

Block Equivalence Algorithm for
Labeling 2D and 3D Images on GPU

Sergey Zavalishin; Ryazan State Radio Engineering University; Gagarin St., 59/1, Ryazan, Russia; ss.zavalishin@gmail.com
Ilia Safonov; National Research Nuclear University MEPhI; Kashirskoe Shosse St, 31, Moscow, Russia; ilia.safonov@gmail.com
Yury Bekhtin; Moscow State Technical University of Radio Engineering, Electronics and Automatics; Prospect Vernadskogo St, 78,
Moscow, Russia; yury.bekhtin@yandex.ru
Ilia Kurilin; Samsung R&D Institute Russia; Dvintsev St, 12/1, Moscow, Russia; ilya.kurilin@samsung.com

Abstract
In this paper we propose a block equivalence algorithm for

connected component labeling of 2D and 3D images on GPU.
Usage of square pixel blocks in our solution allows reducing twice
computational complexity in comparison with existing label
equivalence methods. In contrast to well-known block-based
algorithms, we don’t rely on decision tables to reduce amount of
memory accesses. Instead, we propose a different technique based
on pixel scan mask that better suits to GPU architecture. We show,
theoretically and experimentally, that our approach outperforms
many existing CPU and GPU algorithms for connected component
labeling. We also demonstrate, how to extend our method to label
3D volumetric images and that it has significant performance
advantage over a simple label equivalence algorithm.

1. Introduction
Object detection is one of the most common problems in

modern computer vision. In the case of binary images, it may be
performed using connected component labeling (CCL) technique,
which aims to assign each object in scene unique numeric label.

In the terms of CCL object is represented by a group of
adjacent white pixels, while background consists of the black ones.
We distinguish two types of pixel connectivity: four-connected and
eight-connected pixels. The most of CCL algorithms were
designed to deal with both types of connectivity, but in recent
years we have seen many new approaches, based on assumption
that all image pixels are eight-connected. While universal
algorithms such as [1-3] are forced to deal with image pixels,
eight-connectivity based algorithms may be applied to 2x2 blocks.
This approach was first introduced by Grana in [4]. He noticed that
all pixels within 2x2 block always share the same label (see figure
1), which allows reducing of labelling efforts. His idea was widely
adopted by many authors, who proposed similar algorithms with
different extensions [5-10].

Figure 1. Examples of different 2x2 pixel blocks with the same label

The critical point of any block-based algorithm is a necessity
to read each pixel multiple times: for instance, if there are two
adjacent pixels A and B inside the same block, and pixel C, which
belongs to another block is 8-connected to both of them, we will
check it twice to evaluate relation between first A and C and then

B and C. An obvious way to avoid that is addition of conditional
checking: if we have checked pixel C, we don’t need to check it
again. Grana solves the problem using large decision tables. Later
papers were aimed to improve his approach by increasing the
effectiveness of pixel checking with better decision conditions [6,
7] and by applying different spatial apertures [5, 8].

Another important characteristic of CCL algorithm is a pixel
access pattern, which may be regular [1-10] and irregular [11, 12].
Regular access is a perfect solution for single core CPU
architecture, as it leads to a better cache utilization. But it also has
a drawback: regular access provides very limited ability for
concurrent processing. On the other hand, irregular access often
requires perform multiple passes through image, while sequential
algorithms need only one [2], two [1, 3-6] or one-and-a-half [8]
scans.

The majority of attempts to adopt CCL algorithms to parallel
architectures had very limited application. But fast development of
modern GPGPU technologies, such as OpenCL and CUDA, make
it possible to apply them for CCL processing using a broad range
of devices [13-15]. There are two different ways to achieve that.
The first one is a simple adaptation of sequential approaches to run
on GPU [13]. Often it means, that we process individual image
slices in parallel with distinct computing units and then merge
them. The drawback of this approach is quite obvious: merging
cannot be done in parallel, so it’s hard to achieve good
performance.

Another scenario adopts multi-pass methods with irregular
access. In contrast to CPUs, GPU architectures can benefit from
processing multiple pixels at once, so multi-pass algorithms can be
easily adopted for them. In 2011 Kalentev proposed GPU labeling
algorithm [14], that extends label equivalence technique. His
approach utilizes two interleaving steps: on the first step each pixel
is labeled with the lowest label among its neighbors; and on the
second label equivalences are resolved by finding the roots of
equivalence trees stored in label map, where equivalence trees
represent hierarchy between neighbor labels. These two steps are
performed iteratively until there will be no changes inside the label
map.

