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Abstract 

This research studies the influence of the color model used for 
the optimal sample selection from a larger dataset, for the task of 
color camera calibration. Most algorithms proposed in the 
literature perform such sample selection in the CIELAB color space, 
however since color transformations from one space to another are 
non-linear, choice of color space will affect the final target design. 
This work establishes the relationship between the color space 
where the patches are selected and the accuracy of the final 
calibration result. The Kennard-Stone algorithm with different 
distance metrics is used to choose a fixed number of patches for the 
calibration target. Final calibration results are compared for 
various selections of patches from three datasets, using different 
state of the art color camera calibration methods. The results are 
also compared to those obtained with a classical Macbeth Color 
Checker.  This research highlights the importance of setting proper 
parameters for color patches selection for custom calibration target 
design.  

Introduction  
Accurate color camera calibration is a critical task for many 

applications  where reliable color matching is needed.  Color camera 
calibration here refers to defining and applying a correction function 
for the transformation from the device-dependent camera response 
color space to a device-independent standard color space. To 
calibrate a camera one typically needs the standard color space 
values of a reference image, and experimental observations of how 
the camera interprets this reference. Usually, a calibration target 
with known color characteristics is used to estimate this relationship 
between the RGB camera output values and the known reference 
color values.  

Existing color targets vary depending on the application but are 
typically general-purpose in nature. Therefore, using such standard 
color targets does not guarantee a good basis of training samples for 
camera calibration, because these samples might not be optimal for 
a given specific application general perspective [6]. 

In addition, many existing standard color targets contain quite 
large amounts of colors (x-rite ColorChecker Digital SG: 140, 
IT8.7/2: 288, Datacolor SpyderCHECKR: 48 etc.). Such standard 
color targets could be inconvenient or even impossible to use in 
some applications. Sometimes a custom color target is required, 
allowing for designing an optimal training set for the application, 
with appropriate number and properties of patches, and more 
accurate calibration can result. Such custom color calibration target 
patch selection is the subject of this research. After describing 
related state of the art in the next section, we present the proposed 
methodology of this paper, followed by the experimental setup and 
results, before concluding and identifying areas of further research. 
 
 
 

Background 
Several methods [1-5] for creating high precision color targets 

by selecting samples from a larger datasets have been described in 
the literature. Andersen and Hardeberg [1] proposed a method of 
choosing the most significant patches from a set based on camera 
hue domain subdivision. Samples with the lowest susceptibility to 
noise are selected in all hue directions in a way so they do not 
overlap each other in colorimetric hue correlate. The final subset 
design helps to make camera calibration preserving an original 
white point value. The Kennard-Stone (KS) [5] design aims at 
selecting samples normally distributed within the given set. The 
Kang (KG) method [3] first divides the unlabeled color patches into 
clusters by similarity and then selects from each cluster the most 
representative example. The most representative example in their 
work is the one closest to the cluster’s centroid. These selected 
representative patches are then used for color calibration. Pellegri et 
al. [2] compare many existing patch selection algorithms and 
propose three new approaches for selecting a training set to be used 
for the color characterization of a multispectral acquisition system. 
The methods are Hue Analysis method based on colorimetric 
considerations, Camera Output Analysis method and Linear 
Distance Maximization method based on algebraic and geometrical 
facts. They also evaluate the influence of the number of samples in 
a target design on calibration accuracy. Eckhard et al. [6] compare 
the performance of many existing algorithms and conclude that 
some methods are better than the others depending on the size of the 
initial dataset. They also propose their own method called Recursive 
Rejection (RR) which iteratively removes samples from the dataset. 
The RR method also starts with a clustering as [3] but then it 
optimizes a training set for a specific application by measuring the 
change in performance in spectral estimation when certain clusters 
of samples are rejected from the training. Alsam and Finlayson [7] 
introduce an optimal sample reduction algorithm based on integer 
programming, which is driven by camera colorimetric and spectral 
calibration. Zhang et al. [4] propose two methods for the selection 
of representative color samples for the spectral digital device 
characterization. In contrast to [2] and [5], researchers try to select 
not the most distinct samples from a dataset, but the most 
representative ones. The first method selects the training samples 
whose eigenvectors can accurately model the reflectance set. The 
second method attempts to find in the set of training samples that 
minimize the difference between the actual and estimated 
reflectances of a virtual-imaging system. 

