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Abstract
Camera motion blur generally varies across the image plane.

In addition to camera rotation, scene depth is also an importan-
t factor that contributes to blur variation. This paper address-
es the problem of estimating the latent image of a depth-varying
scene from a blurred image caused by camera in-plane motion. To
make this depth-dependent deblurring problem tractable, we ac-
quire a small sequence of images with different exposure settings
along with inertial sensor readings using a smart phone. The mo-
tion trajectory can be roughly estimated from the noisy inertial
measurements. The short/long exposure settings are arranged
in a special order such that the structure information preserved
in short-exposed images is employed to compensate the trajecto-
ry drift introduced by the measurement noise. Meanwhile, these
short-exposed images could be regarded as a stereo pair which
provide necessary constraints for depth map inference. Howev-
er, even with ground-truth motion parameters and depth map,
the deblurred image may still suffer from ringing artifacts due
to depth value ambiguity along objects boundaries resulting from
camera motion. We propose a modified deconvolution algorithm
that searches the “optimal” depth value in a neighborhood for
each boundary pixel to resolve ambiguity. Experiments on re-
al images validate that our deblurring approach achieves better
performance than existing state-of-the-art methods on a depth-
varying scene.

Introduction
Motion blur due to camera shake is a common artifact in

digital images, especially when using hand-held cameras in low-
light conditions. The problem of removing the motion blur has
received a lot of attention in recent years.

Traditionally, the blurred image is modeled as a latent image
convolved with a blur kernel. Since the underlying blur kernel is
unknown in practice, image deblurring, also known as blind de-
convolution, is an ill-posed problem and additional information
is needed to constrain the solution space. Most single image de-
blurring algorithms incorporate image or kernel prior knowledge.
Multiple images and hardware have also been considered. For ex-
ample, Yuan et al. [21] used a blurred/noisy image pair to make k-
ernel estimation easier and Ben-Ezra et al. [12] proposed a hybrid
imaging system where the attached low-resolution video camer-
a can record motion trajectory. A common assumption in these
algorithms is that the blur kernel is spatially-invariant. Howev-
er, the blur kernel generally varies across the image plane due to
camera rotation, electronic rolling shutter mechanism and scene
depth variation.

Recently Tai et al. [16] introduced a novel model, referred
to as projective motion blur model, which interprets the blurred
image as an integration of the scene under a sequence of pro-
jective motions during the exposure time. This model is able to
describe 6D camera motion with global homography transforma-

tions. Whyte et al. [18] substituted this model into the existing
blind deblurring algorithms to recover 3D camera rotations. Con-
currently, Gupta et al. [3] described similar work to explain in-
plane rotation and translation. Hirsch et al. [5] and Hu et al. [7]
developed fast algorithms to reduce computational loads. Joshi
et al. [8] integrated inexpensive and lightweight inertial sensors
with a DSLR camera to measure camera motion and calculate the
homography parameters based on rigid body kinematics.

None of the above methods ever consider the effect of scene
depth variation on blur kernels. The existence of depth factor can
significantly complicate the deblurring problem. First, depth map
acquisition generally requires special hardware, such as stereo-
camera or depth sensor. In addition, a global motion descriptor is
not sufficient to describe scene depth variation, so the advantages
brought by the projective motion blur model will no longer ex-
ist. What’s more, depth discontinuity leads to abrupt blur kernel
changes along the boundaries. Small errors of depth estimation
at the boundary pixels can be magnified as ringing artifacts in the
deblurred image.

limited effort has been devoted to depth-aware deblurring.
Li et al. [10] extended the hybrid camera with an additional low-
resolution video camera so that two low-resolution cameras form
a stereo pair and provide a low-resolution depth map. Levin et
al. [9] designed a coded aperture to recover both latent image and
layered depth map with the help of user-drawn strokes in some
cases. Xu et al. [19] inferred depth from two blurred images cap-
tured by a stereo camera and proposed a hierarchical estimation
framework to remove motion blur caused by in-plane translation.
Sorel et al. [15] also discussed depth effect on translational blur,
but they estimated the relative depth map using the constraints
from multiple images rather than stereo configuration. The algo-
rithm of Paramanand et al. [13] allows for more complex cam-
era motion, in-plane rotation as well as translation. However, the
scene is restricted to a bilayer scene (a foreground plus a back-
ground). Hu et al. [6] proposed to jointly estimate depth layers
and remove non-uniform blur caused by in-plane motion from a
single blurred image. While the unified framework is promising,
user input for partitioning depth layers is required and potential
depth values should be known in advance.

