceived image at the
intended luminance, E. Second, the functions α(E), β(E),
l(E), a(E), m(E) and b(E) are evaluated for the average
display luminance, E. Third, the computed functions and
opponent responses are substituted in the forward model
(Eq. (2)) and the LMS values of the compensated image can
be obtained as follows:

Lp+Mp = ((Lpw +Mpw)/(α(E)Kw))

× (A(E)−β(E)K ′w(Y ′/Y ′w)γ ),

Lp− 2Mp =
(r/g (E)− a(E)×Y ′)

l(E)
,

Lp+Mp− Sp =
(b/y(E)− b(E)×Y ′)

m(E)
.

(4)

Fourth, the left-hand side variables of Eq. (4) are
transformed to Lp, Mp and Sp using a simple linear
transformation: Lp

Mp

Sp

=
1 1 0

1 −2 0
1 1 −1


−1 Lp+Mp

Lp− 2Mp

Lp+Mp− Sp

 . (5)

Finally, a linear transformation is applied to convert the LMS
values to XYZ and subsequently to RGB values.

EXPERIMENTS AND RESULTS
In this section, the proposed algorithm is evaluated using
quantitative and qualitative experiments.

Quantitative Evaluation
In the quantitative experiment, the human subject is replaced
by the Shin mesopic model, to predict the human observer

color perception at low light levels. The evaluation procedure
of our experiment is depicted in Figure 2. The forward
Shin model is employed to simulate the perceived image at
different luminance levels. This model takes in an image,
the reference white and the light level under which the
image is viewed. The output of the model is the simulated
perceived image in photopic conditions in the XYZ space.
To derive the corresponding color perceptual attributes,
the XYZ values and the reference white can be given to
the LAB space.

This experiment is conducted on four images, {Multi-
object Scene, Car,Walk Stones, RedRoom}, where the images
are viewed in a dark surround, and the results are shown in
Figures 3–6. Each of the figures shows (a) the simulated per-
ceived original image on a bright display (Lsrc = 250 cd/m2),
(b) the simulated perceived unprocessed image on a dark
display (Ldest = 2 cd/m2), (c) the simulated perceived com-
pensated image on a dark display with the same brightness
level, (d) the compensated image, (e) the simulated perceived
gamut of the image shown in (a), (f) the simulated perceived
gamut of the unprocessed image on a dark display, (g)
the simulated perceived gamut of the compensated image
viewed on a dark display and (h) a comparison of the three
simulated perceived gamuts depicted in (e)–(g). It is worth
mentioning that the gamut of each image is shown in the
LAB space, which is approximately a perceptually uniform
color space.

The results of Figs. 3–6 show that the compensated
image has a larger simulated perceived gamut and a better
simulated color appearance in dark conditions compared
with the unprocessed image viewed in the same conditions.
For example, in the Multi-object Scene image in Fig. 3, one
may compare the checker board colors in Fig. 3(b) and 3(c)
to see that the colors in the simulated perceived compensated
image more closely resemble the colors in Fig. 3(a); or in
the Car image, the blue color of the sky and the car is
maintained better compared with the unprocessed image
on the dark display. The simulated perceived unprocessed
Walk Stone image shows washed out colors, while in the
simulated perceived compensated image, the blue sky, green
grass and brown stones are visible more clearly. Fig. 5(h)
demonstrates that the simulated perceived gamut of the
unprocessed image in dark conditions is shrunk to the center
of the ab-chromaticity diagram (achromatic region), and the
simulated perceived gamut of the compensated image brings
back a fairly large portion of the lost simulated perceived
color gamut. In Fig. 6, the red color of the wall, the carpet
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Figure 2. The procedure for evaluating the proposed Shin color retargeting method: the simulated perceived image at the intended scene luminance, E ,
is compared with the simulated perceived image viewed on a dimmed display with the luminance E when no processing is carried out on the image and
the simulated perceived image processed by our color retargeting method viewed on the same display.

and the vase, the color of the cushions and the picture hung
on the wall are more vivid in the dark compensated image
compared with the unprocessed image.

