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Abstract
A remarkably simple color constancy method was recently

developed, based in essence on the Gray-Edge method, i.e., the
assumption that the mean of color-gradients in a scene (or colors
themselves, in a Gray-World setting) are close to being achro-
matic. However this new method for illuminant estimation ex-
plicitly includes the important notions that (1) we cannot hope to
recover illuminant strength, but only chromaticity; and (2) that a
polynomial regression from image moment vectors to chromatic-
ity triples should be based not on polynomials but instead on the
roots of polynomials, in order to release the regression from ab-
solute units of lighting. In this paper we extend these new image
moments in several ways: by replacing the standard expectation
value mean used in the moments by a Minkowski p-norm; by go-
ing over to a float value for the parameter p and carrying out a
nonlinear optimization on this parameter; by considering a differ-
ent expectation value, generated by using the geometric mean. We
show that these strategies can drive down the median and maxi-
mum error of illumination estimates.

Introduction
Colors in images result from the combination of illumina-

tion, surface reflection, and camera sensors plus the effects of the
imaging and display pipeline [13]. In general, the human visual
system is capable of filtering out the effects of the illumination
source when observing a scene – a psychophysical phenomenon
denoted color constancy (CC). In many computer vision or image
processing problems, researchers have often made use of some
variety of CC as a pre-processing step to either generate data that
is relatively invariant to the illuminant, or on the other hand to
ensure that the captured color of the scene changes appropriately
for different illumination conditions. The computer science goal
in the color constancy task is to estimate the illumination, or at
least the chromaticity – color without magnitude. Remarkably,
the recent Corrected Moments illumination estimation due to Fin-
layson [6] does overall best in terms of illumination accuracy, and
moreover produces results that reduce the maximum error in esti-
mation. The latter property is important and desired: a camera
manufacturer wishes to generate no images at all that produce
strange colors, in any situation. The objective we aim at, here,
falls within the scenario of a camera company (or smartphone
producer) providing a CC algorithm with their equipment. In this
sense, a training phase would be acceptable since the resulting al-
gorithm adheres only to a single camera – the images we consider
are not “unsourced” in the sense that come from the web or other
unknown source: instead, they come from a known camera.

In this paper we re-examine Finlayson’s Corrected Moments
method [6] with a view to simple extensions which we find fur-
ther improve the illumination estimates delivered by the method.
These simple extensions do not greatly affect the good time- and

space-complexity of the method, yet yield better results, thus sur-
passing the best results to date.

Here we extend the Corrected-Moments approach in three
ways. Specifically, we begin by incorporating Minkowski-norm
moments into Corrected-Moments illumination estimation. Then
we show how to incorporate the Zeta-Image [5] approach to il-
luminant estimation within the Corrected-Moments method. Fi-
nally we devise a float-parameter optimization scheme to deliver
the best performance for each dataset situation.

The paper is organized as follows. In Section [Related
Work] we discuss related works that form the scaffold for the
present work. In Section [Corrected Moments] we review the
corrected moments approach proposed by [6]. In the Section
[Minkowski Norm and Geometric Mean in Corrected Mo-
ments Method] we propose novel moments to be used in the
Corrected-Moments approach, plus a new optimization scheme.
We compare results for the proposed moments with results ob-
tained previously by exhaustively considering different estimators
applied to 4 standard datasets.

Related Work
Gray-World and Gray-Edge

In experiments and tables of results below, note that we com-
pare results with the best to date, state-of-the-art methods. How-
ever, in fact the method in [6] is based on very simple algorithms,
so we begin the discussion with these. The simplest illumina-
tion estimation algorithm is the Gray-World algorithm [3], which
assumes that the average reflectance in a scene is achromatic.
Thus the illumination color may be estimated by simply taking
the global average over pixel values. More specifically, in each
color channel k = 1..3, the gray-world estimate of light color is
given by E(Rk), where E(·) is expectation value and Rk is RGB
color. That is, Gray-World states that E(Rk) =

1
N ∑

N
i=1 Ri

k, with
N being the number of pixels. Intuitively, Gray-World will ob-
viously fail if a scene is insufficiently colorful. For example, an
image of a gold coin that takes up most of the pixels will generate
a very poor illumination estimate; and if we move the white point
to R = G = B = 1, or use a more careful white-point camera bal-
ance (see, e.g., [11]) then our image will likely end up containing
a coin that looks gray rather than gold.

