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Abstract
This paper addresses the problem of registering multimodal

images of scene depth variation. The existing methods typically
build matches of keypoints with descriptors and then apply con-
sensus/consistency check to rule out incorrect matches. However,
the consistency check often fails to work when there are a large
number of wrong matches. Given a set of initial matches built with
descriptors, we seek to search the best or correctly matched key-
points. To this end, this work employs the global information over
entire images to assess the quality of keypoint matches. Since the
image content has depth variation, projection transformations are
needed to account for the misalignment and hence quadruples of
keypoint matches are considered. In order to search the correctly
matched keypoints, an iterative process is used that considers al-
l preserved quadruples passing the spatial coherence constraint.
Extensive experimental results on various image data show that
the proposed method outperforms the state-of-the-art methods.

Introduction
The goal of registering multimodal images containing large-

ly varying scene depth is to align images acquired by different
sensors and/or from different views. The challenge comes from
two-fold aspects, one is the scene depth, and the other is the mul-
timodality. As to the scene depth, if images contain no depth vari-
ation, the misalignment can be exactly represented by an affine
or projective transformation. When scene depth varies largely,
the geometric transformation of two images can not be exactly
formulated to be a linear model, e.g., affine or projective. One
feasible approach is to employ projective transformations to ap-
proximately account for the misalignment. The second challenge
is about the multimodality that significantly decreases the repeata-
bility and distinctiveness of descriptors. SIFT [1] and SURF [2]
have been designed to build keypoint mappings between two im-
ages based on the assumption that corresponding keypoints have
similar gradient pattern around them. Alahi et al. [3] propose fast
retina keypoint(FREAK) which is faster to compute and more ro-
bust than SIFT and SURF. Yu [4] propose ASIFT, which is fully
affine invariant. It simulates all image views by varying the two
camera axis parameters and covers the other four parameters by
applying SIFT. Cai et al. [5] then further investigate a perspective
scale invariant feature transform (PSIFT) by using homograph-
ic transformation to simulate perspective distortion. To increase
the number of keypoints, Park et al. [6] proposed using higher-
order scale space derivatives, ∂ 2L(x,y,σ)/∂σ2, ∂ 3L(x,y,σ)/∂σ3,
∂ 4L(x,y,σ)/∂σ4, and then extracted the extrema in the high-order
scale space. Since gradient information in multimodal images will
change[7], it is very difficult for these methods to achieve highly

accurate registration on multimodal images[8].
The gradient changes are caused by the non linear response

of the scene contents to the wavelength channels used in the mut-
limodal imaging[9]. That is to say, the same scene contents ap-
pear differently within channel images and result in different ori-
entation of gradient at the correspondence keypoint between mut-
limodal images as illustrated in Fig. 1 for a visible and an infrared
image regions.

(a) An example of a visible
image

(b) An example of an in-
frared image

(c) The orientation of gradi-
ent in red pane on the visible
image

(d) The orientation of gra-
dient in red pane on the in-
frared image

Figure 1. (a) shows a visible image region of airstrip and keypoints cal-

culated by SIFT, (b) shows the corresponding IR channel image region and

SIFT keypoints, (c) shows the orientation of gradient at zebra crossing of the

visible airstrip, whereas in (d) the orientation of the corresponding region is

reversed which makes the SIFT keypoints unable to be matched.

