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Abstract 
In this paper we propose a block equivalence algorithm for 

connected component labeling of 2D and 3D images on GPU. 
Usage of square pixel blocks in our solution allows reducing twice 
computational complexity in comparison with existing label 
equivalence methods. In contrast to well-known block-based 
algorithms, we don’t rely on decision tables to reduce amount of 
memory accesses. Instead, we propose a different technique based 
on pixel scan mask that better suits to GPU architecture. We show, 
theoretically and experimentally, that our approach outperforms 
many existing CPU and GPU algorithms for connected component 
labeling. We also demonstrate, how to extend our method to label 
3D volumetric images and that it has significant performance 
advantage over a simple label equivalence algorithm. 

1. Introduction 
Object detection is one of the most common problems in 

modern computer vision. In the case of binary images, it may be 
performed using connected component labeling (CCL) technique, 
which aims to assign each object in scene unique numeric label.  

In the terms of CCL object is represented by a group of 
adjacent white pixels, while background consists of the black ones. 
We distinguish two types of pixel connectivity: four-connected and 
eight-connected pixels. The most of CCL algorithms were 
designed to deal with both types of connectivity, but in recent 
years we have seen many new approaches, based on assumption 
that all image pixels are eight-connected. While universal 
algorithms such as [1-3] are forced to deal with image pixels, 
eight-connectivity based algorithms may be applied to 2x2 blocks. 
This approach was first introduced by Grana in [4]. He noticed that 
all pixels within 2x2 block always share the same label (see figure 
1), which allows reducing of labelling efforts. His idea was widely 
adopted by many authors, who proposed similar algorithms with 
different extensions [5-10].  

 
        

      

Figure 1. Examples of different 2x2 pixel blocks with the same label 

The critical point of any block-based algorithm is a necessity 
to read each pixel multiple times: for instance, if there are two 
adjacent pixels A and B inside the same block, and pixel C, which 
belongs to another block is 8-connected to both of them, we will 
check it twice to evaluate relation between first A and C and then 

B and C. An obvious way to avoid that is addition of conditional 
checking: if we have checked pixel C, we don’t need to check it 
again. Grana solves the problem using large decision tables. Later 
papers were aimed to improve his approach by increasing the 
effectiveness of pixel checking with better decision conditions [6, 
7] and by applying different spatial apertures [5, 8]. 

Another important characteristic of CCL algorithm is a pixel 
access pattern, which may be regular [1-10] and irregular [11, 12]. 
Regular access is a perfect solution for single core CPU 
architecture, as it leads to a better cache utilization. But it also has 
a drawback: regular access provides very limited ability for 
concurrent processing. On the other hand, irregular access often 
requires perform multiple passes through image, while sequential 
algorithms need only one [2], two [1, 3-6] or one-and-a-half [8] 
scans. 

The majority of attempts to adopt CCL algorithms to parallel 
architectures had very limited application. But fast development of 
modern GPGPU technologies, such as OpenCL and CUDA, make 
it possible to apply them for CCL processing using a broad range 
of devices [13-15]. There are two different ways to achieve that. 
The first one is a simple adaptation of sequential approaches to run 
on GPU [13]. Often it means, that we process individual image 
slices in parallel with distinct computing units and then merge 
them. The drawback of this approach is quite obvious: merging 
cannot be done in parallel, so it’s hard to achieve good 
performance.  

Another scenario adopts multi-pass methods with irregular 
access. In contrast to CPUs, GPU architectures can benefit from 
processing multiple pixels at once, so multi-pass algorithms can be 
easily adopted for them. In 2011 Kalentev proposed GPU labeling 
algorithm [14], that extends label equivalence technique. His 
approach utilizes two interleaving steps: on the first step each pixel 
is labeled with the lowest label among its neighbors; and on the 
second label equivalences are resolved by finding the roots of 
equivalence trees stored in label map, where equivalence trees 
represent hierarchy between neighbor labels. These two steps are 
performed iteratively until there will be no changes inside the label 
map. 

