
Optimizing Transcoder Quality Targets Using a Neural Network
with an Embedded Bitrate Model
Michele Covell, Martı́n Arjovsky†, Yao-chung Lin, Anil Kokaram
Google Inc., Mountain View, California 94043, USA

Abstract
Like all modern internet-based video services, YouTube em-

ploys adaptive bitrate (ABR) streaming. Due to the computational
expense of transcoding, the goal is to achieve a target bitrate for
each ABR segment, without requiring multi-pass encoding. We ex-
tend the content-dependent model equation between bitrate and
frame rate [6] to include CRF and frame size. We then attempt
to estimate the content-dependent parameters used in the model
equation, using simple summary features taken from the video
segment and a novel neural-network layout. We show that we can
estimate the correct quality-control parameter on 65% of our test
cases without using a previous transcode of the video segment. If
there is a previous transcode of the same segment available (using
an inexpensive configuration), we increase our accuracy to 80%.

Motivation and Background
Like other over-the-top (OTT) media services, YouTube uses

ABR streaming to make the most of the available bandwidth at
the user’s client player. ABR streaming (e.g., MPEG DASH [9])
allows the client to switch between alternate streams (represen-
tations in DASH) which encode the same content at different bi-
trates. Each representation is encoded such that short duration
temporal segments are independently decodable. The option to
switch between the different bitrate streams is therefore available
only at the end of these segments. Target bitrates for each repre-
sentation are chosen so that the user perceives a smoothly varying
stream quality as the bitrate varies.

For large OTT sites, transcoding to support these schemes is
extremely resource intensive. This is due both to the sheer volume
of video that must be transcoded1 and to the fact that multiple
representations must be created from each single input file.

A simple codec-agnostic technique for increasing through-
put in proportion to available computational resources is to split
each input clip into a number of segments which are then encoded
in parallel. For DASH compliant streams, each encoder operates
under the constraint that the bitrate is less than some specified
maximum. Unfortunately, this parallel encoding process can re-
sult in artifacts that manifest as a large discontinuity between the
picture quality at the start and at the end of the segment. The
changes in picture quality is a result of a single pass attempt to
achieve a given average bitrate over each segment independently.
The transcoder is unable to correctly estimate the quality settings
for the required bitrate and adjusts the encoding as it goes. As this
happens on each segment, the viewer observes this as a cycle of

†Martı́n Arjovsky is currently at the University of Buenos Aires, Ar-
gentina.

1At YouTube, 300 hours of video is uploaded every minute of every
day [11].

picture quality from bad to good at intervals equal to the segment
duration.

The problem is exacerbated when segments are short (on the
order of seconds) which is vital for low-latency cloud-based ap-
plications like YouTube. At the core, this problem is due to issues
with rate control in the encoding process. This could be mitigated
by propagating transcoding statistics (features) for each segment
through the system. However, in a parallel encoding system, we
wish to minimize or eliminate the need for information to be com-
municated between processing nodes, to allow wide (and indepen-
dent) deployment across general-purpose CPU farms. Communi-
cation between these separate jobs would greatly complicate their
deployment and would increase the impact of isolated transcod-
ing slow-downs or failures. By deploying completely indepen-
dent transcoding jobs, each job can be restarted without any of
the other transcoded segments being affected.

Equally important to our effort is to avoid making deep
changes in any part of the codec implementation. We need to
be able to treat our codec implementation as a commodity, to
be replaced and upgraded as better versions or implementations
become available. For this reason, our approach sets a single
segment-level rate-control parameter. If we were, instead, to
modify with picture- or macroblock-level quantization processes,
our system would require continual maintenance as the deployed
codec changed. By remaining at the level of a single external pa-
rameter, one that has a clear tie to a basic property of the transcode
(the quality/bitrate control), the most that we will need to do upon
changing codecs will be to retrain our neural-network-based con-
trol process.