In this work we propose a block equivalence algorithm, which
applies 2x2 blocks to resolve label equivalence in eight-connected
images. In contrast to other block-based methods, our algorithm
doesn’t rely on large decision tables. Instead, we propose another
technique based on pixel connectivity mask, which fits well for
GPU architecture. We show that our algorithm demonstrates
comparable results to well-known CPU labeling algorithms. Our
approach can be extended to label 3D images and it significantly
outperforms label equivalence algorithm.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.1

mailto:ss.zavalishin@gmail.com

2. Related Work
Let’s briefly describe the label equivalence technique [14].

The algorithm requires initial binary image and label map to store
output. It consists of three phases: initialization, scanning and
analysis. Initialization is performed only once, while two other
phases are executed iteratively, one by one, while no changes will
be presented in label map. Each step is performed in parallel; each
computing unit processes its own pixel. All intermediate changes
are stored in the label map; thus algorithm requires no additional
memory. It makes label equivalence a great choice for labeling
large images, because algorithm capabilities are limited by
available memory amount only.

In the initialization phase, each non-zero image pixel gets a
unique label corresponding to its index in 1D pixel array. If Xi and
Yi are the coordinates of ith pixel and W is an image width, label
may be evaluated as following: Li := Xi + Yi∙W + 1 (we assume that
index of first element on array is 0). To exclude processing of
pixels, which are equal zero, we assign zero for corresponding
labels.

The scanning phase is illustrated in Algorithm 1. In this phase
we compare neighboring labels of each pixel with its current label
and assign the lowest of them to it. At the step 5 function
FindMinLabel gets the minimal label among of eight (or four)
pixel neighbors, except the zero ones. To make this process more
efficient, we access not the pixel label itself, but the label it
references to, according to the algorithm step 7.

Algorithm 1. Scanning phase of label equivalence algorithm
1: Pos ← Workitem ID;
2: Labels ← Array of image labels;
3: L := Labels[Pos];
4: if L > 0 then
5: Lmin := FindMinLabel(Pos);
6: if Lmin < L then
7: Labels[L - 1] := min(Labels[L - 1], Lmin);
8: end if
9: end if

 In the analysis phase (Algorithm 2) we walk through the label
map and resolve label equivalences. Labels, assigned in the
initialization phase, are array indexes. Thus, we can use them to
find root of the equivalence tree. If the pixel index and its label
value are different then we iterate through the label map as
following: Li,n := Labels[Li,n-1], where Li,n is a current label at nth
iteration and Labels is a label map. When the condition Li,n =
Labels[Li,n-1] is met, we stop and assign the final label to current
pixel: Labels[Li,0] := Li,n. The second and the third phases are
repeated iteratively until no changes occurred inside the label map.

Algorithm 2. Analysis phase of label equivalence algorithm
1: Pos ← Workitem ID;
2: Labels ← Array of image labels;
3: L := Labels[Pos];
4: if L > 0 then
5: Lcur := Labels[L - 1];
6: while Lcur ≠ L do
7: L := Labels[Lcur - 1];
8: Lcur := Labels[L - 1];
9: end while
10: Labels[Pos] := L;
11: end if

For the simplicity we illustrate that using a simple example
(figure 2). Let’s assume, that we process pixel with index 9. Its
label is 9, so 9 – 1 ≠ 9. It means, the label is a reference; and we
need to walk through the label map to find out equivalence tree
root. Label of pixel with previous index 9 – 1 = 8 also differs from
its index (8 – 1 ≠ 8), so, the next possible candidate for the root is
7. After several iterations we find out that label in position 0 is
similar to its index (0 – 1 = 0). Thus, pixel at index 9 corresponds
to label 1.

The process itself is very similar to an iterative label
distribution; nevertheless, labels are distributed both across nearby
neighbors and between different image parts. However, in the case
of large-sized images, systems with a small number of parallel
processing units cannot reach the claimed good performance. That
is, applying label equivalence to 2x2 blocks rather than to
individual pixels may increase performance by four times.

ID 0 1 2 3 4 5 6 7 8 9

Labels 1 1 2 3 4 1 6 7 8 9

Figure 2. An example of analysis phase for
the label equivalence algorithm.