In this work we propose a block equivalence algorithm, which 
applies 2x2 blocks to resolve label equivalence in eight-connected 
images. In contrast to other block-based methods, our algorithm 
doesn’t rely on large decision tables. Instead, we propose another 
technique based on pixel connectivity mask, which fits well for 
GPU architecture. We show that our algorithm demonstrates 
comparable results to well-known CPU labeling algorithms. Our 
approach can be extended to label 3D images and it significantly 
outperforms label equivalence algorithm. 
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2. Related Work 
Let’s briefly describe the label equivalence technique [14]. 

The algorithm requires initial binary image and label map to store 
output. It consists of three phases: initialization, scanning and 
analysis. Initialization is performed only once, while two other 
phases are executed iteratively, one by one, while no changes will 
be presented in label map. Each step is performed in parallel; each 
computing unit processes its own pixel. All intermediate changes 
are stored in the label map; thus algorithm requires no additional 
memory. It makes label equivalence a great choice for labeling 
large images, because algorithm capabilities are limited by 
available memory amount only.  

In the initialization phase, each non-zero image pixel gets a 
unique label corresponding to its index in 1D pixel array. If Xi and 
Yi are the coordinates of ith pixel and W is an image width, label 
may be evaluated as following: Li := Xi + Yi∙W + 1 (we assume that 
index of first element on array is 0). To exclude processing of 
pixels, which are equal zero, we assign zero for corresponding 
labels.   

The scanning phase is illustrated in Algorithm 1. In this phase 
we compare neighboring labels of each pixel with its current label 
and assign the lowest of them to it. At the step 5 function 
FindMinLabel gets the minimal label among of eight (or four) 
pixel neighbors, except the zero ones. To make this process more 
efficient, we access not the pixel label itself, but the label it 
references to, according to the algorithm step 7. 

Algorithm 1. Scanning phase of label equivalence algorithm 
1: Pos ← Workitem ID; 
2: Labels ← Array of image labels; 
3: L := Labels[Pos]; 
4: if L > 0 then 
5:     Lmin := FindMinLabel(Pos); 
6:     if Lmin < L then 
7:         Labels[L - 1] := min(Labels[L - 1], Lmin); 
8:     end if 
9: end if 

 In the analysis phase (Algorithm 2) we walk through the label 
map and resolve label equivalences. Labels, assigned in the 
initialization phase, are array indexes. Thus, we can use them to 
find root of the equivalence tree. If the pixel index and its label 
value are different then we iterate through the label map as 
following: Li,n := Labels[Li,n-1], where Li,n is a current label at nth 
iteration and Labels is a label map. When the condition Li,n = 
Labels[Li,n-1] is met, we stop and assign the final label to current 
pixel: Labels[Li,0] := Li,n. The second and the third phases are 
repeated iteratively until no changes occurred inside the label map. 

Algorithm 2. Analysis phase of label equivalence algorithm 
1: Pos ← Workitem ID; 
2: Labels ← Array of image labels; 
3: L := Labels[Pos]; 
4: if L > 0 then 
5:     Lcur := Labels[L - 1]; 
6:     while Lcur ≠ L do 
7:         L := Labels[Lcur - 1]; 
8:         Lcur := Labels[L - 1]; 
9:     end while 
10:    Labels[Pos] := L; 
11: end if 

 

For the simplicity we illustrate that using a simple example 
(figure 2). Let’s assume, that we process pixel with index 9. Its 
label is 9, so 9 – 1 ≠ 9. It means, the label is a reference; and we 
need to walk through the label map to find out equivalence tree 
root. Label of pixel with previous index 9 – 1 = 8 also differs from 
its index (8 – 1 ≠ 8), so, the next possible candidate for the root is 
7. After several iterations we find out that label in position 0 is 
similar to its index (0 – 1 = 0). Thus, pixel at index 9 corresponds 
to label 1. 

The process itself is very similar to an iterative label 
distribution; nevertheless, labels are distributed both across nearby 
neighbors and between different image parts. However, in the case 
of large-sized images, systems with a small number of parallel 
processing units cannot reach the claimed good performance. That 
is, applying label equivalence to 2x2 blocks rather than to 
individual pixels may increase performance by four times. 

ID 0 1 2 3 4 5 6 7 8 9 

Labels 1 1 2 3 4 1 6 7 8 9 
 

Figure 2. An example of analysis phase for  
the label equivalence algorithm. 