In this paper, we present a multi-image motion deblurring
approach that takes advantage of the inertial data and a special
combination of blurred/noisy images to restore scene depth as
well as latent image. A simple application on smart phones was
designed such that it can capture a burst of three images with d-
ifferent exposure settings and record inertial data simultaneously.
The first and last images are taken with a short exposure time and
thus appear to be sharp and noisy while the intermediate image
taken with a long exposure time is motion blurred. As in our pre-
vious work [23], we used the sharp image edges preserved in the
denoised versions of the first and last images to remove the drift
in the motion trajectory estimated from noisy inertial measure-
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ments. The depth map is obtained by considering the denoised
images as if they were captured by a stereo camera. Although the
baseline between the two images is not fixed and unknown, we
can approximate it using the recorded inertial data.

In addition, it is found that the depth value along sharp tran-
sitions in the depth map is always ambiguous for a blurred image,
since camera motion causes one pixel move across depth disconti-
nuity region. Therefore, a simple extension of the Projective Mo-
tion Richardson-Lucy algorithm via replacing a constant depth
value with pixel-wise depth values may result in severe ringing
artifacts in the case of large depth variation. To reduce the ringing
artifacts, we attempt to search an optimal depth value from sev-
eral candidates at the pixel locations of interest for each homog-
raphy transformation and substitute these updated depth maps in
the Projective Motion Richardson-Lucy algorithm. The effective-
ness of our modified algorithm has been demonstrated by both
synthetic and real images.

Depth-Aware Blur Model
In this section, we present the depth-ware projective motion

blur model which describes camera motion and scene depth ex-
plicitly.

In a pinhole camera, a point light source in the scene will be
projected to different locations of the sensor if the camera moves
during the exposure time. The resulting trajectory left on the sen-
sor is the point spread function (PSF) of that point. Let x repre-
sent the initial projection of scene point X , then the projection at
time t is related to x by a homography transformation H(t),

x′(t) = H(t)x= K(R(t)+
1
d

T(t)NT )K−1x (1)

where R(t) and T(t) are 3×3 rotation matrix and 3×1 translation
vector respectively, N is the normal vector to the image plane and
K represents the camera intrinsic matrix. In the previous work, the
depth value d is assumed constant, but for depth-varying scenes,
d is a function of pixel location x. In this case, the homography
matrix H depends on both camera motion and scene depth map
D, denoted by H(t,D). This equation also implies that only trans-
lational blur is affected by depth variation and its size is inversely
proportional to depth value. Therefore, the objects that are close
to the camera sensor are likely to appear more blurry than those
at a distance.

According to the projective motion blur model, the blurred
image is generated by integrating all homography-transformed
versions of the sharp image over the exposure time T, i.e.,

g(y) =
∫ T

0
f (H−1(t,D)y)dt +n (2)

where g, f , n denote the blurred image, latent image and addi-
tive Gaussian noise. Note that the mapping that maps any pixel
location y in the blurred image g to its original location in the
sharp image f is the inverse homography matrix H−1(t,D). In
discrete form, the integral is replaced by a weighted sum over a
set of camera poses,

g(y) =
N

∑
i=1

wi f (H−1
i (D)y)+n (3)

The weights wi, i = 1 . . .N satisfy ∑i wi = 1 and represent the pro-
portion of exposure time spent at each camera pose.

General camera motion has 6 degrees, consisting of 3 rota-
tions and 3 translations, as shown in Eq. (1). In this work, we
only consider in-plane motion (include in-plane translations and
rotation) for simplicity. This assumption has been proved valid in
many scenarios since small out-of-plane rotations can be approx-
imated by in-plane translations [3]. The homography Hi(D) then
simplifies to

Hi(D) = K

cos(θi) −sin(θi) Tix/D(y)
sin(θi) cos(θi) Tiy/D(y)

0 0 1

K−1 (4)

Where θi, Tix, Tiy respectively represent the rotation angle around
z-axis (optical axis) and x-y plane translations. With our setting,
these unknown motion parameters can be roughly estimated from
measured inertial data: θi is a single integration of z-axis angular
velocity from gyroscope, and Tix, Tiy are computed by integrating
x- and y-axis accelerometer data twice. The specific details can
be found in our previous work [23]. In addition, since inertial
sensors are uniformly sampled, the weights wi are equal to 1

N .