Decision tables can reduce block processing complexity, as it
was suggested by Grana in [4]. He utilized window, which is
shown in figure 3. It’s assumed, that we always process block X.
Thus, in the case if we want to evaluate connectivity between this
block and block Q, we should check connectivity between pixels o,
p, i and j. Basically, we can first check o, i, j and then p, i, j, but it
leads to doubling the number of memory reading operations.
Decision tables allow reading each pixel only once. For instance, if
pixel o is white and pixel i is also white, it means, that blocks X
and Q are connected, thus there’s no need to perform additional
checks and pixels p and j may be ignored.

a b c d e f
P Q R

g h i j k l

m n o p
S X

q r s t

Figure 3. Search window proposed by Grana:
 left – pixel layout, right – super pixel layout

There are two ways to implement decision tables: using many
nested if-then branches or by function pointers. Currently, GPU
architectures don’t support function pointers, so branching is the
only alternative. But in contrast to CPUs, GPUs don’t benefit from
branches: due to architecture limitations, each workitem, which is
similar to thread on GPU, executes all possible branches, but apply
only those of them, which are valid according to the branch
conditions (see [16]). Hence, utilization of large decision tables on
GPUs is totally infeasible. To avoid this problem, we propose
using pixel scan mask, which fits GPU architecture perfectly.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.2

3. Proposed Algorithm
3.1. 2D Images Labeling

Let’s outline our algorithm prerequisites. Block equivalence
algorithm takes binary image as an input. Depending on requested
results, it may output either pixel label map or block label map. We
also need to store intermediate block connectivity map to
determine, which blocks are connected. That is, total memory
occupancy is 6.25N bytes, where N is a number of input image
pixels. Here 1.25N bytes are required to store input image and
block connectivity map and another 5N bytes stand for block label
map and pixel label map. We assume, pixel and its connectivity are
stored using a single byte, and label requires at least 4 bytes.

Algorithm performs in four phases: 1) Initialization; 2)
Scanning; 3) Analysis; and 4) Final labeling. Initialization phase is
needed to obtain block connectivity map and to perform initial
block labeling. Scanning and analysis are performed iteratively,
one by one, until no changes are presented in the block label map.
The last phase of final labeling converts block label map into pixel
label map. This phase is optional and may be omitted. In this case
algorithm memory occupancy is reduced to 2.25N bytes. All the
phases are performed on image blocks, so the number of
workitems is always 0.25N, which significantly reduces amount of
work to be performed in scanning and analysis phases.

Initialization phase is the most complex phase in the whole
algorithm. As it was mentioned above, decision tables are not
feasible for GPUs, and we propose using pixel scan mask, which is
shown in figure 4a. A-D are the pixels of the current block and all
the other pixels are pixels of neighbor blocks, where 0x0 belongs
to top-left block, 0x1 and 0x2 to top block, 0x3 to top-right block
and so forth. The hexadecimal numbers (we use C-language
notation) represent bit positions of the corresponding pixels in the
mask. Depending on pixel configuration in A-D block, we
initialize these bits with ones if we need to check them to evaluate
connectivity and with zeroes otherwise.

0x0 0x1 0x2 0x3 1 1 1 0

0x4 A B 0x7 1 1 1 0

0x8 C D 0xB 1 1 1 0

0xC 0xD 0xE 0xF 0 0 0 0

a b
Figure 4. Pixel layout (a) for typical 2x2 block and corresponding search

pattern (b) for pixel A encoded by hexadecimal value 0x777

A trivial example of a scan mask is shown in figure 4b.
Firstly, we check if there is a pixel in position A. If it is, then we
set scan mask to 0x777, which has the following binary code:
11101110111. It means, we are going to check first three pixels of
the first three rows (enumeration starts from the lowest bit). Pixels
in positions 0x5, 0x6, 0x9 and 0xA belong to the current block,
and the pixels are ignored while checking for connectivity. Scan
masks for pixels B-D may be obtained in the following manner: if
the pixel is located at the right from the A (pixel B), we shift
pattern 0x777 one bit left. If it’s located at the bottom (pixel C), we
shift the pattern 4 bits left. Final search pattern for any
combination of pixels A-D is obtained using bitwise OR