Decision tables can reduce block processing complexity, as it 
was suggested by Grana in [4]. He utilized window, which is 
shown in figure 3. It’s assumed, that we always process block X. 
Thus, in the case if we want to evaluate connectivity between this 
block and block Q, we should check connectivity between pixels o, 
p, i and j. Basically, we can first check o, i, j and then p, i, j, but it 
leads to doubling the number of memory reading operations. 
Decision tables allow reading each pixel only once. For instance, if 
pixel o is white and pixel i is also white, it means, that blocks X 
and Q are connected, thus there’s no need to perform additional 
checks and pixels p and j may be ignored. 
 

a b c d e f  
P Q R 

g h i j k l  

m n o p    
S X   

q r s t      

Figure 3. Search window proposed by Grana: 
 left – pixel layout, right – super pixel layout 

There are two ways to implement decision tables: using many 
nested if-then branches or by function pointers. Currently, GPU 
architectures don’t support function pointers, so branching is the 
only alternative. But in contrast to CPUs, GPUs don’t benefit from 
branches: due to architecture limitations, each workitem, which is 
similar to thread on GPU, executes all possible branches, but apply 
only those of them, which are valid according to the branch 
conditions (see [16]). Hence, utilization of large decision tables on 
GPUs is totally infeasible. To avoid this problem, we propose 
using pixel scan mask, which fits GPU architecture perfectly.  
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3. Proposed Algorithm 
3.1. 2D Images Labeling 

Let’s outline our algorithm prerequisites. Block equivalence 
algorithm takes binary image as an input. Depending on requested 
results, it may output either pixel label map or block label map. We 
also need to store intermediate block connectivity map to 
determine, which blocks are connected. That is, total memory 
occupancy is 6.25N bytes, where N is a number of input image 
pixels. Here 1.25N bytes are required to store input image and 
block connectivity map and another 5N bytes stand for block label 
map and pixel label map. We assume, pixel and its connectivity are 
stored using a single byte, and label requires at least 4 bytes. 

Algorithm performs in four phases: 1) Initialization; 2) 
Scanning; 3) Analysis; and 4) Final labeling. Initialization phase is 
needed to obtain block connectivity map and to perform initial 
block labeling. Scanning and analysis are performed iteratively, 
one by one, until no changes are presented in the block label map. 
The last phase of final labeling converts block label map into pixel 
label map. This phase is optional and may be omitted. In this case 
algorithm memory occupancy is reduced to 2.25N bytes. All the 
phases are performed on image blocks, so the number of 
workitems is always 0.25N, which significantly reduces amount of 
work to be performed in scanning and analysis phases. 

Initialization phase is the most complex phase in the whole 
algorithm. As it was mentioned above, decision tables are not 
feasible for GPUs, and we propose using pixel scan mask, which is 
shown in figure 4a. A-D are the pixels of the current block and all 
the other pixels are pixels of neighbor blocks, where 0x0 belongs 
to top-left block, 0x1 and 0x2 to top block, 0x3 to top-right block 
and so forth. The hexadecimal numbers (we use C-language 
notation) represent bit positions of the corresponding pixels in the 
mask. Depending on pixel configuration in A-D block, we 
initialize these bits with ones if we need to check them to evaluate 
connectivity and with zeroes otherwise.  

 

0x0 0x1 0x2 0x3  1 1 1 0 

0x4 A B 0x7  1 1 1 0 

0x8 C D 0xB  1 1 1 0 

0xC 0xD 0xE 0xF  0 0 0 0 

a  b 
Figure 4. Pixel layout (a) for typical 2x2 block and corresponding search 

pattern (b) for pixel A encoded by hexadecimal value 0x777 

A trivial example of a scan mask is shown in figure 4b. 
Firstly, we check if there is a pixel in position A. If it is, then we 
set scan mask to 0x777, which has the following binary code: 
11101110111. It means, we are going to check first three pixels of 
the first three rows (enumeration starts from the lowest bit). Pixels 
in positions 0x5, 0x6, 0x9 and 0xA belong to the current block, 
and the pixels are ignored while checking for connectivity. Scan 
masks for pixels B-D may be obtained in the following manner: if 
the pixel is located at the right from the A (pixel B), we shift 
pattern 0x777 one bit left. If it’s located at the bottom (pixel C), we 
shift the pattern 4 bits left. Final search pattern for any 
combination of pixels A-D is obtained using bitwise OR 

