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Abstract
Detecting spoofing compared to a live trait is a critical prob-

lem in the biometric authentication. In this paper, we present a
novel method to detect fake fingerprint attacks based on the en-
semble of image quality assessments (IQAs). The key idea of the
proposed method is to combine quality scores obtained from mul-
tiple local regions, which are input into the linear SVM classifier
to determine whether the given fingerprint is fake or not. One im-
portant advantage of the proposed method is that, in contrast to
previous approaches, it accurately identifies fake fingerprints even
with small partial distortions. Moreover, the proposed method
does not require any additional device. Experimental results on
the mobile device show that the proposed method is effective for
fingerprint liveness detection in real-world scenarios.

Introduction
In recent years, the biometric-based authentication on mobile

devices has gained considerable attention because of their inher-
ent traits. Therefore, various biometric systems have been actively
researched and are now deployed in high-level security systems.
Among the different biometics analyzed, the face and fingerprint-
based user verifications have been most actively exploited for the
mobile applications such as unlock screen and payment. How-
ever, the face-based framework is easily attacked by photographs
and videos simply acquired in the web site (also vulnerable to the
large range of intra-class variation due to diverse poses, illumina-
tions, and expressions) [1] and thus hardly employed for the user
verification on the smartphone. Even though the fingerprint-based
verification is successfully commercialized based on the reliable
performance, it still suffers from malicious spoofing attacks by a
variety of materials, e.g., play-doh, silicon, gelatin, wood glue,
etc. To resolve this problem, the software-based methods start
to be popularly studied. Specifically, Abhyankar and Schuck-
ers [2] focused on the ridge characteristics with the first order
texture information, e.g., entropy, variance, skewness, etc. They
encode these components by utilizing the fuzzy c-means cluster-
ing to discriminate live fingerprints from fake ones. In [3], au-
thors combined the perspiration (i.e., pore characteristics) and
morphological features for fingerprint liveness detection. Jia et
al. [4] proposed to adopt the local binary patterns (LBP) for de-
scribing the difference between live and fake fingerprints. Even
though such texture-based approaches are conceptually simple
and effective when a single image is used, they are vulnerable to
high resolution-based spoofing attacks. Most notably, Galbally et
al. [5] applied the image quality assessment (IQA) for fake bio-
metric detection in a global manner. Specifically, they attempted
to combine full reference-based IQA schemes with no reference-
based ones. However, this method is vulnerable to the local dis-

Figure 1. A simple examples of fake fingerprints (images from the LivDet09
database, which is available at http://prag.diee.unica.it/LivDet09. Note that
some parts of given images are distorted due to different pressures or im-
puroties, which lead to the quality degradation.

tortion due to the nonuniformity of materials as well as variable
pressures since they only consider the quality of the whole image.
Some examples of fake fingerprints are shown in Fig. 1.

In this paper, we present a novel method for fingerprint live-
ness detection based on the ensemble of locally-computed quality
scores. One important advantage of the proposed method is to be
robust to local distortions driven by the surface unhomogeneity of
fake materials as shown in Fig. 2. More specifically, we divide
the given fingerprint image into multiple overlapped blocks and
compute the scores of selected IQAs on each blcok. Then, such
scores are concatenated into a single feature vector, which is fed
into the linear SVM classifier.

Proposed Method
In this section, we explain the proposed method for finger-

print liveness detection in detail. In the state-of-the-art, the ra-
tionale behind the use of IQA features for liveness detection is
supported by two main factors [5]:

• People highly tend to discriminate the live samples from
fake ones based on the “different appearance”. Since the
IQA models intend to estimate the perceived appearance of
given images in an objective and reliable way, they are very
suitable for detecting spoofing attacks especially by the fake
fingerprint.

• IQAs have been successfully employed in the forensic field
such as image manipulation detection [6, 7] and steganaly-
sis [8]. Since making fake fingerprints can be regarded as the
procedure of image manipulation, we can expect that IQA-
based spoofing detection provides the reliable performance
even under attacks based on diverse materials.