In some works mentioned, researchers select samples in a 
camera color space [1] or from spectral data [7], but mostly 
researchers [2-4,6,19] work in a device-independent color space, 
preferring  to convert to CIELAB (or similarly CIELUV) color 
spaces before running their patch selection algorithms. The main 
reason to do so is the fact that the distances between colors in 
CIELAB color space match the color differences for a human 
observer, measured with the ΔE*ab standardized color difference. 
However, the transformation from a camera color space to a device-
independent space is not linear. This means that the final design of 
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a color target might vary depending on the color model used for the 
selection procedure. Then there is reason to suspect that the resulting 
calibration designs obtained using the CIELAB color model are not 
necessarily optimal.  

Proposed methodology 

Camera Simulation 
For the task of a spectral characterization of an electronic 

camera, it is necessary to choose a model of the system. In this work 
camera simulation is performed. For the sake of simplicity, an ideal 
model without noise is used. The assumed camera sensitivity 
function showed on Figure 1.  

 
Figure 1. Sensitivity function of the camera model used in simulations.  

The model of camera selected corresponds to sensitivity 
functions of the industrial camera which is a subject of an interest 
for this work. No noise were introduced to the camera model since 
the main goal is to check the influence of the color space, where 
samples are selected, so as long the model is consistent for each 
experiment, it is enough for the goal of this research.  

Color camera calibration  
As stated before, color calibration could be viewed as modeling 

the relationship between the input and the output of the camera. 
Selected color patches characteristics are used to build either a set 
of linear or polynomial equations used for regression analysis. Color 
camera calibration could be performed using techniques such as 
linear or polynomial regression. The easiest way to perform a 
camera calibration is the one uses Moore-Penrose pseudo-inverse 
matrix [9]. The color correction linear transform is then just a 3 x 3 
matrix A which performs a mapping of a patch camera color value 
RGB into the CIEXYZ space: 

XYZ = RGB x A,                                                  (1) 

in which case, the camera calibration matrix estimation reduces to 
the calculation:  

A = RGB+
(3x10) x XYZ(3x10),                                      (2) 

where RGB+ denotes the Moore-Penrose pseudo-inverse. In the 
case oflinear regression, even a small number of patches is enough 

to perform the camera calibration, because A has eight degrees of 
freedom. We choose the minimum number of colors in our target to 
be 10. 

Polynomial regression is another approach to estimate the color 
correction transform which usually gives a better fitting with a lower 
mean error value [10]. A transformation function then can be 
equivalent to the following equation for the second-order 
polynomial [11]:  

A = [1 R G B R2 G2 B2 RG GB RB RGB],      (3) 

or to the third-order polynomial regression as in [9]: 

A = [1 R G B R2 RG G2 GB B2 R3 R2G R2B RG2 RB RB2 G3 
G2B GB2 B3]  (4) 

A very important factor concerning the success of the 
polynomial regression algorithm is the choice of the functions 
defining the vectors [8]. Testing other functions and, especially, 
third-order polynomial functions, which give a better fit, is 
important to obtain the best results. However, on practice linear 
regression is often chosen for camera calibration for the case of 
simplicity [12]. In this work we experimented with both linear and 
polynomial regression for color camera calibration. 

Color space transformations 
For this work, color patches are selected from the datasets 

based on their coordinates in different color spaces. In total  four 
standard color spaces were used: sRGB, CIEXYZ, CIELAB and 
CIELUV. Color information in the datasets is presented in the form 
of spectral data in range 380-730 nm, at 10 nm intervals. All the 
transformations between color spaces are done using standard color 
science formulas [13]. 

Datasets 
Three different datasets were used to perform the experiment. 