Within those constraints, our goal is to achieve stable frame
quality throughout each segment as well as the desired bitrate for
the segment as a whole. We consider the use of the x264.org
codec to produce DASH compliant streams in a cloud-based en-
vironment. x264 is now the most common open source codec
used in the video streaming industry, has a high throughput and is
a reference for high performance. Multi-pass constant bitrate en-
coding would appear to satisfy the quality requirement. But, as we
have shown in previous work [5], this is only successful if some
effort is expended on optimising codec-specific quality settings at
each pass. Given that multi-pass encoding clearly increases the
computational resources required to encode a segment, we wish
to reduce or eliminate the need for multiple passes.

This paper explores the use of a neural network for pre-
dicting the parameters of a model that relates bitrate to various
video properties. We show that we can estimate the correct codec
parameter on 65% of our test cases without using a previous
transcode of the video segment. If there is a previous transcode of
the same segment available (using an inexpensive codec configu-

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.1

Figure 1: Distributions of logK estimates, as found by NNLS fit
per video block (blue) and by the mid-network layer (red).
(mean: 6.15; std: 1.44; min: 0.22; max: 12.84)

Figure 2: Distributions of a estimates, as found by NNLS fit per
video block (blue) and by the mid-network layer (red).
(mean: 0.126; std: 0.034; min: 0.04; max: 0.257)

Figure 3: Distributions of d estimates, as found by NNLS fit per
video block (blue) and by the mid-network layer (red).
(mean: 1.57; std: 0.23; min: 0.55; max: 2.65)

ration), we increase our accuracy to 80%.
The next section discusses the key points with respect to rate

control for each segment. We then go on to introduce the models
used and to present the results of our neural-network training.

Transcoding Configurations and Parameters
We explore resolution-dependent ABR in which each repre-

sentation is at a different resolution and a different bitrate. In this
formulation when the client player switches representations, the
stream changes resolution and bitrate.

The spatial resolution of each video representation is easy to
control: we simply tell the transcoder our target resolution. The
bitrate of each video segment is more difficult to control in a way
that provides the best output quality. This is especially true when
doing single-pass compression. In x264 single-pass transcoding,
the best (perceptual) video quality (for the bandwidth) is achieved
by controlling the quantization levels indirectly, using what is
called the Constant Rate Factor (CRF).2 Using CRF has the ad-
vantage that it adjusts the quantization parameters to take advan-
tage of motion masking. The general idea is that mistakes are
most noticable in smooth regions with good inter-frame predic-
tion, so the CRF spends more of its bits on these regions [7].

Unfortunately, with CRF, there is no direct control of the
actual bitrate that is used over the segment of video that we are
transcoding. The same CRF parameter settings will yield widely
different bitrates, when applied to different videos or even to dif-
ferent segments within a single video. Since we require a single
transcode per resolution and a known target bitrate (±20%), we
need to estimate the relationship between the bitrate and CRF for
each video segment before we start transcoding that segment. In
the next section, we discuss a model to relate CRF to bitrate, and
help us towards this goal.

Modeling the Effect of Transcoding Parame-
ters on Bitrates

In their 2012 article, Ma et al. [6] found that, for a given seg-
ment of video and a fixed frame size, they could accurately predict
the bitrate by relating it to the frame rate and the quantization step
size using the equation

R(q, t,v) = Rmax(qmin, tmax,v)
(

q
qmin

)−α(v)(t
tmax

)β (v)

where qmin, tmax, and Rmax(qmin, tmax,v) are all taken from a pre-
vious transcode of the same video material, v, and are the pre-
vious transcode’s quantization step size, frame rate, and bitrate,
respectively. The values of α(v), β (v), and Rmax(qmin, tmax,v)
are transcoder and content dependent but independent of the de-
sired quantization step size (q) and frame rate (t). On the test sets
used in [6], the values of α(v) and β (v) generally varied by 70%
or less, while the value for Rmax changed by as much as 13 times,
depending on content.

We have discovered a similar relationship between bitrate,
CRF, frame resolution, and frame rate:

logR(c, t,h,v) = logK(v)−a(v)c+b(v) log t +d(v) logh (1)

2Throughout this paper, the acronym CRF will be used used to refer to
this compression parameter and not Conditional Random Field.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.2

Figure 4: Quality of fit of estimated logR(v) using NNLS-fit val-
ues for logK(v), a(v), and d(v).
(Pearson’s correlation: 0.9984. Error std.: 0.1. Max error: 1.41)

where R(c, t,h,v) is the predicted bitrate for a segment of video v,
given the requested CRF setting, c; the requested frame rate, t; the
requested frame height, h,3 and where K(v), a(v), b(v), and d(v)
are hidden variables that are dependent only on the video content
v.