operations, as it’s shown in the steps 4-11 of algorithm 2 (SHL is a
bitwise left shift function and OR’ is a bitwise OR).
 Once the pixel scan mask is obtained, we start checking
adjacent blocks for connectivity. Steps 13-20 of algorithm 2
demonstrate this process. First we determine whether we need to
scan neighbor pixel. Function HasBit returns true if search pattern
has non-zero bit in specified position and false otherwise. Then we
read pixel and in the case if it is white we set corresponding bit in
block connectivity mask. The mask represents connectivity
between adjacent blocks. Its layout is shown in figure 5. X stands
for pixels A-D, and other bits represent adjacent blocks. Non-zero
bit value means the central block and its neighbor are connected. If
the first condition in conditional statement determines the result all
the rest conditions are ignored, thus in the case if the first neighbor
block pixel is white the second one won’t be checked (see step 17
of algorithm 3). This approach guarantees, that each pixel is read
only once by each workitem. One can see, that we don’t use nested
if-then statements, which makes such code suitable for GPU
architectures.

Algorithm 3. Initialization of block map
1: x, y ← Workitem x and y coordinates in block array;
2: w ← Block array width;
3: Pixels ← Array of image pixels;
4: bLabels ← Array of block labels;
5: bConn ← Array of block connectivity patterns;
6: P := 0x0;
7: P0 := 0x777;
8: if Pixels[2x, 2y] > 0 then P := P OR’ P0; end if
9: if Pixels[2x+1, 2y] > 0 then P := P OR’ SHL(P0, 1); end if
10: if Pixels[2x, 2y+1] > 0 then P := P OR’ SHL(P0, 4); end if
11: if Pixels[2x+1,2y+1] > 0 then P := P OR’ SHL(P0, 5); end if
12: if P > 0 then
13: bLabels[x + y∙w] := x + y∙w + 1;
14: if HasBit(P, 0x0) AND Pixels[2x-1, 2y-1] > 0 then
15: SetBit(bConn[x+y∙w], 0x0);
16: end if
17: if (HasBit(P, 0x1) AND Pixels[2x, 2y-1] > 0) OR

 (HasBit(P, 0x2) AND Pixels[2x+1, 2y-1] > 0) then
18: SetBit(bConn[x+y∙w], 0x1);
19: end if
20: …
21: end if

Scanning and analysis phases are performed in the same
manner, as it’s shown in algorithms 1 and 2. The only difference is
that now we work with blocks rather than with individual pixels;
hence, Labels array becomes bLabels, which represents block label
map. In contrast to label equivalence algorithm, our algorithm
applies the function FindMinLabel only to those labels of adjacent
blocks, which has non-zero bits in block connectivity map. These
bits can be checked using HasBit function. It saves us additional
processing time and reduces the number of memory accesses.

0x0 0x1 0x2

0x3 X 0x4

0x5 0x6 0x7

Figure 5. Block (and block label) layout

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.3

 Finding equivalence tree root for blocks has no significant
difference from the same stage for pixels. Finally, the last phase
takes block labels and copies them to the corresponding pixels
inside the pixel label map.
Easy to see, that using 2x2 blocks for resolving equivalences
reduces four times operations for scanning and analysis.
Nevertheless, initialization and final labeling can significantly
decrease performance of the proposed algorithm. Let’s compare its
complexity to label equivalence method. Memory reading and
writing are the major bottlenecks for any labeling algorithm, thus
we should minimize them as much as possible. Table 1 contains
the number of memory operations for each phase of label
equivalence and block equivalence algorithms. Here N is a number
of image pixels and M is a maximal length of equivalence tree,
which depends on image configuration. In the comparison we
consider the worst case for our algorithm, which never occurs in
real-life images. According to the table, in theory our method is at
least two times faster than the label equivalence algorithm.

Table 1. Complexity analysis of 2D algorithms

Kernel LE BE
Initialization 2N 3.25N
Scanning 10N 2.5N
Analysis 2N + M 0.5N + 0.25M
Final labeling - 1.25N
Total 14N + M 7.25N + 0.25M

3.2. 3D Images Labeling
Labeling of volumetric 3D images using our algorithm

includes the same phases as in 2D case, but with larger number of
comparisons. Similar to 2D, we firstly apply initialization phase to
obtain connectivity between cubes and set initial cube labels.
Scanning and analysis are performed iteratively, one by one, until
no changes will be presented in cube label map. Final labeling is
optional and it’s used to fill voxel label map with labels from the
cube map.