A more recent but almost as simple algorithm is the Gray-
Edge method, which asserts that the average of reflectance dif-
ferences in a scene is achromatic [16]. With this assumption, the
illumination color is estimated by computing the average color
derivative in the image, E(||∇Rk||), where ∇ is the gradient field
pair {∂/∂x,∂/∂y}. The Gray-Edge assumption originated from
the empirical observation that the color derivative probability
distribution for images forms a relatively regular, ellipsoid-like
shape, with the long axis coinciding with the illumination color
[16]. The expectation value for the kth color channel is then esti-
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mated by

ĉk =

√√√√ N

∑
i=1

∣∣∣∣∣∂Ri
k

∂x

∣∣∣∣∣
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+

∣∣∣∣∣∂Ri
k

∂y

∣∣∣∣∣
2

, k = 1..3 (1)

with ĉk denoting the estimate of the illuminant color.
Based on the Gray-World and Gray-Edge approaches, many

extensions have been proposed. The Shades-of-Gray algorithm
[8] was the first to propose using a Minkowski norm to replace the
averaging step in the Gray-World method. With integer exponent

p, the Minkowski or p-norm is p
√

∑
N
i=1 |Rk|p . Similarly, applying

the Minkowski norm to the Gray-Edge method substantially im-
proves illumination estimation performance [8]. This estimate is
as follows:

ĉk =
p

√√√√ N

∑
i=1

∣∣∣∣∣∂Ri
k

∂x

∣∣∣∣∣
p

+
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k
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p

, k = 1..3 (2)

Note that these methods are based on moments of the pixel values
or of the gradient fields.

Extensions
Starting from the Gray-Edge method, it was also found that

first blurring the image with a Gaussian smoothing filter could
aid performance. And as another extension, considering higher-
order derivatives of order n could sometimes help as well. So,
replacing the partial derivatives with Gaussian derivatives denoted
δσ , Gray-Edge becomes

ĉk =
p

√√√√ N

∑
i=1
|
δ n

σ Ri
k

δσ xn |
p + |

δ n
σ Ri

k
δσ yn |

p (3)

where σ indicates the standard deviation in a Gaussian derivative
and n is the order of derivative.

Ref.[10] presents a useful review of various CC algorithms,
some of which are quite complex. In eq. (3) the order n deter-
mines whether the method is Gray-World, with n = 0 (i.e., using
RGB pixel values, not gradient fields), or Gray-Edge, with n≥ 1;
p denotes the Minkowski norm; and σ is the parameter of Gaus-
sian filter parameter for smoothing the original image; smooth-
ing tends to improve results since it removes noise. The original
Gray-World has n = 0 and p = 1; when n = 0 and p→ ∞ the al-
gorithm is equivalent to the so-called Max-RGB approach, with
illuminant estimate given by the maximum value in each of R, G,
and B; and when n = 0 and 0 < p < ∞ it is Shades of Gray[8].
An advantage of all the color constancy approaches based on (3)
is that they are of low computational complexity both in space
and in time [16]. Moreover, these approaches do not require any
training stage. However, the latter point may arguably be a dis-
advantage, from the point of view of a manufacturer willing to
calibrate a particular camera for best estimates.

