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Abstract

Direct Binary Search (DBS), as one of the three categories
of halftoning, provides the best, visually pleasing halftoning qual-
ity. However, as a sequential algorithm, DBS is most computa-
tional complex so it always plays the role of offline algorithm for
other halftoning categories (like tone dependent error diffusion,
hybrid screen, etc.). Meanwhile, it is seldom directly works as
a real-time/online solution for current commercial printers. In
this paper, we would like to present a parallel version DBS with
same image quality compared with original DBS, which can fit
the current Same Instruction Multiple Data (SIMD) system, like
General-Purpose Graphics Processing Unit (GP-GPU), and fur-
thermore, there will be the potential that DBS can work on current
multi-core system as real-time solution for halftoning.

Introduction

Halftoning is used to render continuous-tone images with
output devices that are capable of directly printing or display-
ing only two or a small number of different gray levels. The
three most widely used categories of halftoning methods are pixel
method, neighboring method, and iterative method. Usually the
halftone output quality and computation timing both increase in
the order of pixel, neighboring and iterative. The pixel method
is known as screening, or dither. For example, Ulichiney pro-
posed a dither method to generate the blue-noise which is visu-
ally pleasant halftone pattern [1] [2] [3]. Pixel method compares
or computes on the pixel of the screen and corresponding pixel
on the image only, so it is usually computational-efficient. An-
other pixel method is look-up-table halftoning. Li and Allebach
invented a look-up-table halftoning using the correlation informa-
tion between different graylevels in order to minimize the artifact
noise [4]. The neighboring method is well-know as the Floyd-
Steinberg error diffusion [S5]. It diffuses the error between the
halftone output image and the continuous-tone input image to the
afterward pixels in the raster order. It is essentially serial algo-
rithm, so error diffusion is more computational inefficient than
pixel method. Lots of work has been done to improve the error
diffusion algorithm. Kolpatzik and Bouman embedded the Hu-
man Visual System model into it [8]. Tone Dependent Error Dif-
fusion [6] was invented by Li and Allebach, which largely elimi-
nated the artifacts caused by the conventional error diffusion. The
most visually pleasant halftone pattern can be generated by the it-
erative method, like Direct Binary Search(DBS) [7]. DBS is com-
putational inefficient, but it is widedly used combined with other
halftoning algorithms. Lin and Allebach invented the FM screen
by DBS with the stacking constraint [11]. Hybrid screen [9] also
use DBS to generate the blue-noise texture in the highlight and
shadow regions. Tone Dependent Error Diffusion trained the co-
efficients and thresholds by the blue-noise DBS pattern in Fourier
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domain. With the assistance of off-line design by DBS, screen or
error diffusion can significantly improve the halftone quality and
still remain the same computational complexity.

On the other hand, according the halftone texture, we can
also separate the halftoning algorithm as AM, which is also called
clustered-dot, and FM, which is also called dispersed-dot. Us-
ing the modulation concepts in communication theory. We define
the halftoning as AM, when the pattern forms the clustered dots,
as the absorptance glows, which in Fourier domain produces a
donut-like band-pass green-noise filter. However, FM halftone
pattern generates the high-frequency blue noise in Fourier do-
main. Usually, Ink-jet can produce much more robust single dots,
so it use dispersed-dot halftoning more often. However, due to the
instability of the single dots produced by electrophotographical
printers, they use clustered-dot halftoning more often. Another
classification of halftoning according to the texture is periodic or
aperiodic. Screen is a periodic halftoning, while error diffusion
and DBS are aperiodic. All four combinations (AM/FM, peri-
odic/aperiodic, 2 x 2) are possible. Clustered halftoning is always
used in the electro-photographic printers, because the clustered-
dot can provide more stable print and less dot-gain effect. The
printing devices which can generate more stable pixels usually
employ dispersed halftoning [2]. Clustered periodic halftoning
commonly provides more homogeneous structure in midtone re-
gion than the dispersed aperiodic halftoning, while the stochastic
aperiodic halftoning shows more preferred blue-noise texture in
highlight. The other halftoning algorithm may apply hybrid tex-
ture, like hybrid screen [9], which has the blue-noise dispersed
dot in highlight and shadow region, also enjoys the homogenous
clustered periodic texture in the midtone. When the printer’s na-
tive tones are more than two levels, the common bi-level halfton-
ing we discussed above change to multilevel halftone. Zhang and
Allebach developed a periodic clustered-dot multilevel halfton-
ing [12] using hybrid screen to overcome that contouring artifacts
in multilevel halftoning.