We tested this relationship on 9,250 5-second video seg-
ments, sampled from 1000 of the videos that had been recently
uploaded to YouTube. We selected up to 5 different frame heights
(from 240 to 1080 but omitting heights that are larger than the
original video height) and 29 different CRF settings (from 12 -
40), resulting in up to 145 different samples of each video seg-
ment.4 For each of the 9,250 video segments, we found the best
fit for logK, a and d, using the non-negative least squares rou-
tine that is included in SciPy [4, 8]. None of the bitrate-model
parameters (logK, a, b, and d) can be valid when less than zero.5

Since Ma et. al [6] had already shown the log-linear relationship
between bitrate and frame rate, we did not increase our testing
data by repeating that part of the experiment. The blue curves in
Figures 1 through 3 show the distributions that we found from the
NNLS fit to our training data.

We show the quality of the bitrate estimation in Figure 4.
We get the same Pearson correlation as was found in that earlier
work [6], but with a more complex quantization process (CRF
instead of quantization step size) and with more factors accounted
for (including frame size). Our Pearson coefficient was 0.9984
(compared to 0.9985-0.9991 reported in [6]).

The blue curve in Figure 9 shows the cumulative distribu-
tion across our test set of the percentage error in the predicted bi-
trate. This uses the NNLS-fit bitrate-model parameter values for
logK(v), a(v), and d(v). With these bitrate-model parameters, we
are able to estimate the correct CRF for our target bitrate (within

3We assume that the width is set from the requested height, using the
same aspect ratio as the input video.

4Just to be clear, the 29 different CRF settings per frame resolution
is for training and testing purposes only. Normally, there are only one
transcode per segment, per frame resolution.

5We tested for the possibility that K could be less than one, by running
the NNLS with a shifted parameterization of logK but we did not find any
cases of the fit being better for such small values of K.

±20%) on 95% of our test cases. While this approach is not pos-
sible in practice (it requires information from 145 transcodes of
the same content for the fitting process), it provides a guideline
for the best possible performance using this approach.

Understanding that these hidden parameters model the rela-
tionship between bitrate and CRF values is not immediately use-
ful. Instead, we would like to estimate these bitrate-model param-
eters as part of a process for estimating the correct CRF to use
for our target bitrate using video features that are available to use
from earlier processing in the upload pipeline. We discuss this
possibility in the next section.

Features from the Mezz
Files uploaded to YouTube are completely unconstrained.

Even though unusual filetypes and bitstreams (e.g. variable frame
rates, colorspaces, incorrect containers etc) are encountered for a
small fraction of these uploads, the volume of ingest means that
these edge cases can challenge the robustness of the transcoding
system. Therefore, we normalize files before transcoding by cre-
ating a high-bitrate, constant-frame-rate mezzanine. We refer to
the output of this re-encode as our mezz. The process of mezz
creation gives us access to encoding properties that characterise
the video stream. We collect the following features (accumulated
over each video segment) from the creation of the mezz bitstream,
for prediction of each segment’s bitrate-model parameters:

• average number of bits used for the move vector (MV) per
predicted (P) macroblock (MB)

• average number of bits used for the texture (i.e., pixel values
or prediction error) per MB

• average number of bits used for the texture per intraframe
(I) MB

• average number of bits used for the texture per P MB
• percentage of I MBs
• percentage of skipped MBs
• a score on the complexity of the video encoding for this seg-

ment
• average quantization-parameter setting used in the mezz

transcode

We also include properties of the original upload: bitrate,
frame size (width and height), and frame rate of the original up-
load. In addition, we include 4 features relevant to our target out-
put: target bitrate, target frame size (width and height), and target
frame rate.