Corrected Moments
To date, most recently the most successful descendant of the

methods above is that in [6]. The method in [6] derives from Eq.
(1), using either moments of RGB or moments of first derivatives

of RGB. In that work it was found, remarkably, that by incorpo-
rating simple but fundamental corrections to the above moments-
based approaches, i.e. the Gray-World and the original Gray-Edge
methods, illumination estimation performance bested state-of-art
approaches involving a great deal of computation and even feature
extraction (see [4, 6, 8, 17, 10, 15]).

In this paper we mean to extend the Corrected-Moments ap-
proach, in several ways, and thus improve the performance even
more. Our first extension is to replace a standard expectation
value mean by instead using a Minkowski p-norm. Moreover
we go over to a float value for the parameter p by carrying out
a nonlinear optimization on this parameter. Secondly, we also
consider a different expectation value generated by using the geo-
metric mean, as in [5]. And thirdly, we also replace the corrected
moments method use of gradient data as in Eq. (1) by instead us-
ing a Minkowski p-norm. We show that these strategies can drive
down the median and maximum error of illumination estimates.

Polynomial Regression
The Corrected-Moments method can be understood as a vari-

ant of polynomial regression. Here we briefly recapitulate the
method [6], pointing out its simple but innovative use of funda-
mental observations to arrive at an excellently performing algo-
rithm. Firstly, in obtaining estimates ĉk of the illuminant color in
our Eq. (1) and in Eq. (2), we cannot expect to recover the abso-
lute intensity of the light. This is due to the fact that the light and
surface interact multiplicatively in forming the color signal spec-
trum which enters the camera. E.g., a pink light on white walls
looks like a white light on pink walls – modulo calculations of
the interreflections at the corners, which arguably may help the
human visual system disambiguate the situation [2]. So in our
calculations of ĉk, we should always convert to estimates of the
chromaticity of the light source, not its absolute strength; i.e., we
form chromaticity – color without magnitude. Hence in [6], the
author explicitly separates the estimates of chromaticity and of in-
tensity (the latter consisting of light-strength times the particular
albedo at the current pixel).

Let us first consider ordinary least squares polynomial re-
gression. Recall that our scenario is that of a camera manufac-
turer developing a method of recovering the lighting chromatic-
ity in any image; therefore we can assume we have available
a training set of RGB images, plus ground truth for the illumi-
nant chromaticity triple as well, perhaps by imaging a color target
or white patch in each image (and then masking off the white
patch for training and estimation). Our training-set regression
should supply us with regression coefficients a j which will al-
low us to recover an estimate of illuminant chromaticity from any
new image in a testing set (for this same camera). Here we shall
make use of the standard, L1-norm based 3-vector chromaticity
ck = Rk/∑

3
j=1 R j, k = 1..3. Our training set consists of n images

plus n ground-truth chromaticity triples c. For any estimate of
light color that we derive, ĉk, we agree to always go to chromatic-
ity ĉk/∑

3
j=1 ĉ j to judge our accuracy.

Let the degree of the polynomial be d, with the indepen-
dent data being expectation values over polynomials for the
entire image. For example, for d = 2 (i.e., up to 2nd de-
gree monomials in R,G,B), we take independent values to be
E(R2),E(G2),E(B2),E(RG),E(RB),E(GB) (all monomials of
degree 2) as well as E(R),E(G),E(B) (all of degree 1) and also
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an offset term 1 of degree 0. Let us call these 10 image descrip-
tors a 1× 10 row-vector m. For dependent variables we take the
ground truth 1×3 row-vector c. Suppose there are n images plus
n ground truth chromaticity vectors. Then standard Least Squares
(LS) based polynomial regression groups all training-set image
descriptors into an n× 10 matrix M and correct chromaticities
into an n×3 matrix C, with the sought regression coefficients a j
then delivered by the minimization

min
A
||MA−C||2 (4)

where matrix A is the 10×3 collection of regression coefficients
a j.