operations, as it’s shown in the steps 4-11 of algorithm 2 (SHL is a 
bitwise left shift function and OR’ is a bitwise OR). 
 Once the pixel scan mask is obtained, we start checking 
adjacent blocks for connectivity. Steps 13-20 of algorithm 2 
demonstrate this process. First we determine whether we need to 
scan neighbor pixel. Function HasBit returns true if search pattern 
has non-zero bit in specified position and false otherwise. Then we 
read pixel and in the case if it is white we set corresponding bit in 
block connectivity mask. The mask represents connectivity 
between adjacent blocks. Its layout is shown in figure 5. X stands 
for pixels A-D, and other bits represent adjacent blocks. Non-zero 
bit value means the central block and its neighbor are connected. If 
the first condition in conditional statement determines the result all 
the rest conditions are ignored, thus in the case if the first neighbor 
block pixel is white the second one won’t be checked (see step 17 
of algorithm 3). This approach guarantees, that each pixel is read 
only once by each workitem. One can see, that we don’t use nested 
if-then statements, which makes such code suitable for GPU 
architectures. 
 
Algorithm 3. Initialization of block map 
1: x, y ← Workitem x and y coordinates in block array; 
2: w ← Block array width; 
3: Pixels ← Array of image pixels; 
4: bLabels ← Array of block labels; 
5: bConn ← Array of block connectivity patterns; 
6: P := 0x0; 
7: P0 := 0x777; 
8: if Pixels[2x, 2y] > 0 then P := P OR’ P0; end if 
9: if Pixels[2x+1, 2y] > 0 then P := P OR’ SHL(P0, 1); end if 
10: if Pixels[2x, 2y+1] > 0 then P := P OR’ SHL(P0, 4); end if 
11: if Pixels[2x+1,2y+1] > 0 then P := P OR’ SHL(P0, 5); end if 
12: if P > 0 then 
13:     bLabels[x + y∙w] := x + y∙w + 1; 
14:     if HasBit(P, 0x0) AND Pixels[2x-1, 2y-1] > 0 then  
15:         SetBit(bConn[x+y∙w], 0x0);  
16:     end if 
17:     if (HasBit(P, 0x1) AND Pixels[2x, 2y-1] > 0) OR  

       (HasBit(P, 0x2) AND Pixels[2x+1, 2y-1] > 0) then 
18:         SetBit(bConn[x+y∙w], 0x1); 
19:     end if 
20:     … 
21: end if 
  

Scanning and analysis phases are performed in the same 
manner, as it’s shown in algorithms 1 and 2. The only difference is 
that now we work with blocks rather than with individual pixels; 
hence, Labels array becomes bLabels, which represents block label 
map. In contrast to label equivalence algorithm, our algorithm 
applies the function FindMinLabel only to those labels of adjacent 
blocks, which has non-zero bits in block connectivity map. These 
bits can be checked using HasBit function. It saves us additional 
processing time and reduces the number of memory accesses.  

 
0x0 0x1 0x2 

0x3 X 0x4 

0x5 0x6 0x7 

Figure 5. Block (and block label) layout 
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 Finding equivalence tree root for blocks has no significant 
difference from the same stage for pixels. Finally, the last phase 
takes block labels and copies them to the corresponding pixels 
inside the pixel label map. 
Easy to see, that using 2x2 blocks for resolving equivalences 
reduces four times operations for scanning and analysis. 
Nevertheless, initialization and final labeling can significantly 
decrease performance of the proposed algorithm. Let’s compare its 
complexity to label equivalence method. Memory reading and 
writing are the major bottlenecks for any labeling algorithm, thus 
we should minimize them as much as possible. Table 1 contains 
the number of memory operations for each phase of label 
equivalence and block equivalence algorithms. Here N is a number 
of image pixels and M is a maximal length of equivalence tree, 
which depends on image configuration. In the comparison we 
consider the worst case for our algorithm, which never occurs in 
real-life images. According to the table, in theory our method is at 
least two times faster than the label equivalence algorithm. 