In order to enable the descriptors designed for single-mode
images (e.g., SIFT) to mutlimodal images, many algorithms have
been proposed, including NG SIFT (NG, normalized gradien-
t) [7], SAR SIFT [10] and MIND [11]. NG SIFT utilizes the nor-
malized gradients around keypoints for describing the local pat-
tern to achieve the invariance against non-linear intensity changes
between mutlimodal images. It outperforms the original SIFT on
the mutlimodal images of a structured scene. SAR SIFT pro-
poses a new local gradient pattern around keypoints, in which
the orientation and magnitude are robust against the speckle
noise. SAR SIFT gives a higher ratio of correct keypoint map-
pings than the original SIFT on mutlimodal images. Mainal-
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i et al. [12] proposed the D-SIFER scale-invariant feature de-
tection algorithm using the 10th order scale-space optimal Gaus-
sian derivative filter. D-SIFER was validated on hyperspectral
images and was shown to perform better than SIFT and SUR-
F. Hossain et al. [13] propose improved symmetric-SIFT (ISS)
to address the gradient reversal, region reversal, and the descrip-
tor merging problem. Chen et al.[14] propose partial intensity
invariant feature descriptor(PIIFD) for multimodal retinal image
registration. PIIFD assigns the main orientation of keypoints to a
number range [0,π) and extracts feature descriptors characteriz-
ing the outlines (contours) around keypoints. They perform bet-
ter than registration methods for mono-modal images. Howev-
er, when the ratio of initial correct keypoint mappings is small,
which often occurs on multimodal image pairs, the correct map-
pings cannot be effectively obtained by utilizing random sample
consensus (RANSAC)[15] or other outlier removing techniques.
To establish more correct matched keypoints robustly, a projec-
tive transformation is used to model the misalignment between
multimodal images of depth information in this letter. We utilize
the number of overlapped edge pixels over the whole images as
similarity metric, incorporating global information in the evalu-
ation of keypoint mappings. Quadruples of keypoint mappings
are chosen with the spatial constraints and evaluated with simi-
larity metric by using global information. An iterative updating
process is designed to find the best matched reference keypoint
for each test keypoint. The main contribution of this letter is that
we exploit global information to build keypoint mappings in con-
junction with local descriptors. Keypoint mappings are evaluated
not only with local information descriptors around keypoints but
with whether the keypoint mappings can bring entire images into
alignment (i.e., global information). The incorporation of global
information ensures that the built keypoint mappings are consis-
tent well with the content of entire images in the sense that these
keypoint mappings can bring two multimodal images into align-
ment.

Similarity metric
The number of overlapped pixels is defined as the similarity

metric. Edges are extracted by the Canny [16] operator in which
the high and low thresholds are set based on the image content
[17] as Fig. 2 shows. In this paper, we use the same steps as
the original Canny operator to detect edges on test and reference
image. However, the high and low thresholds are set locally, i.e.,
they are determined within a moving window centered on the cur-
rent pixel rather than over the entire image. The window size is
set to be 20*20 like the configuration parameters in Ref. There
are 64 bins being used to calculate the histogram of the window
so that the high thresold is set to the gradient magnitude that is
ranked top 30% in the window and the low thresold is set to 40%
of high thresold.

Let Ir(x,y) and It(x,y) denote the reference and test multi-
modal images to be registered, IT

t (x,y) denote the transformed
version of It(x,y) by a projective transformation T . Then the sim-
ilarity metric is defined as

Nop

(
Ir(x,y), IT

t (x,y)
)
= ∑

x,y
Er(x,y) ·ET

t (x,y), (1)

where Er(x,y) and ET
t (x,y) are the edge maps of Ir(x,y) and

IT
t (x,y), respectively. As Fig. 2 shows that extracted edge pixels

are evenly distributed on the entire image due to locally setting
the high and low threshold.

(a) Original image (b) Image edge

Figure 2. An image and its edge map detected with the Canny operator.

Distance constraints for keypoint correspon-
dences

We use the following projective transformation for register-
ing images,

ui =
a1 · xi +a2 · yi +a3

a7 · xi +a8 · yi +1
, vi =

a4 · xi +a5 · yi +a6

a7 · xi +a8 · yi +1
, (2)

where (xi,yi), i = 1,2,3,4, denote the coordinates of four key-

points
(

Pi1
t ,Pi2

t ,Pi3
t ,Pi4

t

)
on test image and (ui,vi), i = 1,2,3,4,

denote the coordinates of four keypoints
(

P
ki1
r ,P

ki2
r ,P

ki3
r ,P

ki4
r

)
on

reference image which are matched to
(

Pi1
t ,Pi2

t ,Pi3
t ,Pi4

t

)
, ai, i =

1,2,3,4,5,6,7,8 denote the coefficients of the projective transfor-
mation determined by the four pairs of keypoints. To apply pro-
jective transformations for registering images, the four keypoints
in (2) are required to be located in a plane. For this purpose, a dis-
tance constraint is enforced on them since the scene depth varies
over pixel locations. Intuitively, the smaller the distance between
keypoints in the quadruple, the more likely it will lie in a plane.
Motivated by the idea in [18], we limit the distance of keypoints
in a quadruple with the following equation,

‖Pi
t −P j

t ‖2≤α ·max(H,W ), ‖Pi
r−P j

r ‖2≤α ·max(H,W ), (3)

where Pi
t and P j

t are any two points in the test quadruple, Pi
r and

P j
r are any two points in the reference quadruple,H and W are the

height and width of the test and reference image, α is a coefficient.
(3) ensure that the area enclosed is more likely a plane scene in
test(reference) image. In this letter, the limited coefficient α is set
to 1

4

√
2, the 1

4 times the diagonal length of an image.