Memory requirements for the algorithm are the following: in
3D we operate with 2x2x2 cubes, thus we need 6N bytes for all
intermediate data, where 1.5N bytes are required for initial image
voxels and cube connectivity map and 4.5N bytes for voxel labels
and cube labels. Here we should note that 3D images use 26-
connected voxels. It means, that we cannot store connectivity map
for each cube using a single byte, because we need at least 26 bits.
The nearest data type is 32 bits long.

Another difference from 2D algorithm is that we need apply
three-dimensional voxel search pattern while performing
initialization step. Its layout is shown in figure 6. In the case if we
need to check all neighbors around voxel A1, we apply search
pattern 0x77707770777, which means that we want to check
voxels in left-top cube 3x3. This pattern may be adapted to any
voxel from A1-D2 by applying bit shift operations. We can move it
along x by shifting its bits by one bit left, along y by shifting by
four bits left and along z by shifting by sixteen bits left. Similar to
2D case, we can get any combination of search patterns using
bitwise OR operation.

Obtained search pattern is applied to evaluate connectivity
mask between cubes in 3x3x3 cell as it is shown in steps 14-20 of
algorithm 2. We save connectivity masks for each cube in three-
dimensional array to use them in scanning phase. Along with it we
store initial labels, which are initiated according to the cube index:

Li := Xi + Yi∙W + Zi∙W∙H + 1. Here Xi, Yi and Zi are the coordinates
of ith cube in an image, W and H – cube map width and height and
Li – cube label.

0x0 0x1 0x2 0x3 0x10 0x11 0x12 0x13

0x4 0x5 0x6 0x7 0x14 A1 B1 0x17

0x8 0x9 0xA 0xB 0x18 C1 D1 0x1B

0xC 0xD 0xE 0xF 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23

0x30 0x31 0x32 0x33

0x24 A2 B2 0x27 0x34 0x35 0x36 0x37

0x28 C2 D2 0x2B

0x38 0x39 0x3A 0x3B

0x2C 0x2D 0x2E 0x2F

0xC3 0x3D 0x3E 0x3F

Figure 6. Layout of 2x2x2 cube with its neighbors, aligned by slices.
Dark cells contain cube voxels. Outlined area 3x3x3 illustrates search pattern

for voxel A1, which is encoded with hexadecimal value 0x77707770777

Scanning and analysis are performed in the same manner as in
2D case, except the fact that we work in 3D. Both of them require
eight times less work to perform labeling in comparison to the
label equivalence technique, so we save a huge amount of time
while performing proposed algorithm. Table 2 contains estimations
of complexity of these two algorithms by the means of the number
of memory reads and writes. Easy to see, that our algorithm has
more than two times lower complexity than the label equivalence.

Table 2. Complexity analysis of 3D algorithms

Kernel LE3D BE3D
Initialization 2N 8.125N
Scanning 30N 3.75N
Analysis 2N + M 0.25N + 0.125M
Final labeling - 2.125N
Total 34N + M 14.25N + 0.125M

4. Results and Discussion
4.1. 2D Images Labeling

We compared our block equivalence algorithm (BE) with
multiple well-known labeling algorithms for CPUs and GPUs. We
analyzed the following algorithms: sBBDT from [6], which is an
improvement of original block-based algorithm proposed by Grana
in [4]; BOS, BTS and FOS algorithms from [8], where BOS and
BTS are block-based algorithms and FOS is a pixel-based one-and-
half scan algorithm; pixel-based EFS from [17]; and GPU-based
methods CCLC from [15] and LE from [14].

We performed all tests on the following hardware
configuration: CPU Intel Core i7-2600 with 4 cores and 3.4 GHz
processor frequency; GPU Nvidia GTX650 with 384 CUDA cores,
1024 MB 128-bit GDDR5 and 1058 MHz processor frequency; 16
GB RAM. All algorithms were compiled on PC with Windows 7

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.4

64-bit operating system using Microsoft Visual Studio 2013
compiler and OpenCL. Each figure was obtained by averaging the
execution time for 100 runs. Minimal and maximal execution times
are the best and the worst results across these 100 runs,
respectively. Start and end time stamps were evaluated before
algorithm initialization and after obtaining the final label map. It
means, that GPU-based algorithm results were measured including
overhead for running GPU kernels. Source code for BOS, BTS,
FOS and EFS was downloaded from [18]. Source code for sBBDT
was borrowed from [19].