Table 1. Complexity analysis of 2D algorithms 

Kernel LE BE 
Initialization 2N 3.25N 
Scanning 10N 2.5N 
Analysis 2N + M 0.5N + 0.25M 
Final labeling - 1.25N 
Total 14N + M 7.25N + 0.25M 

 

3.2. 3D Images Labeling 
Labeling of volumetric 3D images using our algorithm 

includes the same phases as in 2D case, but with larger number of 
comparisons. Similar to 2D, we firstly apply initialization phase to 
obtain connectivity between cubes and set initial cube labels. 
Scanning and analysis are performed iteratively, one by one, until 
no changes will be presented in cube label map. Final labeling is 
optional and it’s used to fill voxel label map with labels from the 
cube map. 

Memory requirements for the algorithm are the following: in 
3D we operate with 2x2x2 cubes, thus we need 6N bytes for all 
intermediate data, where 1.5N bytes are required for initial image 
voxels and cube connectivity map and 4.5N bytes for voxel labels 
and cube labels. Here we should note that 3D images use 26-
connected voxels. It means, that we cannot store connectivity map 
for each cube using a single byte, because we need at least 26 bits. 
The nearest data type is 32 bits long. 

Another difference from 2D algorithm is that we need apply 
three-dimensional voxel search pattern while performing 
initialization step. Its layout is shown in figure 6. In the case if we 
need to check all neighbors around voxel A1, we apply search 
pattern 0x77707770777, which means that we want to check 
voxels in left-top cube 3x3. This pattern may be adapted to any 
voxel from A1-D2 by applying bit shift operations. We can move it 
along x by shifting its bits by one bit left, along y by shifting by 
four bits left and along z by shifting by sixteen bits left. Similar to 
2D case, we can get any combination of search patterns using 
bitwise OR operation. 

Obtained search pattern is applied to evaluate connectivity 
mask between cubes in 3x3x3 cell as it is shown in steps 14-20 of 
algorithm 2. We save connectivity masks for each cube in three-
dimensional array to use them in scanning phase. Along with it we 
store initial labels, which are initiated according to the cube index: 

Li := Xi + Yi∙W + Zi∙W∙H + 1. Here Xi, Yi and Zi are the coordinates 
of ith cube in an image, W and H – cube map width and height and 
Li – cube label. 

0x0 0x1 0x2 0x3  0x10 0x11 0x12 0x13 

0x4 0x5 0x6 0x7  0x14 A1 B1 0x17 

0x8 0x9 0xA 0xB  0x18 C1 D1 0x1B 

0xC 0xD 0xE 0xF  0x1C 0x1D 0x1E 0x1F 

         

0x20 0x21 0x22 0x23 
 

0x30 0x31 0x32 0x33 

0x24 A2 B2 0x27  0x34 0x35 0x36 0x37 

0x28 C2 D2 0x2B 
 

0x38 0x39 0x3A 0x3B 

0x2C 0x2D 0x2E 0x2F 
 

0xC3 0x3D 0x3E 0x3F 

Figure 6. Layout of 2x2x2 cube with its neighbors, aligned by slices. 
Dark cells contain cube voxels. Outlined area 3x3x3 illustrates search pattern 

for voxel A1, which is encoded with hexadecimal value 0x77707770777 

Scanning and analysis are performed in the same manner as in 
2D case, except the fact that we work in 3D. Both of them require 
eight times less work to perform labeling in comparison to the 
label equivalence technique, so we save a huge amount of time 
while performing proposed algorithm. Table 2 contains estimations 
of complexity of these two algorithms by the means of the number 
of memory reads and writes. Easy to see, that our algorithm has 
more than two times lower complexity than the label equivalence. 

Table 2. Complexity analysis of 3D algorithms 

Kernel LE3D BE3D 
Initialization 2N  8.125N 
Scanning 30N 3.75N 
Analysis 2N + M 0.25N + 0.125M 
Final labeling - 2.125N 
Total 34N + M 14.25N + 0.125M 

 

4. Results and Discussion 
4.1. 2D Images Labeling 

We compared our block equivalence algorithm (BE) with 
multiple well-known labeling algorithms for CPUs and GPUs. We 
analyzed the following algorithms: sBBDT from [6], which is an 
improvement of original block-based algorithm proposed by Grana 
in [4]; BOS, BTS and FOS algorithms from [8], where BOS and 
BTS are block-based algorithms and FOS is a pixel-based one-and-
half scan algorithm; pixel-based EFS from [17]; and GPU-based 
methods CCLC from [15] and LE from [14].  