Motion Deblurring
Given the image sequence f1, f2, f3 captured by the s-

mart phone camera and the simultaneously recorded inertial data
{ai = [aix,aiy,aiz],ωi = [ωix,ωiy,ωiz], i= 1, . . . ,M}, our objective
is to estimate the latent image f from the blurred observation f2.
In this process, three problems need to be addressed: estimating
depth map, compensating temporally-increasing motion drift in-
duced by inertial measurement noise, and generating a deblurred
image with less ringing artifacts. Our solutions to these problems
are explained in the following subsections.

Disparity Estimation
Due to fast shutter speed and high ISO value, the captured

images f1 and f3 are noisy and partially lost correct colors, but
the sharp image structures can be well preserved after denoising
process. This allows the denoised versions of f1 and f3 to work as
a stereo-like pair from which a coarse disparity map is estimated.
The disparity map is then converted to a depth map via the inverse
relation,

D =
f ∗b
Disp

(5)

where f , b and Disp respectively denote the camera focal length,
baseline and estimated disparity map. Since this stereo-like pair is
not captured by a real stereo camera, baseline means the distance
between the two camera views from which the pair of images are
taken. The baseline is not fixed and unknown because of arbitrary
in-plane camera motion.

Fig. 1 presents an example to illustrate each step in the dis-
parity map estimation. Initially we apply the state-of-the-art CB-
M3D denoising algorithm [1] on f1 and f3 to obtain the denoised
images f1D and f3D. In order to compute the disparity map, for
each pixel in the reference image ( f1D), the corresponding pixel
in the target image ( f3D) has to be found. Most disparity estima-
tion methods (stereo dense matching) require the camera motion
that relates one image to the other is parallel to x-axis of the cam-
era sensor so that the search of the corresponding pixel is limit-
ed to the pixels on the same horizontal line in the target image.
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Figure 1. Disparity map estimation. From left to right, they are noisy images, denoised images marked by point correspondences, rectified images, initially

estimated disparity map, final disparity map after inverse transformation and guided filtering, respectively.

Therefore, it is necessary to perform epipolar rectification which
transforms f1D and f3D to make the corresponding points have the
same vertical coordinates. For our uncalibrated case, we need to
identify a set of point correspondences between f1D and f3D first.
SIFT is adopted to find potential matches and RANSAC is ap-
plied to discard outliers [17]. Then the fundamental matrix F can
be computed from these matches and Quasi-Euclidean epipolar
rectification [2] is used to produce a pair of rectified images f1R
and f3R that have small distortion compared to original images.

A coarse disparity map is generated by taking the overlap-
ping area of the rectified images as input to the two-step stereo
matching algorithm [11]. To fill occlusions and remove outlier-
s, the generated disparity map is post-processed by a left-to-right
cross-checking, a weighted median filter and a subpixel correc-
tion. Note that this disparity map is estimated with respect to
the left rectified image f1R. The inverse projective transformation
from rectification should be applied on the disparity map to align
it with the original denoised image f1D. Sometimes the region
boundary in the estimated disparity map is not well handled due
to low contrast of denoised images. We employ the guided filter
[4] to preserve boundaries and the guidance image is obtained by
enhancing f1D such that its histogram matches that of the blurred
image f2.

Motion Drift Compensation
In the case of in-plane camera motion, a sequence of mo-

tion parameters {[Tix,Tiy,θi], i = 1, . . . ,M} can be computed from
the measured inertial data {[aix,aiy,ωiz], i = 1, . . . ,M}. Howev-
er, a common issue with using inertial sensors for camera motion
estimation is noise amplification. The noise present in the iner-
tial measurements, especially accelerometer data, could lead to
significant drift in the estimated motion trajectory and degrade
the final deblurring result. Based on our previous work [23], we
address this problem for depth-varying scenes by exploiting the
underlying relation between the captured images.

The first image f1 is related to the last image f3 by the fun-
damental matrix F, from which the rotation matrix RF and trans-
lation vector TF at the end of the camera motion can be retrieved
up to scale and a four-solution ambiguity. The solution ambiguity

is resolved by testing a single point to determine if it is in front of
both camera views, but the scale factor is unknown and approxi-
mated by

s =
√

T 2
Mx +T 2

My. (6)

Given the desired end point {[TFx,TFy,θF ]} extracted from RF
and TF , a less drifted trajectory is searched for such that the ac-
celerations and angular velocities interpreting it matches the mea-
surements in the least-squares sense,

argmin
{Tix,Tiy,θi}

M

∑
i=1

∥∥∥[ d2Tix
dt2

d2Tiy

dt2 C dθi
dt

]
−
[
aix aiy Cωiz

]∥∥∥2

+λ

∥∥∥[ TMx
s

TMy
s CθM

]
−
[
TFx TFy CθF

]∥∥∥2
,

(7)

where C is used to balance translation in unit m with rotation in
unit rad and λ is a regularization parameter. The minimization is
performed using the simplex method.