Corrected Polynomial Regression
Now, in the first place, in keeping with our goal of not try-

ing to map illuminant intensities we should not consider, and
thus remove, the constant (offset) term from Eq.(4), leaving a
dimension-9 problem. Moreover, that term changes the black
point of the camera and we do not wish to do that. Now, in
a main innovative insight [7] it was also recognized that if we
do not wish to model intensity, then we should make our re-
gression coefficients invariant to the actual (multiplicative) level
of intensity of the light. To do so, roots of degree d should
be applied to the moments listed above, thus keeping the units
of light unchanged no matter what the light level is. That is,
instead of E(RG), we should use

√
E(RG) , etc. In [7], this

insight was utilized in the color correction problem – mapping
RGB to tristimulus values XYZ. In [6] this same insight was fur-
ther applied to the illumination estimation problem. Note that
the number of expectation values used is still 9 in the d = 2
case, because

√
E(R2) 6= E(

√
R2). Thus our set of corrected

moments is {E(R),E(G),E(B),
√

E(R2),
√

E(G2),
√

E(B2),√
E(RG),

√
E(RB),

√
E(GB)}. Similarly, root-monomials of de-

gree 3 would be 3
√

E(RGB), etc.
The second main innovative insight that completes the

corrected-moment method [6] is explicitly taking into account the
fact that we have only chromaticity values to regress upon, not
intensities. Suppose an overall albedo times light-intensity scalar
is k j, for each of the j = 1..n images. Then remembering that
the right-hand-side n×3 matrix C consists of chromaticities, i.e.,
color without magnitude, in [6] the author sets up an optimization

min
K,A
||KMA−C||2 (5)

where K is a diagonal array of j = 1..n constants k j; here, for
d = 2 for example, K is n× n, M is n× 9, A is 9× 3, and C
is n× 3. A solution is given iteratively by solving for coefficient
matrix A and then for constant vector k = diag(K) [6] (here using
the d = 2, i.e. 9-component variant for illustration):

The work in [6] applies the above algorithm to RGB image
data R, or alternatively to gradient data ∇R, and for degree up
to d = 3 (i.e., 19 moments); that work carries out experiments
using 3-fold cross validation, dividing any data set into thirds by
randomly assigning image-index values in j = 1..n and taking 2/3
of the data as training and 1/3 as testing images. Empirically,
the advantages of the method in [6] are two-fold: a reduction in
illumination estimate error is observed, and also a reduction in the

Algorithm: Corrected Moments
Initialize K = In×n, the unit matrix;
for MAXITN iterations do

A = (KM)+C where + is the Moore-Penrose
pseudoinverse: size is 9×3;

for j = 1..n images do
m = row j of M, size is 1×9;
c = row j of C, size is 1×3;
k j = c(mA)+, a scalar.

end
end

maximum error – the latter is important because manufacturers
desire no perceptible outlier cases.

In [6], the author used RGB moments as well as higher order
RGB moments. These moments can be summarized as follows:

muvw =

[
∑

N
i=1 Ru

i Gv
i Bw

i
N

]1/d

u+v+w = d; u,v,w≥ 0 (6)

Here R,G,B is used as a shorthand for either RGB pixel value
themselves or Gaussian first (in [6]) derivatives of the image, with
monomials muvw denoting the moments, with a total of 3,9,19,34
moments when the polynomial degree is d = 1,2,3,4. The mo-
ments in (5) scale with intensity. And this “intensity scaling”
property is important for correcting illumination estimation [6]:
with this property, calculated chromaticities will be independent
of intensity – and this is not the case for standard polynomial re-
gression.

Now let us consider extensions of this method: here we make
use of sets of chromaticity data, along with color RGB data as
well as gradient data ∇R; we introduce use of the p-norm into
corrected moments; and as well make use of a geometric mean
instead of a sum-of-squares method that minimizes the mean. In
an innovative step, we also show how the Minkowski p-norm val-
ues can be shifted into the float domain and optimized for any
camera/dataset situation.