The datasets are composed of different materials to generalize the 
results of this research.  The first dataset is the 1269 samples of the 
Munsell Book of Color available from the University of Eastern 
Finland [14]. The second dataset is a set of Textile color samples 
consisting of 4826 samples of different fabrics, courtesy of 
Professor Seyed Hossein Amirshahi, Amirkabir University of 
Technology, Iran. The third dataset consists of 3818 measured 
reflectances of printed color samples measured at Gjøvik University 
College [15]. 

Set of parameters  
The main interest of our experiment is to establish the influence 

of a color space used on calibration results for an optimal sample 
set. However, we extend this goal by also including the evaluation 
of the performance of different distance metrics and calibration 
methods. Commonly [2][3], the Euclidean distance is chosen as a 
distance metric because in CIELAB space it corresponds quite well 
to perceptual color differences. In this work also the CityBlock  and 
CIEDE2000 [16] distances are tested. Using different types of 
distances is not a new approach, for example, Pellegri et al. [2] test 
their algorithms using the Euclidean distance and the maximum 
absolute distance of coordinates as distance metrics. However, we 
propose a more complete data set in our experiment. We vary the 
distance, the color space and the calibration method for the 3 
different datasets. 
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Experimental setup 
Several experiments were conducted to establish the optimal 

color space for samples selection. The target design which consists 
of a given number of distinct points is chosen among the candidates 
points of 3 datasets with the method proposed by Kennard and Stone 
[5]. This algorithm is very simple and general, so we assume that 
the results obtained could be also implied for the other methods 
based on a color distance between points such as [2][3]. The final 
subset of points is chosen sequentially. First two points in the design 
are two farthest away points in the dataset point cloud. 

At each following iteration of the algorithm, the aim is to have 
the points in the subset “uniformly” spaced over the color space, 
according to the distance metric used: 

D=dist(xv,xm),  (5) 

where xv is the set of selected points, xm are the candidate 
points, and dist the distance metric used.  

Then the maximum distance between candidate points and the 
nearest points in the dataset is calculated and the new point is added 
to the subset. Thus, the algorithm chooses the point among those 
remaining that is  farthest  from  an existing  design  point. Example 
for the patch selection with the Kennard-Stone algorithm is shown 
in Figure 2.  
 

Figure 2. Optimal patches selected (in red) for the Munsell dataset [6] using 
the Kennard-Stone method in the CIELAB color space.  

A detailed description of the method could be found in the 
paper published by Kennard and Stone [5]. The algorithm tends to 
show good results for general case applications [2][6]. The Kennard-
Stone algorithm does not have a single convergence factor. The 
stopping criteria used in this work is the number of samples in the 
final set, so we select sequentially N samples. 

The correction function is then obtained using the designed 
color target and formulas 1-4. We also tested regression not only 
from sRGB to CIEXYZ color space, but also regression from sRGB 
to CIELAB color space. In the last case cubic root function is 
applied on sRGB values before the regression as in [8].  

The errors of performed color camera calibration are evaluated 
using the standard distance metric ΔE*ab. We evaluate the error in 
terms of mean and max ΔE*ab values for a given dataset and the 
selected color target itself. This metric is widely adopted for color 

camera calibration evaluation [1][2][7] and it gives an opportunity 
to evaluate results in terms of Just Noticeable Difference (JND) 
[17]. In order to show that a custom color selection for a color 
camera calibration is preferred to a standard one, we also obtain the 
calibration functions using the Macbeth ColorChecker color patches 
[18].  

Results 
We conduct series of experiments in order to estimate the 

influence of different parameters on the final target design and 
calibration results. Using the Kennard-Stone method for patches 
selection, we modify patches selection and camera calibration 
parameters in order to establish the relationship between them. 

Distance metrics  
In the first trial of experiments, we use different distance 

metrics to select patches: the Euclidean distance, the CityBlock 
distance and the CIEDE2000 distance (the last was used only for 
selection in the CIELAB color model). The camera is then calibrated 
with the obtained color targets and the ΔE*ab error is calculated. The 
experiment shows that the Euclidean distance metric between 
coordinates gives best results and only in one case using CIEDE 
2000 gives slightly smaller mean ΔE*ab error. The CityBlock 
distance either gives exactly the same results as the Euclidean 
distance if the tested dataset is not very  big and does not contain 
many patches with similar coordinates, either just slightly different 
results. With the results obtained for all 3 datasets, the Euclidean 
distance proved to be the best one for patches selection using the 
Kennard-Stone Method, no matter in which color space the selection 
is performed.  