In most time, the above constraint alone cannot totally re-
move the drift. To correct the remaining drift and estimate accu-
rate motion blur kernel for f2, we regard the denoised image f1D
as a good estimate of the latent image f that undergos camera mo-
tion {[aix,aiy,ωiz], i= k, . . . ,k+N−1} to generate the blurred im-
age f2. Accordingly, we formulate the following objective func-
tion,

argmin
{Tix,Tiy,θi}

∑
∂∗∈{∂x,∂y}

∥∥∥∥∥∂∗ f2(y)−
1
N

k+N−1

∑
i=k

∂∗ f1D(H−1
i (D)y)

∥∥∥∥∥
2

(8)

The depth map D is computed from the disparity map using E-
q. (5) where the baseline b is approximated by s. As the trans-
lations Tix and Tiy estimated from Eq. (7) are required to be con-
sistent with scale factor s, using s as the baseline will cancel out
the bad influence brought by inaccurate depth value when calcu-
lating the homography matrix Hi(D) as Eq. (4). The algorithm to
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optimize Eq. (8) can be found in [23]. Due to the additional com-
putational expense incurred by spatially-varying scene depth, the
locally-uniform approximation technique [5] is adopted to speed
up optimization.

Image Restoration
To recover the latent image from the blurred observation f2,

we solve the objective function

argmin
f

∥∥∥∥∥ f2(y)−
1
N

k+N−1

∑
i=k

f (H−1
i (D)y)

∥∥∥∥∥
2

+β‖∇ f‖0.8 (9)

which imposes the sparse prior to regularize the solution. The
Projective Motion Richardson-Lucy algorithm [16] can be used to
perform the optimization. Fig. 2(a)-(c) respectively show a syn-
thesized blurry image caused by in-plane camera motion (mainly
large translation), its ground-truth disparity map [14] and the re-
stored image. It is easy to see that the result is not satisfying as
expected. It suffers from ringing artifacts along the region bound-
ary where the depth values of two sides have a large difference.

(a) (b)

(c) (d)

Figure 2. Comparing deblurring results on a synthetic example (a) syn-

thesized blurry image (b) ground-truth disparity map (c) deblurred image by

Projective Motion Richardson-Lucy algorithm (d) deblurred image by our al-

gorithm

One reason behind this problem is attributed to the depth val-
ue ambiguity that occurs near the boundary pixels. When the
shutter is open, a boundary pixel in the latent image may move
from one region with depth value d1 to its adjacent region with
depth value d2 under camera motion. Theoretically each point on
its trajectory is generated by a homography matrix depending on
depth value d1, but in the implementation some homographies are
computed using d2. According to the previous work, to estimate
the value of each transformed image at the pixel location y, the
corresponding pixel x in the latent image f is found by applying

an inverse homography matrix H−1
i (D(y)) on y, i.e.,

x= H−1
i (D(y))y. (10)

However, in terms of the blurring process, the correct inverse
mapping should be

x= H−1
i (D(x))y. (11)

When D(x) is close to D(y), the values of x estimated from E-
q. (10) and Eq. (11) are similar and thus no visible artifacts can
be seen in the restored image. But if translation exists and the d-
ifference between D(x) and D(y) is large enough, severe ringing
artifacts will be generated, as shown in Fig. 2(c).

Since x appears on both sides of Eq. (11), it is difficult to
find a solution directly from it. To address this issue, we propose
to search an “optimal” depth value from a set of sampled depth
values for each pixel near the boundaries. First, discontinuities in
the depth map is detected using a sobel filter, followed by a dila-
tion operation which expands the discontinuous areas to include
most depth-ambiguous pixels. The size of the structure element
is chose to be the maximum kernel size. Fig. 3 shows the result
of the synthesized example. For each pixel in the expanded area,
a set of depth values is created between the maximum and mini-
mum depth values in its neighborhood, marked by a red circle in
Fig. 3(b). The depth values of the pixels in other areas are left
unchanged. In practice, we resort to constructing the set of dis-
parity values first instead of depth values because the depth value
is continuous while the disparity value has already been quantized
in most time. At each camera pose, the optimal depth value as-
signed for computing the homography matrix that maps the pixel
location y on the current image plane to its original location x is
determined by

argmin
d j∈Λ

|d j−D(H−1
i (d j)y)| (12)

where Λ represents the sampled set of depth values. Since search-
ing only involves motion parameters of each camera pose and has
no relation with image intensities, it is a one-pass process.