As we will describe in the next section, we use a compact,
shallow neural network (only about 200 hidden units) for our es-
timation process. We work to keep our network small, since we
expect to run it on all videos uploaded to YouTube: the smaller
the network, the lower the expense of estimating the correct CRF.
However, this small size suggests that we provide as rich an input
feature set as we can. In addition to the 16 features, extracted di-
rectly from the mezz transcode and the target settings, we include
values derived from these original features.

We provide as input the logarithm of original and target bi-
trates, frame rates, frame heights, and frame widths. The selection
of these features for a log operation is suggested by the appear-
ance of those same logs in Equation 1.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.3

Figure 5: Layout of neural network used to estimate CRF

Figure 6: Label smearing used
for going from actual CRF of
the transcode to a multi-class la-
bel. By smearing over ±1.5 CRF
units, we lessen the categoriza-
tion penalty for bitrate errors that
are less than 20%

Finally, we repeatedly cross multiply the target frame rate,
the target height, the percentage skipped MB, and the percentage
I MB with the other 12 features. Conceptually, we do this up
to three times (creating terms of a fourth order dependency on
the original features) but remove the terms where any of the input
features, other than target height, are repeated more than once. We
allow target height to repeat up to two times in a single term, as
an approximation to frame size. For example, this set will include
(target height squared) times (average texture bits per I MP) times
(percentage I MB). We do this to allow the neural network with
easy access to the volume measures (in addition to the average
measures listed in the original input features). After removing
duplicates, our final input vector size is 264 entries.

In the next section, we discuss the neural net that we use to
process these inputs, as well as how we use our model equation
(Equation 1) to guide its training.

Neural-Network Estimation of x264 CRF
With our study of Equation 1, we showed that, if we some-

how had access to the values for logK(v), a(v), b(v), and d(v)
for a given video block v, we should be able to predict the correct
setting for CRF for a desired frame rate and our prediction would
accurate, to within our 20% bitrate margin, 95% of the time. How-
ever, we do not have the results of other transcodes of v, other than
the features coming from the mezz transcode, as described in the
previous section. In this section, we describe the neural network
that we created to try to predict the needed CRF, starting from the
mezz-transcode features.

We use the layout shown in Figure 5. Starting from the bot-
tom of the figure, we input the 264 features discussed in the pre-
vious section. These include the logarithms of the target bitrates,
frame rate, and frame height, values that we use deeper in our
network.

Our first “layer” completes batch normalization on all 264
inputs. Batch normalization [2] is a technique that improves and
accelerates training convergence by estimating the mean and vari-
ance of each input and outputting an (approximately) zero mean

and unit variance version of the input activation. While this nor-
malization could be done as a pre-processing step on the input
features, we avoid a separate pre-processing step by including it in
our network. Also, we will use this batch-normalization technique
on the internal network activations that act as inputs to learning
layers.

The normalized input features are fed into a 100-unit, fully-
connected layer with a logistic-function nonlinearity on the out-
puts. We feed those output activations through batch normaliza-
tion and then into a 5-unit, fully-connected linear-response layer.
Up to this point, our neural network structure is fairly conven-
tional.

At this point, during training, we introduce a loss “side-
training” layer [10] to train the outputs of these 5 linear units.
Our training uses an L1 error measure between the units and our
training labels for CRF, logK, a, b, and d. We also form the
compound terms that are needed for estimating the CRF using
Equation 1 and the three un-normalized inputs that we feed to
this layer (logRtarget, log ttarget, and loghtarget). We add an L1-loss
side-training layer for each of the terms (logK/a, b log ttarget/a,
and d loghtarget/a, and logRtarget/a) and for their CRF-estimating
combination (“CRFparam” in Figure 5). For all of these side-
training layers, we downweight the L1 error terms so that they
are, in aggregate, less important in training than the final catego-
rization error that we discuss below.