To perform tests on natural images, we have downloaded
images from [20], including aerials, misc. and textures datasets.
We have also downloaded tobacco document dataset from [21] and
created additional document dataset by ourselves, consisting of
various document types with size larger than 5 Mpx. In contrast to
many authors, we have inverted document images to label text
letters rather than background. To make images binary, we have
applied Otsu binarization.

Comparison was performed using multiple datasets. Firstly, we
have compared aforementioned algorithms using synthetic dataset,
which includes multiple noise patterns with different white pixel
densities from 0.05 to 0.95. Similar to many other GPU algorithms,
ours demonstrates results, comparable to CPU algorithms, starting
from 1024x1024 image size. It happens because of massive
overhead of GPU-based methods for running code on device.
Figure 7 illustrates results of noise patterns labeling by different
algorithms. Our algorithm demonstrates the best results for high
and mid densities. For low densities CCLC GPU algorithm
performs better.

The results of algorithm comparison on natural images are
presented in table 3. One can see that our algorithm outperforms all
the other algorithms for images larger than 2048x2048 pixels for
all datasets, except aerials. Each aerial image contains a single
large object, which is hard to label using our algorithm, as it tends
to propagate labels from bottom-right to top-left object pixel.

Table 3. Performance of 2D algorithms on natural images, ms

Figure 7. Performance of 2D algorithms on noise patterns

with different densities, ms. Image size is 4096x4096.

For the smaller images BOS algorithm is the best one, but our
algorithm demonstrates very close outcomes.

Table 3 also contains our algorithm results with final labeling
disabled (see BL (no FL)). These results are given for the reference
purposes only, because in this case the algorithm generates block
label map, which is four times smaller than label maps from the
other methods. Thus, BL (no FL) cannot be directly compared to
them. Still, there are many cases, when block label map may be
useful. One can see that with this little trick our algorithm
demonstrates significant performance increase, which makes it
faster for the majority of datasets.

0

20

40

60

80

100

120

140

160

180

200

0,
05 0,

1
0,

15 0,
2

0,
25 0,

3
0,

35 0,
4

0,
45 0,

5
0,

55 0,
6

0,
65 0,

7
0,

75 0,
8

0,
85 0,

9
0,

95

Ex
ec

ut
io

n
tim

e,
 m

s

While pixel density

BE LE sBBDT BTS

EFS CCLC BOS FOS

Data set Size BE BE (no FL) LE sBBDT BOS BTS EFS FOS CCLC

Aerials

2048 10.64 9.56 23.21 10.56 7.25 9.81 10.25 7.45 15.48

3072 20.60 18.02 49.19 24.68 16.89 22.94 23.99 17.78 32.87

4096 34.06 29.68 72.04 44.63 30.83 41.29 44.55 31.91 55.25

5120 46.34 40.35 102.86 70.40 48.83 64.85 69.23 50.41 -

Misc.

2048 7.21 5.98 12.90 10.56 7.17 9.73 10.16 7.39 18.09

3072 15.27 12.38 26.13 24.68 17.17 22.67 23.84 17.49 40.18

4096 24.99 20.06 44.51 44.55 30.52 41.60 43.07 31.74 69.85

5120 35.66 29.30 68.48 70.42 48.40 66.02 68.23 50.52 -

Textures

2048 7.37 6.20 12.90 10.59 7.06 9.81 10.18 7.39 18.06

3072 14.88 12.11 25.43 24.68 16.66 22.96 23.81 17.51 40.04

4096 24.64 19.64 43.06 44.60 30.60 41.10 48.12 31.83 69.69

5120 34.73 28.23 67.69 70.29 48.69 61.17 68.47 50.51 -

Tobacco 6.79 5.86 11.10 11.72 7.53 10.61 11.09 8.12 -

Docs 10.32 8.84 19.10 16.85 10.94 15.24 16.06 11.79 -

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.5

4.2. 3D Images Labeling
We have compared two 3D labeling algorithms: 3D label

equivalence (LE3D) and ours 3D block equivalence (BE3D). First,
we performed a series of tests on synthetic images, containing
noise patterns with different voxel densities. It’s assumed that each
2D slice of voxel image has unique noise pattern, thus in this test
algorithms label a large number of 3D noise structures, which
occupy several slices. Depending on noise density, number of
slices may vary from 2-3 for each structure to 200-250. The results
for the noise pattern 256x256x127 are shown in figure 8. Easy to
see that for all the densities our algorithm outperforms LE3D.