To evaluate the color appearance quality of images
quantitatively, a color difference metric can be employed. A
particular application of quantitative assessment techniques
is to replace a human subject in evaluating the quality of
images, which accordingly gives rise to a less expensive, more
effective, more repeatable and consistent, and more time
efficient approach. The metric used for this purpose should
be based on a comprehensive color appearance model. There
are several color difference measures in the literature, such
as1Exy ,1Eab,1E94 and1E00; however, none of them give
an ideal perceptual measure to be used with complex images.
In spite of the reported limitations and deficiencies of these
measures, they are the only available metrics for quantitative
color quality assessment and have been used in the literature
extensively. Hence, the quantitative evaluation of ourmethod
is carried out as follows. A qualitative assessment will be
performed in the next subsection to verify the results of the
quantitative evaluation.

The chromaticity difference measure 1Ec
94 is derived

from thewell-known color differencemetric1E94 by remov-
ing the lightness component from the 1E94 formula. 1Ec

94
is used to evaluate the chromaticity deviation of simulated
perceived uncompensated and compensated images on the
dimmed display compared with the perceived colors of the
original scene:

1Ec
94 =

√(
1C∗ab
kCSC

)2

+

(
1H∗ab
kHSH

)2

, (6)

where

C∗1 =
√
(a∗1)2+ (b

∗

1)
2, C∗2 =

√
(a∗2)2+ (b

∗

2)
2,

1C∗ab = C∗1 −C∗2 ,
1a∗ = a∗1− a∗2, 1b∗ = b∗1− b∗2, (7)

1H∗ab =
√
(1a∗)2+ (1b∗)2− (1C∗ab)2,

SC = 1+K1C∗1 , SH = 1+K2C∗1 ,

andwhere (a∗1, b
∗

1) and (a
∗

2, b
∗

2) refer to the a
∗b∗ values of two

CIE 1976 L∗a∗b∗ coordinates, K1 is set to 0.045, K2 = 0.015
and kC = kH = 1.29

The results for the perceptual chromaticity differences
between the dark and bright images for both the uncompen-
sated and the compensated approaches of Figs. 3–6 are shown
in Table III. The 1Ec

94 measure for the compensated images
is reduced by a factor of almost 2 compared with that of the
uncompensated images.

Another quantitative measure, introduced in this work,
is the percentile coverage of the simulated perceived gamut of

Table III. Mean1E c94 measure between a test image viewed at Ldest = 2 cd/m2 and
the perceived original image at Lsrc = 250 cd/m2.

Test image Unprocessed Our method Wanat iCAM06

Multi-object scene 5.0 2.80 4.37 5.62
Car 5.05 2.23 4.36 7.23
Walk stones 5.22 2.65 4.54 5.74
Red room 7.79 4.39 7.09 7.42
Blue room 6.19 3.36 5.43 8.26
Horse 6.58 3.45 7.17 10.93
Flower 23.61 21.17 24.15 31.13
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(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 3. The reverse Shin model is put to test based on the evaluation schematic shown in Fig. 2. (a) The perceived colors in the original
scene (Lsource = 250 cd/m2), (b) the perceived colors on a dimmed display (Ldest = 2 cd/m2), (c) the perceived colors of the compensated image
(Ldest = 2 cd/m2), (d) the compensated image (rendered on the display) (Ldest = 2 cd/m2), (e) the gamut of the original scene, (f) the gamut of the simulated
perceived image on a dimmed display, (g) the simulated perceived gamut of the compensated image, (h) comparison of the simulated perceived gamuts.

images in the dark relative to the simulated perceived gamut
of the bright image (i.e., the proportion of the overlapping
area of the simulated perceived gamut of the dark image
with the simulated perceived gamut of the original bright
image). In the rest of this article, we refer to this measure
as the effective gamut ratio (EGR). The EGR index is
used to evaluate the performance of our proposed method
in compensating the shrunk gamut area of the simulated
perceived unprocessed image, and the results are reported
in Table IV. The EGR measure is shown to be almost two
times larger for the compensated images with our method
compared with the unprocessed ones, and the EGR of the
walk stones image is enhanced by a factor of 4.