This type of mid-network interpretation of unit outputs is un-
usual. Most neural networks work best if left to create their own
intermediate variables. However, in our experiments with net-
works that did not include these extra constraints based on our
bitrate model, the networks did not converge to a solution, even
after a week of training. With the mid-network training, we see
95% covergence in less than a day (with continued improvement
for about 4 days of training total). Also, by feeding not only these
values but all the inputs and the previous hidden-layer outputs into
our next layer, we allow the network the freedom to still create in-
termediate variables that are not constrained by the terms that we
have explicitly trained.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.4

Figure 7: Both: cumulative distributions of percent errors across the test set. Left: Errors in the bitrate-model parameter estimation.
Right: Bitrate error of the mid-network “CRFparam” (see Figure 5), with the final error curve shown in red for reference.

We feed all of our layers’ outputs as well as our input features
into our final hidden layer (after batch normalization) and follow
that by a classifier. These two additional layers are an effort to
improve our final CRF, over what we would otherwise get, given
the mistakes we make in estimating logK, a, b, and d from the
features observed from the mezz-transcode features. Our final
100-unit hidden layer allows us to try for this by getting all of
the information from all the previous layers (as well as our CRF,
term, and bitrate-model parameter estimates from the layers with
side training).

We use a 64 unit soft-max classifier as our final layer for two
reasons. The first is that it allows the neural net more freedom
in how it estimates each section of the CRF range: each of the
units is only responsible for deciding if the target CRF is likely
to be within its 0.5-unit range, instead of trying to come up with
an accurate numerical estimate for values that range from 10 to
42. The second reason is one that we will discuss more in our
future-work section but is basically that this output architecture
will give us easy ways to estimate our certainty in our answer. In
the simplest case, we can look at the activation of the soft-max
output layer as a probability distribution for the different CRF
values.

To create output classification labels for training and test-
ing, we represented each transcode as having a multi-class la-
bel around the actual CRF value. The smearing uses the triangle
smearing shown in Figure 6. This label smearing allows for small
errors in CRF estimates at less-than-full penalty, up to an error of
1.5 units. Since we can miss our target bitrate by up to a 20% and
remain within our acceptable zone, we allow the neural network
some of that leeway, even in training, by smearing our target la-
bels. For our training and test data, we found that 2 CRF units
corresponds to about 20% bitrate error: the content-specific rela-
tionship between absolute CRF error and percentage bitrate error
will depend on the exact value for a but that distribution is rea-
sonably compact around a = 0.1 (see the blue curve in Figure 2),
so this content-independent approximation should be reasonable
for label smearing.

Results from Neural Network CRF Estimation
To collect the training and test data for the network described

above, we pulled segments from a total of 15,000 distinct videos:
14,000 of them were used for training and 1000 for testing. The
clips were at least 20 seconds long but not more than 100 sec-
onds (to avoid over-representation). Also, we were careful to
keep all of the segments in each video together, either in the train-
ing data or in the testing data but not split across both. With-
out this strict segregation, our test results would have been overly
optimistic, since neighboring segments often have very similar
bitrate-model parameter values. These groups gave us over 137
thousand distinct training video segments and over 9 thousand
testing video segments. On each block, we computed up to 145
distinct transcodes (up to 5 different spatial resolutions and 29 dif-
ferent CRF settings), giving over 15 million training transcodes
and over 1 million testing transcodes. On each block of the
training data, we separately completed NNLS fits to the available
transcodes, to determine “ground-truth” values for logK, a, and
d, to be used in training. Since our training data did not include
frame-rate variation within a single block of data, we pre-fit a sin-
gle value for b, for all video segments, by linear regression across
all of the training data.

We train the network using Adagrad [1] adaptive learning
rates. To help reduce over-fitting, we include a small amount
of weight decay [3] in the training process (with an L2 penalty
weight of 10−5).

The red line in Figure 9 shows the results from our neural
network on the test set. We keep the bitrate error below 20%
on 65% of our test-set samples. This is a huge improvement
(more than four fold) over the content-independent approach to
setting CRF. In addition, it does not cost more than the content-
independent approach (other than the very low computational cost
of running the neural network): there is no added dependencies
and no additional, supporting transcoding.