Figure 8. Performance of 3D algorithms on noise

patterns with different densities, ms

 Note, that starting from density 0.5 LE3D demonstrates
significant performance degradation. This problem remains for any
type of noise pattern with density higher than 0.4, which makes us
think that it is related to hardware limitations. We were unable to
perform a large number of tests with different GPUs to prove this,
but our conclusions can be confirmed by results obtained using
uniformly filled 3D image (see table 4). In the case of BE3D this
image has the same number of object blocks as the number of
object voxels in noise pattern with density 0.5. And similarly to
LE3D, our algorithm demonstrates significant performance
degradation while processing this image in comparison to noise
patterns with smaller densities.

a

b

c

d

e

Figure 9. 3D image samples: a – mrbrain, b – cthead,
c – cubes, d – spiral, e - uniform

For another test we have downloaded 3D images from [22].

Because of lack of available natural 3D volumetric images, we
were forced to generate some images by ourselves. All the images
are shown in figure 9. Image 9c has size 256x256x255 and it
contains 45 cubes; image 9d has size 128x128x63 and it contains
spiral-like object with no intersections; image 9e has size
256x256x255 and it contains only white pixels. According to our
experiments, our BE3D algorithm outperforms LE3D on all natural
images. As it was shown in complexity analysis section, our
algorithm is about 2.5 times faster than LE3D. Similar to 2D case
we also give BL3D results without final labeling stage, which is
denoted as BL3D (no FL).

Table 4. Performance of 3D algorithms on natural images, ms

Image Time BE3D BE3D (no FL) LE3D
cubes Min 191.4 132.5 330.7

Avg. 192.0 132.9 331.2
Max 193.4 134.0 333.4

cthead Min 140.2 111.2 483.2
Avg. 140.7 111.8 484.5
Max 141.2 113.0 487.9

mrbrain Min 113.1 88.1 336.8
Avg. 113.3 88.7 337.8
Max 114.0 91.8 340.5

spiral Min 23.0 17.6 51.4
Avg. 23.5 18.2 52.0
Max 24.1 19.0 52.1

uniform Min 405.2 305.7 1018.2
Avg. 406.2 306.4 1019.3
Max 406.9 307.4 1022.5

5. Conclusion
We proposed a block equivalence algorithm for connected

component labeling of 2D and 3D volumetric images on GPU. A
new approach based on pixel scan mask, which reduces the
number of pixel comparisons was designed to fit GPU architecture.
We demonstrated that our algorithm complexity is about 2.5 less
that complexity of label equivalence algorithm. The experimental
results demonstrated that our approach outperforms existing CPU-
based and GPU-based algorithms for a wide range of artificial and
natural images. Our 3D labeling algorithm demonstrated 2.5 times
better performance in comparison to 3D label equivalence
algorithm.

Reference code for the algorithm is available at
https://github.com/szavalishin/Labeling.

References
[1] Lifeng He, Yuyan Chao, Kenji Suzuki, A Run-Based Two-Scan

Labeling Algorithm Image Processing, IEEE Transactions on , vol.17,
no.5, pp.749,756, May 2008.

[2] Lifeng He, Yuyan Chao, Kenji Suzuki, and Hidenori Itoh. A Run-
Based One-Scan Labeling Algorithm. In Proceedings of the 6th
International Conference on Image Analysis and Recognition (ICIAR
'09), 2009.

[3] He, L., Chao, Y., Yang, Y., Li, S., Zhao, X., & Suzuki, K. (2013). A
Novel Two-Scan Connected-Component Labeling Algorithm. In
IAENG Transactions on Engineering Technologies (pp. 445-459).
Springer Netherlands.

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
tim

e,
 m

s

White voxel density

LE3D BE3D

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.6

https://github.com/szavalishin/Labeling

[4] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based
connected components labeling with decision trees,” IEEE Trans.
Image Process, vol. 9, no. 6, pp. 1596–1609, Jun. 2010.

[5] He, L., Zhao, X., Chao, Y., & Suzuki, K. (2014). Configuration-
Transition-Based Connected-Component Labeling. Image
Processing, IEEE Transactions on, 23(2), 943-951.

[6] Sutheebanjard, P., & Premchaiswadi, W. (2011). Efficient scan mask
techniques for connected components labeling algorithm. EURASIP
Journal on image and Video Processing, 2011(1), 1-20.