We performed all tests on the following hardware 
configuration: CPU Intel Core i7-2600 with 4 cores and 3.4 GHz 
processor frequency; GPU Nvidia GTX650 with 384 CUDA cores, 
1024 MB 128-bit GDDR5 and 1058 MHz processor frequency; 16 
GB RAM. All algorithms were compiled on PC with Windows 7 
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64-bit operating system using Microsoft Visual Studio 2013 
compiler and OpenCL. Each figure was obtained by averaging the 
execution time for 100 runs. Minimal and maximal execution times 
are the best and the worst results across these 100 runs, 
respectively. Start and end time stamps were evaluated before 
algorithm initialization and after obtaining the final label map. It 
means, that GPU-based algorithm results were measured including 
overhead for running GPU kernels. Source code for BOS, BTS, 
FOS and EFS was downloaded from [18]. Source code for sBBDT 
was borrowed from [19]. 

To perform tests on natural images, we have downloaded 
images from [20], including aerials, misc. and textures datasets. 
We have also downloaded tobacco document dataset from [21] and 
created additional document dataset by ourselves, consisting of 
various document types with size larger than 5 Mpx. In contrast to 
many authors, we have inverted document images to label text 
letters rather than background. To make images binary, we have 
applied Otsu binarization. 

Comparison was performed using multiple datasets. Firstly, we 
have compared aforementioned algorithms using synthetic dataset, 
which includes multiple noise patterns with different white pixel 
densities from 0.05 to 0.95. Similar to many other GPU algorithms, 
ours demonstrates results, comparable to CPU algorithms, starting 
from 1024x1024 image size. It happens because of massive 
overhead of GPU-based methods for running code on device. 
Figure 7 illustrates results of noise patterns labeling by different 
algorithms. Our algorithm demonstrates the best results for high 
and mid densities. For low densities CCLC GPU algorithm 
performs better. 

The results of algorithm comparison on natural images are 
presented in table 3. One can see that our algorithm outperforms all 
the other algorithms for images larger than 2048x2048 pixels for 
all datasets, except aerials. Each aerial image contains a single 
large object, which is hard to label using our algorithm, as it tends 
to propagate labels from bottom-right to top-left object pixel. 

 
Table 3. Performance of 2D algorithms on natural images, ms 

 
Figure 7. Performance of 2D algorithms on noise patterns  

with different densities, ms. Image size is 4096x4096. 

For the smaller images BOS algorithm is the best one, but our 
algorithm demonstrates very close outcomes. 

Table 3 also contains our algorithm results with final labeling 
disabled (see BL (no FL)). These results are given for the reference 
purposes only, because in this case the algorithm generates block 
label map, which is four times smaller than label maps from the 
other methods. Thus, BL (no FL) cannot be directly compared to 
them. Still, there are many cases, when block label map may be 
useful. One can see that with this little trick our algorithm 
demonstrates significant performance increase, which makes it 
faster for the majority of datasets. 
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BE LE sBBDT BTS

EFS CCLC BOS FOS

Data set Size BE BE (no FL) LE sBBDT BOS BTS EFS FOS CCLC 

Aerials 

2048 10.64 9.56 23.21 10.56 7.25 9.81 10.25 7.45 15.48 

3072 20.60 18.02 49.19 24.68 16.89 22.94 23.99 17.78 32.87 

4096 34.06 29.68 72.04 44.63 30.83 41.29 44.55 31.91 55.25 

5120 46.34 40.35 102.86 70.40 48.83 64.85 69.23 50.41 - 

Misc. 