Table IV. The EGR index (the percentile coverage of the perceived gamut (%))
between a test image viewed at Ldest = 2 cd/m2 and the perceived original image
at Lsrc = 250 cd/m2.

Test image Unprocessed Our method Wanat iCAM06

Multi-object scene 10.3 25.9 12.0 9.9
Car 9.2 22.1 10.2 10.0
Walk stones 9.1 43.0 14.8 20.5
Red room 7.6 14.3 7.7 9.9
Blue room 13.5 36.3 14.8 17.7
Horse 9.7 25.8 9.92 14.2
Flower 7.2 15.8 7.6 15.3
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. The reverse Shin model is put to test based on the evaluation schematic shown in Fig. 2.

Figure 7 displays the 1Ec
94 and EGR indices of the four

images at different display luminance values of 1, 2, 5 and
10 cd/m2. We summarize the results of this figure as follows:
first, the perceptual difference of the compensated image is
smaller than that of the unprocessed image for all examined
luminance values; second, the1Ec

94 measure decreases as the
display luminance grows; third, our proposedmethod covers
a greater portion of the simulated perceived gamut of the
original image compared with the unprocessed one; fourth,
the dependence of the EGR index has an increasing nature
with respect to the display luminance.

Qualitative Evaluation
A subjective experiment is conducted to evaluate the
proposed compensation algorithm based on user preference
of the color appearance of images shown on a dimmed
display. The experiment is carried out on a Samsung Galaxy
Tab AMOLED-based Android device. The size of the display
is 10.5′′ with a resolution of 2560× 1600. A set of five images
is used for the experiment, shown in column (a) of Figure 8.
The images are selected such that they span a range of colors:
red, green, blue, yellow, purple, orange and brown. Each
image has a simple context and a dominant color in order to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. The reverse Shin model is put to test based on the evaluation schematic shown in Fig. 2.

minimize the variation of visual attention between different
users and facilitate selection of their preferred choice. Eight
observers with normal color vision participated in the exper-
iment, from different cultures (Indian, Chinese, Middle East
andWestern), genders (four females and fourmales), ages (in
the range of 25–40 years) and educational background.

Experimental Methods
In the experiment, the following methods are evaluated.

Our color retargeting method is based on the forward and
inverse of the Shin mesopic model introduced in this article
as a color retargeting approach in Fig. 1.

The Wanat color retargeting approach4 was proposed by
Wanat and Mantiuk. In this algorithm, the Cao algebraic
model and its inverse are employed in the retargeting
method. This algorithm is implemented and used for
processing images as explained in Ref. 4.

iCAM06 is one of the most well-known image appearance
methods in the literature.20 The input parameters of
this model are set as maximum luminance, maxL =
2 cd/m2; overall contrast, p = 0.7; surround adjustment,
gammavalue = 1.

Fig. 8 shows the output of the differentmodels. Columns
(b)–(e) show the results of applying no processing, the
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 6. The reverse Shin model is put to test based on the evaluation schematic shown in Fig. 2.

Wanat color retargeting model, iCAM06 and our method,
respectively.

Experimental Procedure
A pairwise comparison experiment is carried out in a dark
room. We developed an Android application (see Figure 9)
which shows two side-by-side images (i.e., a single image
that is processed by two different approaches) to the user.
Each participant compares all two method combinations
(combinations of picking two out of the four methods)
for all five images. The observer task is to choose his/her
preferred image, displayed on the Samsung tablet, in terms
of color appearance at each trial. The display brightness

is set to 2 cd/m2. During the experiment, observers were
able to control their viewing angle and distance from
the display.