From the computation device’s side, more and more SIMD
devices, like GP-GPU, with high computational capacity are
available. SIMD device has become a competitive accelerator for
computation applications. We take GPU for example. The GP-
GPU’s rapid increase in both programmability and capability has
successfully targeted a wide range of computationally demand-
ing, complex problems. These efforts in general-purpose comput-
ing on the GP-GPU and other SIMD devices, has positioned the
themselves as compelling alternatives to traditional microproces-
sors and other dedicated hardwares in high-performance computer
systems of the future. With more and more cutting-edge parallel
computing systems available on the market, a parallel DBS al-
gorithm will be attractive, if it can offer both (1) as good halftone
quality as sequential DBS and (2) less computation latency. Pixel-
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level parallel DBS is proposed by Chandu [13] but it is not very
friendly to SIMD system because of conflict among neighboring
pixels when updating the Cpe look-up-table (LUT). However, pre-
vious research by Lieberman and Allebach [14] already proved
the block-level DBS offers as good halftone quality as sequential
DBS. The authors, in this article, want to propose a block-level
parallel DBS that is computational friendly to SIMD processors
such as GP-GPU.

In this paper, we propose a novel approach to parallelize
DBS. Our objective is: (1)The parallel DBS should have same
halftone image quality as original sequential DBS; (2)The parallel
DBS should be friendly to SIMD processor, like GP-GPU; (3)It
had better that the parallel DBS could keep almost same amount
of computations so that it can have a fair comparison with se-
quential DBS on computational latency. The rest of the paper
is organized as: preliminary knowledge of DBS halftoning algo-
rithm and GPU computing programming model; Our block-level
parallel DBS algorithm is illustrated in the second section; The
third section is the experimental results; The last section is the
conclusion.

Preliminary

In this section, we briefly review DBS halftoning algorithm,
the HVS model, hybrid screen halftoning algorithm, and the tra-
ditional multilevel screen. In this section, we only discuss the
monochrome DBS. Also, we focus on the luminance channel of
the HVS model. And both DBS and hybrid screen reviewed here
are restricted in bi-level.

Direct Binary Search (DBS) and Human Visual
System (HVS) model

Direct Binary Search(DBS) is an iterative halftoning al-
gorithm to minimize the perceived difference between the
continuous-tone image and the halftone image. As showed in Fig-
ure 1:
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Figure 1. Objective of Direct Binary Search

The perceived difference is described by the term, mean
square error (MSE) of perceived error between the continuous-
tone image and the halftone image. Due to the low-pass charac-
teristic of the human vision, the perceived error is the error be-
tween the continuous-tone image and the halftone image filtered
by the Human Visual System (HVS) which is essentially a low
pass filter.

The spatial frequency response H (%, ©) of the HVS based
on Nisidnen’s modelis given by Equation 1:
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In Equation 1, % and v are the spatial frequency coordinates
in cycles/degree subtended at the retina; I is the average lumi-
nance of the light reflected from the print in cd/m?; Constants
a = 131.6,b = 0.3188, ¢ = 0.525, d = 3.91. If we take the in-
verse continuous-space Fourier transform (CSFT) of H (4, 7), we
get the spatial filter of HVS h(Z, §), where Z and 7 are in degrees
subtended at the retina. Before we invert the HVS from the fre-
quency domain into the spatial domain, we need first to convert &
and v in units of cycles/degree into u and v in units of cycles/inch.
Considering that = inches on the paper is viewed as T degrees at
the retina in a D viewing distance, so

_ 180 1 (180) 180
T = — tan ~ x
s

7['7D Nﬂ'iD 5 f0r$<<D (2)

Thus, in the spatial frequency domain the relationship be-
tween @ and u is given by
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and in the spatial domain,
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On the other hand, we also can have the analytical expression
for the HVS filter in the spatial domain [9]:

h(z,y)

2k
(k2 4 4 (a2 + 2))

h(z,y) = al® . 5)

Let e[m, n| be the error image by:

e[m,n] = glm,n] — f[m,n] 6)

where g[m, n] is the output halftone image and f[m,n] is
the input continuous-tone image. Then the perceived error image
between the halftone image and the continuous-tone image is the
error image filtered by HVS:

é(x,y) = Z z:e[m7 nlp(x — mX,y — nX) @)

where the X is the lattice of addressable points for the
printer; p(x,y) = h(x,y) * *p4ot(z,y) is the HVS convolved
with the printer dot profile function. Assuming that the h(z,y)
has much larger extent than printer dot profile function pgo:(, y),
we shall have p(z,y) = h(zx,y).
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Therefore, the error metric of DBS as known as the mean
square error (MSE) is:

E= / / &z, 9)|? drdy ®)

Substitute Equation 7 into Equation 8, we get:

E= Z Z e[m, n]cze[m, n )

where cze[m,n| = e[m, n] * xczs[m, n]. And czz[m,n] is
the autocorrelation function of the HVS on the printer lattice.

The search strategy for the DBS is that it tries to toggle or
swap each pixel with its neighbor pixel in a raster order. Toggle or
swap is accepted only if it reduces the error metric most. After all
pixels have been searched in the image, we call that one iteration
finished. After a certain number of iterations has been done or the
error metric cannot be reduced in the whole iteration, the DBS
algorithm converges. The search strategy of DBS is showed in
Figure 2:
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Figure 2. Search strategy of Direct Binary Search

If there is a trial toggle on location mg = [m, n], the updated
trial halftone image g’[m], the updated error image e’ [m] and cz&
are calculated as follows:

g'[m] = g[m] + aod[m — mo] (10)
e'[m] = e[m] + aod[m — myo] (1D
cpa[m] = cpe[m] + aocps[m — mo] (12)

where the prime denotes the updated image after trial toggle.

ap = —1 when g[my] is changed from 1 to 0; ap = 1 when
g[mo] is changed from 0 to 1. §[m] = 1 if m = 0; otherwise
d[m] = 0.

Substituting Equation 11 and 16 into Equation 9, the change
in error A E can be expressed as:

AEy = ajepp|0] + 2a0cp:[mo) (13)
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Similarly, according to [10], the trial switch in DBS will have
the change in error A Ey as:

AFE = (ag + a?)Cﬁﬁ[O] + 2(10613,: [mo}

(14)
+ 2@1655[11‘11] =+ 2a0a1c131; [m1 — mo]
the updated error image ¢’ [m] and c;¢ are:
g'[m] = g[m] + ao6[m — mo] + a15[m — m;] (15)
cpe[m] = cpe[m] + aocpp[m — mo 16)
+ a1cpp[m — my]
where ag is similar to a1. a1 = —1 when g[m;] is changed

from 1 to 0; a1 = 1 when g[m1] is changed from O to 1.

Therefore, we can see that AFE is changed according to
cpe[m], while there is either a toggle or switch, ¢z [m] is changed
in a very small local area, since cp;[m]’s size is determined by the
HVS, which is a small-size local low-pass filter. This conclusion
has a great impact on our parallel DBS algorithm that will be il-
lustrated later.

SIMD computing programming model

Again we take GPU as the example of SIMD computing de-
vice. The benefit of GPU computing is the massive parallelism
computing capability provided by increasing number of number
of compute units. Figure 3 shows the SIMD programming model.
The compute units, also be called ALUs or cores. The number of
cores reach upto hundreds or thousands in one GP-GPU. Every
core has is own dedicated registers; A bunch of cores share the
local (share) memory; All compute units have the same view on
the global memory. The access speed decreases from register, to
local memory and to global memory, while the size increases in
the same order. From a software programmer’s view, every par-
allelism item works on its own data. If each work-item indepen-
dently updates the its own data, the the atomic operations, barriers
or sequential block can be avoided. Those sequential operations
are the most significant bottle-necks for SIMD computing. The
relation between CPU and SIMD device (GPU) can be viewed as
a master-slave programming model. CPU works as the master,
which dispatches the parallel massive work load onto the SIMD
device. The SIMD device (GPU) works as massive slaves which
finishes their independent jobs. The data transfer from host(CPU)
to device(GPU), or from device(GPU) to host(CPU) is another
overhead for GPU computing. However, if transfer all the image
data once from the host to device, and then dispatches all the par-
allel work load on the device. After that, the output image data
transfers from device to host. This programming model avoids
unnecessary data transfer overhead. Our paralle DBS algorithm
mapping onto the SIMD device will comply with this model.