Figure 7 shows that, while we do fairly well at estimating
a and d (about 95% of these estimates are within 20% of truth),
we are much worse at estimating logK. The histograms of esti-
mated and actual bitrate-model parameter distributions reinforce
this finding: while the distributions estimated for a (Figure 2) and

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.5

Figure 8: Layout of neural net-
work used to estimate, when a
previous transcode is available

d (Figure 3) have the same general shape as the NNLS-fit val-
ues, the estimated distribution for logK (Figure 1) is qualitatively
different from that of the ground truth.

In our next section, we will discuss the results of using infor-
mation from a single previous transcode of the same video seg-
ment as a way to lessening our reliance on estimating logK.

CRF Estimation With Previous Transcode
As we saw in the previous section, our ability to correctly

estimate CRF is limited (at least in part) by our difficulty in esti-
mating logK for Equation 1. We can avoid complete reliance on
that estimate by providing, as inputs, the features from a single
previous transcode of the same video segment. In that case, we
can subtract two instances (from the same v) of Equation 1, which
removes logK from the equation and instead gives:

logR(c, t,h,v) = logR(cprev, tprev,hprev,v)

−a(v)(c− cprev)+b(v)(log t − log tprev)

+d(v)(logh− loghprev) (2)

We extended our neural net to allow this approach, as shown
in Figure 8. For the input layer, we added another 254 in-
put features, including logR(cprev, tprev,hprev,v), cprev, tprev, and
hprev.6 All of these 518 (= 264 + 254) inputs are fed, after batch-
norm processing to the two fully-connected, logistic-activation
layers. In the mid-network layer, where previously we esti-
mated “CRFparam”, we add separate, parallel estimate of CRF,
“CRFprev param”, using the formula given in Equation 2. We then
train both of these estimates for CRF using an L1 loss between
each estimate and the training labels and fed both estimates up-
ward to the next layer. The rest of the network remains the same.

Figure 9 shows our results when we use the lowest-
resolution, most quantized version of the transcode set that we

6The number of additional features is less than the original set, since
we take out features that depend only on original upload: they would be
redundant.

have available (240 pixel frame height and CRF = 40) as our pre-
vious transcode. We picked this transcode configuration since it
is the least expensive to complete and so should add the least de-
lay to the other transcodes. To avoid positive bias in our results,
we do not include the transcodes that were used as the previous
transcodes in our test set: they are not included in the target situ-
ation that we are trying estimate.

With this extra data, the CRF estimates are correct, to within
20% bitrate error, for 80% of the test set. This halves the dis-
tance between the NNLS curve and our no-previous-transcode es-
timated curve. The gain over the content-independent approach is
even more impressive. Instead of needing to re-transcode to get
a correct bitrate on 85% of the configurations (according to the
content-independent approach), we have this issue on only 20%
of the configurations.

Conclusions
As shown in Figure 4, Equation 1 predicts bitrate quite well,

using four content-dependent but compression-configuration-
independent parameters (logK, a, b, and d). Having discovered
this, we can use the structure provided by that model to guide our
neural-network training to estimate the correct CRF value for a
desired bitrate. Without knowledge of this bitrate model, our at-
tempts at training a neural network for this task failed to converge:
it could not find the correct transformation from our input features
to an accurate estimate for CRF.

The neural-network layout shown in Figure 5 achieves an
accuracy of 20% bitrate error (or better) on 65% of our tests.
While this is not as consistently accurate as we would like, it is
much more accurate than the obvious alternative (using a content-
independent mapping from desired bitrate to CRF): that approach
has only 15% of the segments at or below the 20% bitrate-error
target. We can improve the quality of our neural-network estimate
for CRF, if we introduce a dependence on a previous transcode.
Even using the least-expensive transcode (low-resolution and low-
bitrate) improves our estimate’s accuracy to the point that we have

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.6

Green: Fixed (content-independent) mapping from CRF to bitrate.
Blue: NNLS-fit for logK(v), a(v), and d(v) (not possible in practice,
included for best-case reference).
Red: From highest-activation CRF label from the network layout shown
in Figure 5 without a previous transcode.
Black dashed: Using similar network but with the features from a
previous low-res, low-bitrate transcode of the same content.

Figure 9: Cumulative distribution of bitrate errors (%) across the
test set.

80% of the test transcodes at or below the 20% bitrate-error target.
This work suggests several additional avenues of research.