Search best keypoint mappings with global
information

In order to search best keypoint mappings, we attempt to
find the test keypoints which have the maximum similarity metric
Nop. This searching process comprises the following four steps.
Firstly, we extract the keypoints from Ir(x,y) and It(x,y) by ap-
plying SURF. Let Ki

t , i = 1,2, ...,Nt , denote the ith keypoint on
It(x,y), and K j

r ,i = 1,2, ...,Nr, denote the jth keypoint on Ir(x,y).
Let f i

t , i = 1,2, ...,Nt , denote the descriptor of Ki
t and let f j

r ,
j = 1,2, ...,Nr, denote the descriptor of K j

r . In the original SURF
method, a reference keypoint K j0

r is matched to be a test keypoint
Ki0

t , if

d( f i0
t , f j0

r )< 0.8 ·d( f i0
t , f j1

r ),
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where d() is the Euclidean distance and f j1
r is the 2nd-closest

neighbor to f i0
t . The parameter 0.8 is the default value of SUFR

method which can be replaced by a smaller value in practice.
The smaller value means a tighter matching criterion giving few-
er matched keypoints. However, because of the gradient reversal
and region reversal as illustrated in Fig. 1 , the repeatability and
distinctiveness decrease significantly on mutlimodal images[19],
and hence the initial keypoint mappings built by SURF include a
high ratio of incorrect ones. The result of initially built keypoint
mappings is used in next steps for searching the best matched ref-
erence keypoint for every test keypoint.

Secondly, since the SURF descriptor often yields incorrec-
t mappings for multimodal images, we assign multiple putative
mapping reference keypoints for each test keypoint to improve
the probability of yielding correct mappings. The putative map-
ping reference keypoints of Ki

t are obtained by sorting d( f i
t , f j

r )
and finding Nc reference keypoints of the smallest distances to f i

t .
In this letter, Nc is set to 3.

Thirdly, an iterative process is designed that considers al-
l preserved quadruples passing the spatial coherence constrain-
t as indicated in (3) to search best keypoint mappings. In
the iterative process, consider a quadruple of the test keypoints(

Ki1
t ,Ki2

t ,Ki3
t ,Ki4

t

)
, i1 < i2 < i3 < i4, for each test keypoint of

the quadruple pick a candidate reference keypoint. Then we get

a quadruple of reference keypoints
(

K
ki1
r ,K

ki2
r ,K

ki3
r ,K

ki4
r

)
, where

K
ki1
r is one of the putative mapping reference keypoints to Ki1

t , and

similar meaning applies to K
ki2
r , K

ki3
r , and K

ki4
r . Next, the quadru-

ple of mappings
(

Ki1
t ,Ki2

t ,Ki3
t ,Ki4

t

)
∼

(
K

ki1
r ,K

ki2
r ,K

ki3
r ,K

ki4
r

)
is

used to determine a projection transformation T with (2), and then
the similarity metric Nop is calculated with (1). The iterative pro-
cess considers all quadruples of keypoint mappings and stores the
maximum Nop for each test keypoint Ki

t in a vector Nop[i]. As a
result, the best mapped reference keypoint for every test keypoint
can be achieved by sorting through the value of Nop[i]. Note,
Nop[i] is different from one to another. This step is summarized in
Algorithm 1.

Finally, of all test keypoints those whose maximum Nop
ranked top 10% are selected for computing the final projective
transformation.

Remove outlier with ransac
At the last step, we apply the RANSAC algorithm because

there are still some outlier keypoint mappings after searching best
keypoint mappings with global information, although most of in-
correct keypoint mappings are expected to have been removed.
Random sample consensus (RANSAC) is an iterative approach to
estimating the parameters of a mathematical model from a set of
observed data containing outliers. RANSAC performs well in re-
moving outliers of keypoint mappings if the correct ratio is high.
However, the performance of RANSAC decreases dramatically e-
specially when the correct ratio is low, e.g., 20% or less. Due to
this, not all the keypoint mappings built global information are
used as input of this step, rather, only the keypoint matches who
have high similarity metric are fed into this step since these key-
point matches have a greater probability of being correct. Affine
or projective transformations are utilized with RANSAC to re-
move outliers. When the distance of real scene content to the

Algorithm 1: Iteratively processing pairs of keypoint
mappings

input : Ir(x,y), It(x,y).
output: Keypoint mappings whose maximum Nop ranked

top 10%.
1 Extract image features:

- Detect keypoints Ki
r and descriptors f i

r , i ∈ [1,Nr], from
Ir(x,y), and Ki

t and f i
t , i ∈ [1,Nt ], from It(x,y).