Block-level Parallel DBS

According to Lieberman and Allebach [10], block-level DBS
offers as good halftone quality as sequential DBS. Therefore, how
do we map the block-level DBS onto GPU that shows best fit of
the architecture? We come up with the simple block-level DBS.
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Bi-interleaved Block-level Parallel DBS

The most straightforward thought is to divide the entire im-
age into several equal size image blocks, and then map each image
block one by one to each computing core according to Figure 4.
However, because each update, including toggling and swapping
of each pixel, needs an update of cp.. Depending on the HVS fil-
ter size the developer chooses, each single pixel toggle or switch
on the halftone image g arises the change of c,. covers a small
area. In our case, the change of c,e is upto 25 x 25 pixels for a
single change. The overlap on the computing of the c,., showed
in Figure 4, among neighboring image blocks would cause con-
flicts on SIMD computing.

A better way is to have the bi-interleaved block-level DBS.
As showed in Figure 5, we first run the block-level DBS in the
blocks concurrently marked by index 1. After the DBS finishes on
all blocks of index 1, then run the block-level DBS concurrently
on the blocks marked by index 2.

However, by careful observation showed in Figure 6 compu-
tation conflict on cp. still happens at the corners of these blocks.

core core ccie C(ie core core core core

.........................

L2 Cache

Global/Constant memor

GPU

Host

Figure 3. GPU Architecture

Figure 4. Block-level parallel DBS

=N

Figure 5. Bi-interleaved Block-level parallel DBS
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Quad-interleaved Block-level Parallel DBS

The quad-interleaved block-level DBS finally solves the is-
sue of computation conflict on ¢,.. As showed in Figure 7, as
long as the block size is larger than 25 x 25 (due to the HVS filter
size, 25 X 25 in this paper), the overlap is entirely avoided.

Here we remind ourselves that the DBS is an iterative al-
gorithm. Therefore, we have two choices for the algorithm: (1)
Block parallelism as the outer loop; Iteration as the inner loop.
It means that the iteration is assigned inside each work-item (2)
Iteration as the outer loop; block parallelism as the inner loop.
It means that the iteration is controlled by the CPU. Meanwhile,
SIMD device runs for one iteration only for each trigger from host
(CPU). The first method inevitably causes the boundary artifacts
so we choose the second one. The pseudocode is showed as Al-
gorithm 1. ¢ is number of iterations. j is the number of update in
each iteration of DBS.

Algorithm 1 Pseudocode for Quad-interleaved Block-level DBS

1: 2+ 0;
2: while ( j > 0 ||i < threshold ) do
3: 7+ 0;
4: parallelize the DBS on all block of index 1
5: update j
6: parallelize the DBS on all block of index 2
7: update j
8: parallelize the DBS on all block of index 3
9: update j
10: parallelize the DBS on all block of index 4
11: update j

12: it 1+1
13: end while

Experimental Results

The halftone ramp generated by Quad-interleaved block-
level parallel DBS is showed in Figure 8. Compared with the
halftone ramp generated by original sequential DBS in Figure 9,

W[Rr[W]|k,
EHE

[EHER

Figure 7. Quad-interleaved Block-level parallel DBS
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Figure 8 does not show visually unpleasing artifacts. Figure 8 and
Figure 9 show almost same halftone quality.

(a) Highlight (b) Mid-tonel

Figure 8. Halftone ramp generated by quad-interleaved block-level parallel
DBS

(c) Mid-tone2

Figure 10. Halftone generated by quad-interleaved block-level parallel DBS

Figure 9. Halftone ramp generated by original sequential DBS

More details are showed in Figure 10 and Figure 11.

We made experiments on the real images. The Figure 12
and Figure 13 show the halftone image quality on person’s eyes.
There are high-frequency details around the eyes, eye brows, and
hairs. Also, there are smooth areas on the skin. There is almost
no quality difference between the original sequenctial DBS and
the parallel DBS.

The (timing) performance is evaluated as well. Figure 14
shows the performance scores. High score means the executing
latency is shorter. The performance is normalized by the GFlops
of the computing unit. The parallel DBS is 3 to 5 times faster than
the sequential DBS.

(a) Highlight (b) Mid-tonel

Conclusion
This paper proposes a SIMD device (e.g. GP-GPU) friendly
DBS algorithm, named quad-interleaved block-level parallel

DBS. With the potfantial computing performance benefits pro- (¢) Mid-tone2
vided by SIMD device, the halftone image generated by our par-
allel DBS still remains the same quality compared with original Figure 11. Halftone generated by original sequential DBS

sequential DBS algorithm.
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