(a) (b)

Figure 3. (a) binary image that indicates depth discontinuities (b) binary

image after dilation

Let D̂i denote the new depth map updated for camera pose i.
The Projective Motion Richardson-Lucy algorithm is modified as
following:

f t+1(y) = f t(y)+
1
N

k+N−1

∑
i=k

Et(Hi(D)y)+β∇(‖∇ f t‖0.8)
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(a) (b) (c) (d)

Figure 4. Depth-aware motion deblurring on a real image with small depth variation (a) blurred image (b) deblurring result of [22] (c) deblurring result of [20]

(d) our restored image

(a) (b) (c) (d)

Figure 5. Depth-aware motion deblurring on a real image with large depth variation (a) blurred image (b) deblurring result of [20] (c) our restored image using

Projective Motion Richardson-Lucy algorithm (d) final restored image using modified Richardson-Lucy algorithm

(13)

Et(y) = f2(y)−
1
N

k+N−1

∑
i=k

f t(H−1
i (D̂i)y), (14)

Note that new depth maps are only used in inverse mapping. In
forward mapping, we still use the original depth map. Fig. 2(d) is
the deblurred image produced by our modified algorithm. Com-
pared to Fig. 2(c), ringing artifacts have been significantly re-
duced.

Experiments
In this section, we evaluate the proposed deblurring approach

on real images and compare its performance against several state-
of-the-art methods.

The real images along with inertial sensor measurements are
acquired by our designed application running on Google Nexus 5
[23]. The exposure time/ISO values for the captured three images
are respectively configured to 1

330 s/800, 0.3s/100 and 1
330 s/800.

The 3-axis accelerometer and 3-axis gyroscope are polled at the
fastest rate approximately 200Hz. We measured the standard de-
viation of the measurement noise, 0.005rad/s for gyroscope and
0.023m/s2 for accelerometer. In all experiments, the parameters
λ = 100 and β = 0.25 are used.

Fig. 4(a) shows a real blurred image due to hand-shake and
the noisy images captured before and after it have been given in
Fig. 1. Though the scene has small depth variation, the state-
of-the-art deblurring methods based on constant depth does not
work well. Fig. 4(b) is the deblurring result generated by Zhang’s

(a) (b)

Figure 6. (a) estimated disparity map (b) estimated spatially-varying blur

kernels for example in Fig. 5

method [22] that accepts multiple images as input and assumes
the blur kernel is spatially-invariant. Xu’s algorithm [20] can han-
dle spatially-varying blur caused by high-degree camera motion.
However, constant depth assumption makes their algorithm pro-
duce correct rotation component but incorrect translation com-
ponent, resulting in unsatisfying deblurred image Fig. 4(c). In
comparison, scene details at different depths are well recovered
in our restored image, as shown in Fig. 4(d), since the proposed
approach takes depth factor into account.

In the previous example, no visible artifacts can be seen a-
long depth discontinuities in the deblurred image generated by the
traditionally Projective Motion Richardson-Lucy algorithm. To
present the advantages of our modified deconvolution algorithm,
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we consider a scene with large depth variation shown in Fig. 5.
Obviously, the box in the front is more blurred than the box in
the back. Fig. 5(b) and (c) are respectively the deblurring result
of Xu’s algorithm and our approach. We magnified the text re-
gions to better visualize the difference. Due to the same motion
parameters and different deconvolution algorithms, Fig. 5(c) and
(d) are the same everywhere except the boundary regions inside
the magenta rectangle. Fig. 5(c) is restored using the traditional
algorithm while (d) using the modified algorithm. As shown in
the close-up, the ringing artifacts caused by large depth step be-
tween the box in the front and the background is alleviated by our
modified algorithm.

Conclusion
In this work, we have developed an approach for removing

camera motion blur from blurred images taken of scenes with
depth variation. Our approach uses popular smart phones to cap-
ture image data in conjunction with inertial data. No special hard-
ware, such as stereo camera, is required. The relation between
captured images as well as between images and inertial measure-
ments are fully utilized to infer depth map and estimate accurate
motion trajectory. We also presented modification to Projective
Motion Richardson-Lucy algorithm to reduce ringing artifacts a-
long boundaries in the restored image. In the case of scenes with
narrow depth range, our approach is still applicable.

There are two directions of future work. One is to improve
depth map estimation in the second-pass using the deblurred im-
age. Another is the extension to general camera motion.
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