- Generate edge maps Er(x,y) and Et(x,y) from Ir(x,y) and
It(x,y).

Iteratively searching out best pairs of keypoint
mappings:
for i1, i2, i3, i4 ∈ [1,Nt ] do

1. Require i1 < i2 < i3 < i4.

2. Find the matched reference keypoint to Ki1
t , K

ki1
r , the matched

reference keypoint to Ki2
t , K

ki2
r , the matched reference

keypoint to Ki3
t , K

ki3
r , the matched reference keypoint to Ki4

t ,

K
ki4
r .

3. Require ki1 6= ki2 6= ki3 6= ki4 .

4. Require any two points from (Pi1
t ,Pi2

t ,Pi3
t ,Pi4

t ), satisfying the
geometrical constraint in Equation (3).

5. Require any two points from (P
ki1
r ,P

ki2
r ,P

ki3
r ,P

ki4
r ), satisfying

the geometrical constraint in Equation (3).

6. Determine T between (Pi1
t ,Pi2

t ,Pi3
t ,Pi4

t ) and

(P
ki1
r ,P

ki2
r ,P

ki3
r ,P

ki4
r ) by equation (2).

7. Transform edge points of It(x,y) by the determined T .

8. Compute similarity metric Nop
(
Ir(x,y), IT

t (x,y)
)

by equation
(1).

9. Updates the maximum Nop for each test keypoint Ki
t in a

vector Nop[i].

end

camera is all the same, an affine transformation would be enough
to account for the misalignment. When the distance varies from
point to point, a projective transformation or polynomial trans-
formation is necessitated. Polynomial transformations require at
least 6 keypoint mappings, which significantly increases the pos-
sibility that a sample composed of 6 mappings contains incorrect
ones. Consequently, projective transformations are utilized to ad-
dress images of scene depth, and the proposed method can build
correct mappings.

Experimental results
We evaluate the performance of the proposed algorithm us-

ing three datasets of mutlimodal images. Dataset EOIR includes
87 image pairs covering outdoor depth scenes captured by our-
selves, 12 Landsat image pairs from NASA, four remote sens-
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ing image pairs of the 2008 Sichuan earthquake and two im-
age pairs from the OSU Color and Thermal Database. The 87
image pairs cover outdoor depth scenes, with one image tak-
en with visible light and the other taken with middle-wave in-
frared (MWIR) light. In addition to the spectral distance, they
are taken at different times, so the content of one image may
be slightly different from that of the other. The 12 Landsat
image pairs are downloaded from http://landsat.usgs.gov/ with
one taken with the visible band, e.g., Landsat 8 Band 3 Visi-
ble (0.53–0.59 µm), and the other taken with middle-wave light
or the Thermal Infrared Sensor (TIRS), e.g., Landsat 8 Band
10 TIRS 1 (10.6–11.19 µm). The four remote sensing image
pairs were taken over Wenchuan county (Sichuan Province, Chi-
na) during the 2008 Sichuan earthquake. They were acquired
by the Formosat-2 satellite. One image is a mutlimodal image
(1960× 1683) before the earthquake, and the other is a panchro-
matic image (1968× 1705) after the earthquake of the same
area. In order to further verify the performance of the proposed
method for mutlimodal images taken at different times, we take
two image pairs from the OSU Color and Thermal Database (Da-
ta 03, http://www.vcipl.okstate.edu/otcbvs/bench/). The two im-
age pairs are captured by a thermal sensor (Raytheon PalmIR
250D, 25-mm lens) and a color sensor (Sony TRV87 Handycam).
Dataset RWHI includes Real-World Hyperspectral Image from
[9] containing 50 scenes. Most of scenes have large variation-
s in depth. The images of RWHI were acquired by sequentially
tuning a filter through a series of thirty-one narrow wavelength
bands, each with approximately 10nm bandwidth and centered at
steps of 10nm from 420nm to 720nm. We use 50 image pairs of
420nm and 560nm to test and the dimensions of the images are
464×346 pixels. Dataset VS-LWIR is from [20] containing 100
image pairs, one image taken with the visible bandwidth (0.4–0.7
µm) and the other taken with the long-wave infrared bandwidth
(LWIR, 8–14 µm). Fig. 3 gives some examples from dataset 1
and dataset 3.

We compared the registration results of the proposed method
with SIFT+RANSAC[1], FREAK[3], ISS[13], and PIIFD[14].
Firstly visual matching results are shown, followed by the quan-
titative analysis on matching results. These methods are imple-
mented with OpenCV.