One is to use the additional information that is available from
the classification layer to provide a confidence measure for the
estimated CRF. In our initial (simple) tests, when we limit our
estimates to the 5% strongest (that is, the ones with the highest
peak soft-max output activation level), we improve our accuracy
to 90% of the tests at or below 20% bitrate error. Similarly, the
25% most confident estimates have 80% of the tests at or below
20% bitrate error.

Another interesting area to explore is the correlations
amongst the bitrate-model parameter values, the errors that we
see in their estimation, and the successful inference of CRF. It
could be that segmenting the CRF estimation problem using the
estimated bitrate-model parameter values might lead to better per-
formance or, at minimum, provide us with better confidence mea-
sures for the estimated CRF.

References
[1] Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine
Learning Research 12, 21212159 (2011)

[2] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: International
Conference on Machine Learning (2015)

[3] Krogh, A., Hertz, J.A.: A simple weight decay can improve gener-
alization. In: Advances in Neural Information Processing Systems
(1992)

[4] Lawson, C., Hanson, R.: Solving Least Squares Problems. SIAM
(1987)

[5] Lin, Y.C., Denman, H., Kokaram, A.: Multipass encoding for reduc-
ing pulsing artifacts in cloud-based video transcoding. In: Interna-
tional Conference on Image Processing (2015)

[6] Ma, Z., Xu, M., Ou, Y.F., Wang, Y.: Modeling of rate and perceptual
quality of compressed video as functions of frame rate and quanti-
zation stepsize and its applications. IEEE Transactions on Circuits
and Systems for Video Technology 22(5), 671–682 (May 2012)

[7] Merritt, L.: A qualitative overview of x264’s ratecontrol methods.
http://akuvian.org/src/x264/ratecontrol.txt (2010)

[8] Scipy community: Non-negative least squares linear solver (nnls).
https://github.com/scipy/scipy/blob/v0.16.0/scipy/optimize/nnls.py#L9
(2008)

[9] Sodagar, I.: The mpeg-dash standard for multimedia streaming over
the internet. IEEE Transactions on Multimedia 18(4), 62–67 (April
2011)

[10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with
convolutions. In: Computer Vision and Pattern Recognition 2015
(2015), http://arxiv.org/abs/1409.4842

[11] YouTube Press: Youtube statistics.
https://www.youtube.com/yt/press/statistics.html (2015)

Author Biography
Michele Covell earned her PhD from MIT. After working at SRI In-

ternational, Interval Research, YesVideo, and HP Labs, Michele joined
Google, in the research group, in 2005. She focused for several years on
large-scale audio and video fingerprinting, identification, and retrieval,
both on basic research and on creating YouTube’s Video Content Id sys-
tem, based on her research. More recently, Michele has been working in
image, audio, and video analysis and compression.

Martin Arjovsky is a student at the University of Buenos Aires, ex-
pecting to graduate in 2016. His research is focused on Deep Learning
and Machine Learning. He has worked at Google/YouTube on applica-
tions to video compression, and at Microsoft on modelling distributed sys-
tems. He is currently a visitor at the MILA Deep Learning team in the
Université de Montréal.

Yao-Chung Lin received his Ph.D. degree from the Department of
Electrical Engineering at Stanford University in 2010. He now works in
Video Infrastructure at Google/Youtube in Mountain View, CA. His re-
search interests include distributed source coding applications, multime-
dia systems, and video processing and compression.

Anil Kokaram received the PhD in Signal Processing from Cam-
bridge University (1993). He then worked as a research fellow at the
Signal Processing group at the Cambridge University Engineering De-
partment until 1998, when he took up a lectureship at Trinity College
Dublin. His work is in the broad area of Video Processing. In 2007,
he was awarded a Technical Oscar for his work in motion estimation for
the movies. In 2011, his startup (GreenParrotPictures) was acquired by
Google. He is now a Technical Lead at YouTube’s video infrastructure
division and also holds a Professorship at Trinity College Dublin.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-237

IS&T International Symposium on Electronic Imaging 2016
Visual Information Processing and Communication VII VIPC-237.7