[7] Chang, W. Y., & Chiu, C. C. (2014, June). An efficient scan
algorithm for block-based connected component labeling. In Control
and Automation (MED), 2014 22nd Mediterranean Conference of
(pp. 1008-1013). IEEE.

[8] Santiago, D. J., Ren, T. I., Cavalcanti, G. D., & Jyh, T. I. (2013,
May). Fast block-based algorithms for connected components
labeling. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (pp. 2084-2088). IEEE.

[9] Grana, C., Borghesani, D., Santinelli, P., & Cucchiara, R. (2010,
August). High Performance Connected Components Labeling on
FPGA. In Database and Expert Systems Applications (DEXA), 2010
Workshop on (pp. 221-225). IEEE.

[10] Zhao, H. L., Fan, Y. B., Zhang, T. X., & Sang, H. S. (2010). Stripe-
based connected components labelling. Electronics letters, 46(21),
1434-1436.

[11] F. Chang, C.J. Chen, and C.J. Lu, “A linear-time component- labeling
algorithm using contour tracing technique,” Comput Vis Image
Underst, vol. 93, n. 2, pp. 206-220, 2004.

[12] J. Martín-Herrero, “Hybrid object labeling in digital images.
Machine,” Vision and Applications, vol. 18, pp. 1-15, 2007.

[13] V. M. A. Oliveira, R. A. Lotufo, A study on connected components
labeling algorithms using GPUs, SIBGRAPI (2010).

[14] Kalentev, O., Rai, A., Kemnitz, S., & Schneider, R. (2011).
Connected component labeling on a 2D grid using CUDA. Journal of
Parallel and Distributed Computing, 71(4), 615-620.

[15] Stava, O., and Benes, B.: ‘Connected component labeling in CUDA’
in ‘GPU computing gems emerald edition’ (Morgan Kaufmann,
2011), Chap. 35, pp. 569–581

[16] (2015, Aug) Nvidia OpenCL Best Practices Guide Version 1.0
[Online]. Available:
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/
papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

[17] L. He, Y. Chao, and K. Suzuki, “An efficient first-scan method for
label-equivalence-based labeling algorithms,” Pattern Recognition
Letters, vol. 31, n. 5, 2010.

[18] (2015, Aug) Source code of FOS, EFS, BTS and BOS algorithms
[online]. Available: http://cin.ufpe.br/~djcs/labeling

[19] (2015, Aug) Source code of sBBDT algorithm [online]. Available:
http://phaisarn.com/labeling

[20] (2015, Aug) USC-SIPI Image Database [online]. Available:
http://sipi.usc.edu/database/

[21] (2015, Aug) Tobacco800 Document Image Database [online].
Available: http://www.umiacs.umd.edu/~zhugy/tobacco800.html

[22] (2015, Aug) The Stanford volume data archive [online]. Available:
https://graphics.stanford.edu/data/voldata/

Author Biography
Sergey S, Zavalishin received his MS degree in Computar Science from
Moscow Engineering Physics Institute/University (MEPhI), Russia in 2012.
Currently he is a post graduate student of Ryazan State Radio Electronics
University. His research interests include machine learning, computer
vision and image processing.

Ilia V. Safonov received his MS degree in automatic and electronic
engineering from Moscow Engineering Physics Institute/University
(MEPhI), Russia in 1994 and his PhD degree in computer science from
MEPhI in 1997. Since 1998 he is an associate professor of National
Research Nuclear University MEPhI while conducting researches in image
segmentation, features extraction and pattern recognition problems.

Yury S. Bekhtin received his PhD degree from the Ryazan State Radio
Electronics University (RSREU) in 1993, and a doctoral degree
(habilitation) from RSREU in 2009. Currently he is a professor of RSREU
and Moscow State Technical University of Radio Engineering, Electronics
and Automatics (MIREA). He is the author of more than 120 journal
papers. His current research interests include wavelet-based processing of
noisy still images and video.

Ilya V. Kurilin received his MS degree in radio engineering from
Novosibirsk State Technical University (NSTU), Russia in 1999 and his
PhD degree in theoretical bases of informatics from NSTU in 2006.Since
2007, Dr. I. Kurilin has join Image Processing Group, Samsung RnD
Institute Russia where he is engaged in photo and document image
processing projects.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-240

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-240.7

http://sipi.usc.edu/database/