Discussion of the Experiment Results
To analyze the results of the pairwise comparison ex-
periment, the scores of each method are transformed to
just-noticeable-difference (JND) units, as defined in Ref. 30.
A difference of 1 JND unit represents that one option is
selected by 75% of observers over another option. The
absolute JND values are not meaningful and only the relative
JND difference can be used for discriminating different
choices. A method with a higher JND is preferred over
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(a) (b)

Figure 7. The 1Ec94 measure and the EGR index are evaluated for the unprocessed and compensated images at different display luminance levels: 1,
2, 5 and 10 cd/m2.

(a) Original Image (b) Wanat (c) iCAM06 (d) Our Method

Figure 8. The original images and the results of different approaches applied to each image. The images are processed for Lsrc = 250 cd/m2 and
Ldest = 2 cd/m2.

methods with smaller JND values. The results of our pairwise
comparison experiment scaled in JND units are shown
in Figure 10, and indicate the better performance of our
proposed algorithm. The average JND of our method over

the five images shown in Fig. 8 is 6.04, while the second
best method (i.e., unprocessed) has an average JND of 4.69.
The JND score of our algorithm is significantly higher than
the scores of the other methods over all of the images
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Figure 9. A snapshot of the application used for the pairwise comparison
experiment.

except the Flower image, for which our method is the
best but its difference from the Wanat and unprocessed
algorithms is not significant. In the Flower image, the
three approaches Wanat’s, unprocessed and our method
all have similar performance. This similarity may be due
to the dominant yellow color of this image. As explained
in Ref. 31, yellow hues appear less saturated than other
monochromatic colors. Hence, in dark conditions, yellow
is more subject to losing its colorfulness. Moreover, the
comparison of perceived gamuts in the quantitative results
of Figs. 3–6 shows that the compensated gamut is not
extended toward the yellowish region of the chromaticity
diagram very much. It is worth mentioning the observation
that in the unprocessed–Wanat pair comparison, some
observers reported difficulty in choosing between the two.
Furthermore, the results show that iCAM06underperformed
compared with the other algorithms because iCAM06 is
not designed for compensation purposes and is only able
to predict the appearance of the image for an intended
luminance.

It is worth comparing the quantitative performance of
the methods on different images based on the 1Ec

94 and
EGR indices with the results of the qualitative experiment.
Tables III and IV summarize the quantitative results of the
methods for all of the images considered in this section.
The two tables show the superiority of our proposed
method over the other discussed techniques. Table IV shows
that the gamut coverage of our method varies over the
images, since the performance of our model is content
dependent and the images in our database span different
chromaticities. It is evident that the quantitative measures
do not completely match the qualitative experiment results,
which shows that the quantitative measures still need to be
improved. Moreover, it is implied that the 1Ec

94 measure
has a better correlation with the qualitative results than the
EGR index, which is because, in contrast to the EGR, 1Ec

94
is a perceptual measure. If we sort the images used in the
qualitative evaluation based on Table III and compare the
result with that of the qualitative experiment, we can infer
that a chromaticity difference of less than one unit is not
reliable for judging the color appearance of images.

Figure 10. The result of the pairwise comparison experiment shown in
JND units. The images are shown in Fig. 8.

CONCLUSION
In this article, a color retargeting technique based on the
Shin mesopic model is implemented. In this regard, the
inverse of the Shin model is developed to compensate for
color deviations on dimmed displays or dark rendering
media. The proposed method is applied to real images (as
opposed to the conventional model). In other words, we
propose a practical approach to perceptually render dark
images and compensate for color deviations imposed by the
human visual system while viewing a dimmed display. The
introduced framework is evaluated using both quantitative
and qualitative evaluations. In the quantitative evaluation,
our method is able to roughly reduce the 1Ec

94 measure
and expand the gamut area of the simulated perceived
images by a factor of 2, compared with the unprocessed
images. Moreover, the results of the qualitative evaluation
demonstrate the promising performance of our algorithm.
Plans for future extensions of the work include the following:
first, to incorporate the proposed framework into existing
image retargeting techniques such as Ref. 4; second, to
evaluate our method in an experiment and compare it with a
larger set of existing methods; third, to address limitations of
this model by taking into account the chromatic adaptation
and surround effect.
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