Minkowski Norm and Geometric Mean in Cor-
rected Moments Method
Corrected Moments with p-Norm

Here we extend the basic corrected moments method (5) by
utilizing a Minkowski p-norm in place of the averaging norm E(·).
Again, let the maximum polynomial degree be d: typically, we
might use values d ∈ 1..4. Now incorporating the Minkowski
norm in our illumination estimate, we produce moments as fol-
lows: for the linear, d=1 moments we use

(mk)(d=1) = (
1
N

n

∑
i=1

(Ri
k)

p)1/p, k = 1..3 (7)

i.e., a 3-vector of p-norm moments, k = 1..3 for R,G,B, formed by
summing over all pixels i = 1..n. The degree d of each monomial
is d = 1, i.e., R, G, or B entering the p-norm as linear terms that
are then formed into a p-norm.

For the remaining moments, formed from monomials in
R,G,B of up to degree d which is higher than 1, we use a sum
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over degree j = 2..d. So e.g. for j = 2 we need p-norm expecta-
tion values made from monomials of degree 2, i.e., from products
R2, G2, B2, RG, RB, GB, for a total dimension of moments D = 6.
In keeping with the idea above of making the moments scale lin-
early with intensity, the expectation values would still require a
square root applied.

For degree j = 3 we need p-norm expectation values for
monomials RGB, R2G, R2B, R3, G2R, G2B, G3, B2R, B2G, B3,
for a total dimension of moments D = 10; and the expectation
values would still require a cube root applied.

In general, for degree of monomial j the dimension D is
D =(3+ j−1) C j. That is, for cases j = 2,3,4 the number of mono-
mials is D = 6,10,15. Altogether, if we want moments up to
degree D = 3, say, then we collect three degree-1 monomials, six
degree-2 monomials, and ten degree-3 monomials for a total di-
mension of moments equal to 19. For d = 4 we have j = 1..4
meaning a total of 3+6+10+15 = 34 moments.

We can state this concept succinctly as follows:

Moments of up to Degree d:
for j = 2..d // if monomial degree is d = 2,3,4 then
number of moments D is (3+ j−1)C j = 6,10,15 etc.
do

indSets = unique combinations of RGB indices 1,2,3
to polynomial degree j ;
for q = 1 : D do

(mk)( j,q) =

( 1
N ∑

n
i=1 prod(Ri

k(indSets(rowq))p)1/ j)1/p;
// k = 1..3 ;
// prod = product across columns of indSets

end
end

Optimization of p-Norm
In the above, the Minkowski parameter p is fixed. Recalling

that we mean to carry out the best estimation for a particular cam-
era only, we can optimize over p. We used Matlab’s fmincon func-
tion, setting variable p as the only varying parameter and median
error as our optimization goal. We randomized the image-index
value for both training and testing sets, using three-fold cross vali-
dation. Unusually, however, for this optimization schema we kept
the training set and testing sets’ index vectors fixed. Though of
course this might cause over-fitting for the particular index set-
tings, we found that the optimal value of p was actually very close
to re-randomizing image indexes in each iteration. Using a fixed
randomization greatly reduced the time for finding an optimal pa-
rameter p (we checked on fully randomized training and test sets,
of course).

Corrected Moments with Geometric Mean
In [5] it was argued that, based on fundamental physical

principles regarding matte and specular contributions to pixel
color, an excellent estimate of illuminant color could be deter-
mined by calculating the geometric mean (or ‘Geo-Mean’ for
short), in each color channel. Here we therefore replace the
ordinary, summation-based moments, in use so far, with such
multiplicative-based moments.

Similar to equation (6), our geometric mean moments may
be summarized in the following equation:

muvw =

( N

∏
i=1

Ru
i Gv

i Bw
i

)1/N
1/d

u+v+w = d u,v,w≥ 0 (8)

Here muvw now denotes the new moments. When we set d =
1, muvw is simply the illumination color triple. Note that in [5], the
authors proposed using only the top 10% brightest pixels because
only near-specular pixels obey their observed planar constraint
rule used to determine the illuminant. Hence, in this paper we
also borrow this idea of using only the top-10% brightest pixels
to compute the moments. When we set d = 2,3 , we end up with
9 and 19 moments.