Comparison to the custom color target 
The next step is to compare the custom color targets designed 

of 24 colors to the Macbeth ColorChecker standard one. As 
mentioned before, the Macbeth ColorChecker is widely used for a 
goal of color calibration of digital devices. This test is critical for 
our experiment since we claim that it is better to make a custom 
color target for a dataset than to use a standard one. The outcome of 
the test proves that custom target creation method gives better 
results in terms of mean ΔE*ab error for two out of three the datasets 
tested. Only for the Munsell dataset, the calibration using the 
Macbeth ColorChecker chart gives slightly better result in terms of 
ΔE*ab mean error. In this trial, we designed our targets of 24 colors 
to allow a comparison with the standard color target which contains 
24 colors. The result obtained corresponds quite well for the fact that 
Munsell Dataset is a classical one, so it was probably covered when 
creating a Macbeth ColorChecker. The other two datasets are more 
specific and contain more different colors. But it is important to 
mention that while the difference between mean error obtained with 
custom and standard targets for Munsell dataset is not big, for the 
other two the custom patches selection gives a very big 
improvement in terms of mean and max ΔE*ab error values. The 
results are summarized in Tables 1-2 for the Textile set. 

Camera calibration method 
Evaluation of the calibration method selection on final 

calibration results is the goal of the next trial of experiments. In these 
we perform the color camera calibration using four different 
regression techniques mentioned previously: linear regression from 
sRGB to CIEXYZ space, linear regression from sRGB to CIELAB 
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space, polynomial regression from sRGB to CIEXYZ and 
polynomial regression from sRGB to CIELAB color space. Results 
obtained show that polynomial regression from sRGB to CIELAB 
color space outperforms other calibration techniques. The third-
order polynomial function 4 gives the best results. Table 3 shows 
the results obtained by the calibration with the 3-rd order polynomial 
regression for the HIG dataset. Overall, even with the 3-rd order 
polynomial regression we have quite big mean and max ΔE*ab error 
values, but this is due to the small number of patches in the final 
target design. 

This corresponds well to the observations made in other work 
in this field [8]. The exception in our experiment is only the HIG 
dataset where better results in terms of mean ΔE*ab error are 
obtained with the polynomial regression from sRGB to CIEXYZ 
color space. However, in this case, the differences between mean 
ΔE*ab error are not very big, but the max ΔE*ab error is way bigger 
for sRGB-CIEXYZ polynomial regression than sRGB- CIELAB 
polynomial regression. 

Table 1. Calibration results for the Textile Dataset using the Macbeth 

ColorChecker color target 

Regression 
model 

∆E mean 
target 

∆E mean 
set 

∆E max 
set 

linear RGB-XYZ 3.69 4.84 30.96 

linear RGB-LAB 6.66 7.11 27.90 

polynomial 
RGB-XYZ 

2.85 7.63 109.69

polynomial 
RGB-LAB 

2.07 4.47 15.41 

Optimal space for the calibration patches selection  
CIELAB space is proved to give good results in general and the 

optimal color target design is obtained selecting patches from 
sample points in CIELAB space. It is still not the case for all the 
calibration methods tested. For example, for the linear mapping 
which is widely used for camera calibration, the optimal minimum 
set in terms of mean ΔE*ab error was obtained in sRGB space for 
all datasets tested. A linear mapping is widely used for its’ simplicity 
and due to the fact that it requires fewer color samples in the final 
design than polynomial regression methods. 