Fig. 4 shows the keypoint matching results given by pro-
posed method, SIFT+RANSAC, PIIFD, ISS, and FREAK on an
image pair from dataset EOIR. Due to the variation of gradient
pattern between multimodal image pairs, the SIFT+RANSAC and
FREAK method can not build correct keypoint mappings. There
are 5 pairs of matching points built by ISS in fig. 4(c) and 4 pairs
built by PIIFD in fig. 4(d), none of which is correct. Compared
with SIFT+RANSAC, PIIFD, ISS, and FREAK, there are 3 cor-
rect pairs of matching points built in Fig. 4(e). The reason is that
the proposed method utilizes the global information over entire
images to assess the quality of keypoint matches and an updating
process is applied to find the best matched keypoint for every test
keypoint. In Fig. 5 the visual results for keypoint matching on a
pair of images on dataset VS-LWIR are shown. Because of large
spectral difference between the two images in a pair of images on
dataset VS-LWIR, it is more difficult to build reliable keypoint
matching in such images. The visual results in Fig. 5 indicated
that PIIFD and ISS can hardly build one correct keypoint match-
ing, while the proposed method can build four correct keypoint

(a) EO203 (b) IR203

(c) VS0081 (d) IR0081

Figure 3. Two image pairs from dataset EOIR and Dataset VS-LWIR. (a),

(c) are outdoor scenes captured by visible band sensor and (b), (d) are taken

by infrared sensor respectively.

matchings in Fig. 5(e).
To quantitatively evaluate the performance of proposed

method, the histogram of the distance between mapped keypoints
is employed. The bins are set to [0, 2], [2, 5], [5, 10], [10, 20],
and [20,∞). Table 1 gives the histogram of distances between
mapped keypoints for different methods. On dataset EOIR and
dataset VS-LWIR, the proposed method significantly performs
better than SIFT+RANSAC, PIIFD, ISS, and FREAK. For exam-
ple, on dataset EOIR, the proposed method has 23% of keypoint
mappings with a distance falling in [0,2] and 24% falling in [2,5],
while SIFT + RANSAC has 9% in [0,2] and 7% in [2,5], and
ISS only has 9% and 4% falling in [0,2] and [2,5]. On dataset
VS-LWIR, the proposed method has 76 pairs of keypoint map-
pings with a distance falling in [0,2] and 117 pairs falling in [2,5],
while PIIFD has 2 pairs in [0,2] and 5 pairsin [2,5], and Freak
only has 2 and 3 pairs falling in [0,2] and [2,5]. An interesting re-
sult shown in table 1 is that all of the methods could achieve good
performance on dataset RWHI. The reason maybe that the spec-
tral difference between the two images of a pair on dataset RWHI
is small, so that the gradient changes not so much. In conclusion,
the results show that there are two advantages of the presented
method over other methods. The first is that the proposed method
provides a higher ratio of keypoint mappings. The second is that
the presented method provides a lower ratio of keypoint mappings
that have a distance greater than 20.

Conclusion and future work
This paper proposes a method to register multimodal images

of depth information. Quadruples of keypoint mappings are cho-
sen with the spatial constraints and evaluated with similarity met-
ric by using global information. An iterative updating process is
designed to find the best matched reference keypoint for each test
keypoint. Experimental results show that the presented method
can provide more reliable keypoint mappings and achieve a better
matching performance than the state-of-the-art.

There are several future research directions that can be done
to improve the capability of the proposed method. The first is
to design reliable descriptors based on the common information
between mutlimodal images. Although it is not the focus of this
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Table 1: the distribution of the distances between matched keypoints

Dataset method [0-2] [2-5] [5-10] [10-20] >20

EOIR

Proposed 143 147 105 173 64
SIFT+RANSAC 75 54 263 205 231
PIIFD 14 32 40 16 167
ISS 31 16 5 12 295
FREAK 11 11 5 10 358

RWHI

Proposed 602 1 2 5 1
SIFT+RANSAC 597 2 1 3 0
PIIFD 1093 16 5 12 0
ISS 1082 18 3 7 0
FREAK 863 2 4 11 0

VS-LWIR

Proposed 76 117 108 105 20
SIFT+RANSAC 15 29 33 105 495
PIIFD 2 5 6 11 198
ISS 2 16 8 7 106
FREAK 2 3 4 6 489

paper, enhancing the matching ability of descriptors can improve
the overall registration accuracy. The second is on the similarity
metric that has been used for evaluating the quality of keypoint
mappings. It uses the global information of entire image consum-
ing large computational cost, which needs to be optimized in the
future.
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and (e) shows the result by the proposed method.
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