By inspection, the computed moments scale with intensity;
again, this “intensity scaling” property is important for correcting
illumination estimation [6].

Application of Minkowski p-Norm and Geo-Mean in Cor-
rected Moments

As in [6], we used image color and color-gradient informa-
tion to calculate moments. However, different from [6], we ap-
plied our proposed p-Norm and Geo-Mean moments method to
color-image and -edge fields, instead of using the mean as ex-
pectation value. Here we use p-Norm(color) to denote using a
p-Norm moments calculation for the original image, and use p-
Norm(edge) to denote applying a p-Norm moments calculation to
the gradient-pair image. Similarly, Geo-Mean(color) and Geo-
Mean(edge) denote applying a Geo-Mean moments calculation to
color image and color-image edges respectively.

We evaluated our proposed approach on four standard color
constancy datasets of real images. For all datasets, we ran 10
runs of threefold crossvalidation to train and test our approach.
The first dataset used is the reprocessed “Gehler” color constancy
dataset (described by Lynch et al. in [12]), and denoted here as the
Lynch-ColorChecker dataset. This is a re-processed version of an
original dataset due to Gehler et al. [9]. The Lynch-ColorChecker
dataset contains 482 of these images, which are those taken by a
Canon 5D SLR camera; the ground truth illumination is measured
from a Macbeth ColorChecker placed in the scene (the Macbeth
ColorChecker must be masked off during training and testing).

In order to compare with other state-of-art algorithms, we
also evaluate our methods on the Shi and Funt [14] reprocessed
version of the Gehler dataset, which has been commonly used.
Two versions of the Shi-Funt reprocessed Gehler dataset have ap-
peared, starting with the 568 images in [14]. These consist of 86
images from a Canon 1D camera and 482 images taken by Canon
5D camera. We use the widely-used original dataset of all 568
images taken as a whole.1 We refer to this data as the Shi-Funt-
Gehler dataset.

Another widely used dataset is the “GrayBall” dataset, so
called because the ground truth illumination is measured from an
inset physical matte-surface gray ball in a set of videos. Here we
used the 10 images per clip (150 images) compiled by Van der
Weijer et al. [16].

1The original Shi-Funt reprocessed Gehler dataset was removed on
Sept. 16, 2013 and replaced: here we use the original data in order to
correctly compare with other methods that used the original dataset.
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The last dataset used is the “SFU Object Dataset” [1], con-
sisting of 321 images of 31 objects under up to 11 different illu-
mination conditions. For all data we carried out the same cross
validation process.

In Figure 1 we visualize color difference between color-
corrected images and ground truth. We display images from
[14, 12, 1]. The first column is entirely black since it is error from
the ground-truth image: darker indicates smaller color difference.
We can form an approximated CIELAB ∆E error image by taking
the original image to a standard color space by multiplying by the
inverse of a diagonal 3× 3 matrix consisting of the ground-truth
chromaticiy; and similarly we can divide the same image by the
approximate, recovered illuminant chromaticity. Then assuming
the images are in the standard sRGB color space, first we remove
gamma-correction if indeed images were gamma corrected: now
we are in linear sRGB color space. Then, in the sRGB standard,
a 3×3 matrix transform is defined from linear sRGB to CIE tris-
timulus XYZ color space. Setting the whitepoint to D65, these
triples can then be taken to CIELAB coordinates by the standard
nonlinear transform. These steps take us to images that are ap-
proximately in a perceptually uniform color space, where ∆Ea∗,b∗

forms a sensible image-sized indicator of perceptual color differ-
ence. As can be seen in the figure, our proposed four moments
have smaller error than [6] on the datasets [14, 12]. And on [1],
our p-Norm moments are always the best.