Small color target composition 
In the next series of experiments, we design color targets 

composed of just 10 colors. 10 colors are sufficient enough only for 
the linear calibration method since the matrix A in formula 1 has 8 
degrees of freedom. It is impossible to use just 10 patches for the 
polynomial regression based calibration methods. However, there 
are cases when the simplicity and speed are more important than the 
more accurate results. Once again, the smallest mean error is 
obtained while selecting patches in sRGB color space rather than 
CIELAB one using the Euclidean distance metric. An interesting 
observation is that the better results for all three datasets are obtained 
with linear regression from sRGB to CIEXYZ color space and not 
with the regression from sRGB to CIELAB color space. The max 
ΔE*ab error value, in contrast, tends to be much smaller with the 
regression from sRGB to CIELAB. Overall the mean and max 
ΔE*ab errors proved to be bigger using linear regression than using 
the polynomial regression methods. 

Table 2. Calibration results for the custom designed 24 color target for the 

Textile Dataset. 

color 
space 

Dist ∆E 
mean 
target 

∆E mean 
set 

∆E max 
set 

Polynomial RGB-XYZ, K=24 

RGB Euclidean 1.86 2.77 13.75 

XYZ Euclidean 1.60 2.56 37.50 

LAB Euclidean 2.53 2.42 18.12 

LAB CIEDE2000 2.83 2.47 12.22 

LUV Euclidean 2.20 2.86 23.31 

Linear RGB-XYZ, K=24 

RGB Euclidean 3.64 2.79 26.49 

XYZ Euclidean 2.08 2.89 48.79 

LAB Euclidean 3.61 2.99 35.91 

LAB CIEDE2000 4.43 2.87 32.88 

LUV Euclidean 3.66 2.74 35.91 

RGB-LAB, linear, K=24 

RGB Euclidean 5.24 5.11 14.18 

XYZ Euclidean 4.56 5.15 19.63 

LAB Euclidean 6.10 5.01 15.98 

LAB CIEDE2000 6.19 4.88 14.43 

LUV Euclidean 5.37 4.81 16.83 

RGB-LAB, polynomial, K=24 

RGB Euclidean 1.32 2.44 14.06 

XYZ Euclidean 1.34 2.29 17.85 

LAB Euclidean 2.13 1.95 11.31 

LAB CIEDE2000 1.96 1.90 9.99 

LUV Euclidean 1.60 2.62 23.79 

Table 3. Calibration results for the custom designed 25 color target for the 

HIG Dataset. 

color space ∆E target ∆E mean set ∆E max set 

RGB 2.87 2.87 14.84 

XYZ 0.95 2.76 19.63 

CIELAB 1.13 1.97 19.55 

CIELUV 3.72 4.18 20.63 

 

 

Optimal number of patches in the target 
To finish the experiments and establish the optimal number of 

patches in the target design, we also compute the mean error value 
function depending on the number of patches used in a color target. 
It is in not a novel experiment, since the influence of the number of 
patches was explored before in [6], but it helps to construct an 
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optimal set in case when no constraints on number of patches apply.  
For two out of three datasets, 50 samples are enough for the optimal 
color target design and further increase of the number of color 
patches doesn’t give any significant improvement. This result is 
slightly different from the one obtained in [20], where authors claim 
that 80 samples are enough to account fully for the Munsell Book of 
Color, however we use other selection methods. For the test, 
polynomial regression technique was chosen because it proved to be 
most accurate in the previous experiments. The result obtained with 
the Munsell Dataset is shown in Figure 3.  

 
Figure 3. The mean ∆E*ab error for increasing number of the color patches in 

the calibration target design. Munsell Dataset. 

Conclusion and Future work 
The research presented in this paper shows that the choice of 

color space in which to perform a sample selection algorithm, in 
conjunction with the calibration method, is of a great importance for 
the final color calibration results. To obtain the most accurate results 
for a given application, a camera should be calibrated with a custom 
color target, and an appropriate calibration method should be used. 
Our experiment shows that the creation of a target design is not a 
straightforward task and depends not only on the sample selection 
method but also on the color space and calibration method used. 

For future work, in addition to extending the experimental basis 
with more datasets, it would be interesting to explore the use of other 
color difference equations. This is expected to be especially useful 
for cases when the colors in the dataset are not normally distributed. 
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