2048 7.21 5.98 12.90 10.56 7.17 9.73 10.16 7.39 18.09 

3072 15.27 12.38 26.13 24.68 17.17 22.67 23.84 17.49 40.18 

4096 24.99 20.06 44.51 44.55 30.52 41.60 43.07 31.74 69.85 

5120 35.66 29.30 68.48 70.42 48.40 66.02 68.23 50.52 - 

Textures 

2048 7.37 6.20 12.90 10.59 7.06 9.81 10.18 7.39 18.06 

3072 14.88 12.11 25.43 24.68 16.66 22.96 23.81 17.51 40.04 

4096 24.64 19.64 43.06 44.60 30.60 41.10 48.12 31.83 69.69 

5120 34.73 28.23 67.69 70.29 48.69 61.17 68.47 50.51 - 

Tobacco 6.79 5.86 11.10 11.72 7.53 10.61 11.09 8.12 - 

Docs 10.32 8.84 19.10 16.85 10.94 15.24 16.06 11.79 - 
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4.2. 3D Images Labeling 
We have compared two 3D labeling algorithms: 3D label 

equivalence (LE3D) and ours 3D block equivalence (BE3D). First, 
we performed a series of tests on synthetic images, containing 
noise patterns with different voxel densities. It’s assumed that each 
2D slice of voxel image has unique noise pattern, thus in this test 
algorithms label a large number of 3D noise structures, which 
occupy several slices. Depending on noise density, number of 
slices may vary from 2-3 for each structure to 200-250. The results 
for the noise pattern 256x256x127 are shown in figure 8. Easy to 
see that for all the densities our algorithm outperforms LE3D.  

 
Figure 8. Performance of 3D algorithms on noise  

patterns with different densities, ms 

 Note, that starting from density 0.5 LE3D demonstrates 
significant performance degradation. This problem remains for any 
type of noise pattern with density higher than 0.4, which makes us 
think that it is related to hardware limitations. We were unable to 
perform a large number of tests with different GPUs to prove this, 
but our conclusions can be confirmed by results obtained using 
uniformly filled 3D image (see table 4). In the case of BE3D this 
image has the same number of object blocks as the number of 
object voxels in noise pattern with density 0.5. And similarly to 
LE3D, our algorithm demonstrates significant performance 
degradation while processing this image in comparison to noise 
patterns with smaller densities. 
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Figure 9. 3D image samples: a – mrbrain, b – cthead,  
c – cubes, d – spiral, e - uniform 

 
For another test we have downloaded 3D images from [22]. 

Because of lack of available natural 3D volumetric images, we 
were forced to generate some images by ourselves. All the images 
are shown in figure 9. Image 9c has size 256x256x255 and it 
contains 45 cubes; image 9d has size 128x128x63 and it contains 
spiral-like object with no intersections; image 9e has size 
256x256x255 and it contains only white pixels. According to our 
experiments, our BE3D algorithm outperforms LE3D on all natural 
images. As it was shown in complexity analysis section, our 
algorithm is about 2.5 times faster than LE3D. Similar to 2D case 
we also give BL3D results without final labeling stage, which is 
denoted as BL3D (no FL). 

Table 4. Performance of 3D algorithms on natural images, ms 

Image Time BE3D BE3D (no FL) LE3D 
cubes Min 191.4 132.5 330.7 

Avg. 192.0 132.9 331.2 
Max 193.4 134.0 333.4 

cthead Min 140.2 111.2 483.2 
Avg. 140.7 111.8 484.5 
Max 141.2 113.0 487.9 

mrbrain Min 113.1 88.1 336.8 
Avg. 113.3 88.7 337.8 
Max 114.0 91.8 340.5 

spiral Min 23.0 17.6 51.4 
Avg. 23.5 18.2 52.0 
Max 24.1 19.0 52.1 

uniform Min 405.2 305.7 1018.2 
Avg. 406.2 306.4 1019.3 
Max 406.9 307.4 1022.5 

 

5. Conclusion 
We proposed a block equivalence algorithm for connected 

component labeling of 2D and 3D volumetric images on GPU. A 
new approach based on pixel scan mask, which reduces the 
number of pixel comparisons was designed to fit GPU architecture.  
We demonstrated that our algorithm complexity is about 2.5 less 
that complexity of label equivalence algorithm. The experimental 
results demonstrated that our approach outperforms existing CPU-
based and GPU-based algorithms for a wide range of artificial and 
natural images. Our 3D labeling algorithm demonstrated 2.5 times 
better performance in comparison to 3D label equivalence 
algorithm. 

Reference code for the algorithm is available at 
https://github.com/szavalishin/Labeling.  
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