Our results appear in Tables 1, 2, 3, and 4 for the 4 datasets.
As well as citing results for past papers, we also re-implemented
the Corrected-Moments method [6] so as to run tests on all the
datasets (shown with an asterisk). Our re-implementation found
similar results to the reported results in [6], with slight differences
due to different parameters for image-size reduction and smooth-
ing.

For optimized parameters, we found that our proposed
methods always perform better than our re-implementation of
Corrected-Moments, simply by extending the definition for cal-
culating moments. We speculate that any values poorer than
reported in [6] are most likely due to the image shrinking and
smoothing processes. Our proposed methods always outperform
[6] on all our tested results when we optimize the image pre-
processing steps.
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Table 1: Shi and Funt Original Dataset (pre-16Sept2013)
Method Mean Median Trimean Min 95%
GrayWorld[8] 6.40 6.30 11.30
Shades of Gray[8] 4.90 4.00 11.90
GrayEdge[16] 5.10 4.40 11.00
Gamut Mapping[10] 4.20 2.30 14.10
Spatio-Spectral Statistics[4] 3.40 2.60 9.52
Natural Image Statistics[10] 4.20 3.10 11.70
Exemplar-Based[15] 3.10 2.30
3 Moments[6] 4.00 3.30 8.90
9 Moments[6] 3.60 2.80 9.10
19 Moments[6] 3.50 2.60 8.60
3 Edges[6] 3.00 2.20 7.20
9 Edges[6] 2.90 2.10 7.10
19 Edges[6] 2.80 2.00 6.90
3 Moments* 4.49 3.77 4.03 0.20 10.04
9 Moments* 3.82 3.02 3.18 0.17 9.67
19 Moments* 3.62 2.73 2.91 0.13 9.68
3 Edges* 2.98 2.35 2.50 0.10 7.73
9 Edges* 3.32 2.34 2.50 0.11 8.60
19 Edges* 3.35 2.1532 2.37 0.10 8.87
3 Geo(color) 4.63 3.97 4.15 0.25 10.40
9 Geo(color) 3.50 2.62 2.79 0.15 9.32
19 Geo(color) 3.42 2.2543 2.47 0.09 9.78
3 p-Norm(color)p=0.25 4.60 3.96 4.14 0.20 10.22
9 p-Norm(color)p=0.25 3.43 2.59 2.81 0.14 9.27
19 p-Norm(color)p=0.25 3.54 2.34 2.58 0.09 10.17
3 Geo(edge) 3.41 2.89 2.96 0.11 8.58
9 Geo(edge) 3.19 2.25 2.48 0.14 8.60
19 Geo(edge) 2.80 1.9531 2.12 0.14 7.82
3 p-Norm(edge)p=0.25 3.09 2.54 2.65 0.13 7.54
9 p-Norm(edge)p=0.25 2.78 2.08 2.25 0.12 7.19
19 p-Norm(edge)p=0.25 2.80 2.0117 2.19 0.11 7.63

Table 2: Lynch-ColorChecker Dataset
Method Mean Median Tri-Mean Min 95%
3 Moments* 4.31 3.26 3.58 0.19 10.73
9 Moments* 3.12 2.34 2.50 0.10 8.23
19 Moments* 2.99 2.14 2.30 0.09 8.27
3 Edges* 3.19 2.20 2.44 0.08 8.63
9 Edges* 3.02 2.0346 2.25 0.13 7.99
19 Edges* 3.21 2.11 2.33 0.11 8.52
3 Geo(color) 3.45 2.74 2.91 0.16 8.63
9 Geo(color) 2.69 2.03 2.23 0.11 6.80
19 Geo(color) 2.58 1.8364 2.03 0.13 6.86
3 p-Norm(color)p=0.25 3.42 2.72 2.88 0.14 8.58
9 p-Norm(color)p=0.25 2.60 1.85 2.05 0.09 7.11
19 p-Norm(color)p=0.25 2.51 1.7476 1.96 0.10 6.86
3 Geo(edge) 3.50 2.58 2.83 0.11 9.45
9 Geo(edge) 2.92 2.02 2.22 0.08 7.86
19 Geo(edge) 2.71 1.8773 2.06 0.14 7.34
3 p-Norm(edge)p=0.25 3.34 2.49 2.70 0.14 9.04
9 p-Norm(edge)p=0.25 2.76 2.08 2.22 0.10 7.45
19 p-Norm(edge)p=0.25 2.88 2.01 2.19 0.10 7.74
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Table 3: GrayBall Dataset

Method Mean Median Tri-Mean Min 95%
GrayWorld[16] 7.30
GrayEdge [16] 4.10
Constrained Minkowski[8] 3.81
3 Edges[6] 3.80
9 Edges [6] 3.30
3 Moments* 4.82 4.08 4.28 0.24 11.49
9 Moments* 3.84 2.9361 3.17 0.24 10.06
19 Moments* 4.49 3.26 3.45 0.36 12.83
3 Edges* 5.04 4.21 4.32 0.28 13.41
9 Edges* 4.65 3.38 3.69 0.26 13.60
19 Edges* 5.70 3.80 4.16 0.40 16.70
3 Geo(color) 4.78 3.94 4.19 0.23 11.62
9 Geo(color) 4.12 3.09 3.37 0.37 11.16
19 Geo(color) 4.74 3.19 3.45 0.40 12.97
3 p-Norm(color)p=0.5 4.88 4.19 4.37 0.28 11.31
9 p-Norm(color)p=0.5 3.85 2.8864 3.12 0.23 10.34
19 p-Norm(color)p=0.5 4.69 3.20 3.45 0.36 13.66
3 Geo(edge) 5.96 4.98 5.25 0.45 14.27
9 Geo(edge) 5.56 3.91 4.21 0.27 14.88
19 Geo(edge) 5.86 3.91 4.33 0.44 17.97
3 p-Norm(edge)p=1 5.04 4.21 4.32 0.28 13.41
9 p-Norm(edge)p=1 4.65 3.38 3.69 0.26 13.60
19 p-Norm(edge)p=1 5.70 3.80 4.16 0.40 16.70

Table 4: SFU Object Dataset
Method Mean Median Tri-Mean Min 95%
GrayWorld 9.80 7.00
GreyEdge 5.60 3.20
Gamut Mapping 3.60 2.10
3 Edges[6] 4.10 3.60
9 Edges[6] 2.60 2.0
3 Moments* 7.54 5.85 6.10 0.42 19.11
9 Moments* 4.31 3.17 3.48 0.27 11.83
19 Moments* 2.87 2.32 2.43 0.15 7.23
3 Edges* 4.37 3.62 3.77 0.20 11.06
9 Edges* 3.69 2.9974 3.09 0.24 9.76
19 Edges* 3.58 2.71 2.90 0.23 10.00
3 Geo(color) 7.05 5.55 6.00 0.39 17.49
9 Geo(color) 6.52 4.98 5.35 0.34 16.57
19 Geo(color) 5.28 3.89 4.26 0.34 13.41
3 p-Norm(color)p=2.75 5.63 4.41 4.64 0.34 14.90
9 p-Norm(color)p=2.75 3.51 2.53 2.76 0.14 10.12
19 p-Norm(color)p=2.75 2.93 1.9366 2.17 0.16 8.72
3 Geo(edge) 5.49 4.48 4.69 0.33 13.98
9 Geo(edge) 4.70 3.99 4.21 0.26 10.90
19 Geo(edge) 4.22 3.34 3.54 0.27 10.91
3 p-Norm(edge)p=2.75 4.33 3.51 3.61 0.21 11.90
9 p-Norm(edge)p=2.75 3.37 2.50 2.60 0.24 10.06
19 p-Norm(edge)p=2.75 3.06 2.2466 2.48 0.22 7.60
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1
Figure 1. Approximate CIELAB error.
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