Moreover, combining various IQA models leads to exploit com-
plementary image quality properties (e.g., SSQE [12] reveals the
texture characteristics while BRISQUE [10] focuses on the loss
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Figure 2. A simple examples of live and fake fingerprint images captured by the capacitive sensor. Note that the live fingerprint (①) has different quality
compared to the fake one (② and ③).

Figure 3. Overall procedure of the proposed method. Note that we use three IQAs (i.e., K = 3 (BRISQUE, NIQE, SSQE)) for each sub-block in our
implementation. Therefore, the dimension of the feature vector is K×N. C denotes the confidence value for the corresponding image.

of naturalness) and thus detect the quality differences between
live and fake fingerprints expected to be found in many attack
attempts. All the things we observed guarantee that IQA-based
spoofing detection has the plentiful possibilities to achieve suc-
cess in biometric protection tasks.

Overview of the Proposed Method
The motivation of our new approach is to find more effec-

tive way for fingerprint liveness detection under the assumption
that a fake fingerprint image may have locally different quality
compared to a live one due to the acquisition artifacts such as
spots and blurring. It follows that the measure of local quality in
a given image can provide a good approximation to capture the
difference between live and fake fingerprints. Moreover, the im-
age quality assessment (IQA) has been successfully adopted to
detect image manipulation, which can be regarded as a type of
spoofing attacks [5, 7]. From this point of view, we exploit the
ensemble of local quality scores as our features to learn about the
different appearance of live and fake fingerprints.

To do this, we allow for the no-reference IQA models, which
do not require the reference image and thus suitable for mobile ap-
plications. Most of no-reference IQA models estimate the quality
of the given image based on some pre-trained statistical models
(e.g., natural scene statistic [9]). We select three representative
no-reference methods as follows:

• BRISQUE [10] : this method does not compute the
distortion-specific features such as ringing, blurring or
blocking. Instead, it employs the scene statistics estimated

by the generalized Gaussian distribution (GGD) to quantify
possible losses of naturalness in the image due to the pres-
ence of distortions, thereby leading to a holistic measure of
quality.

• NIQE [11] : unlike BRISQUE requiring the knowledge
about estimated distortions in training examples and cor-
responding human opinion scores, this method only makes
use of measurable deviations from statistical regularities ob-
served in natural images without training on human-rated
distorted images (i.e., completely blind). It adopts the patch-
based GGD scheme to evalute the image quality.

• SSQE [12] : this model utilizes the entropy obtained from
both spatial and spectral domains for estimating the image
quality. For the spectral entropy, they compute the block-
based DCT coefficients, and subsequently conduct the fea-
ture pooling for the prediction of the quality scores.

It is worth noting that combining those IQAs is desirable to com-
pletely represent traits of live and fake fingerprints obtained from
both spatial and spectral domains with the multiscale analysis.
Moreover, the opinion-aware quality measure also can be re-
flected in this scheme. The summary of each IQA employed in
our implementation is shown in Table. 1. In the following sub-
section, we will explain the proposed ensemble scheme of local
quality scores in detail.

Ensemble of Local Quality Scores
The proposed local quality-based liveness detection is sum-

marized as follows: first of all, we divide the given fingerprint im-
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Figure 4. Overall procedure of the proposed method (late-fusion scheme). For this, we train sub-learner for each sub-block in our implementation. Therefore,
the dimension of the feature vector is N. C denotes the confidence value for the corresponding image. Note that it requires more training phases compared to
the early fusion shown in Fig. 3 even though this scheme tends to yield better performance.

Table 1. List of three image quality assessment (IQA) models in the present work for fingerprint liveness detection

Type Acronym Name Description
1 NR BRISQUE Blind/Referenceless Image Spatial

Quality Evaluator
Modeling distributions of normalized pixel intensities with
the generalized Gaussian model (GGD) with its neighbor
relationships

2 NR NIQE Natural Image Quality Evaluator Collecting quality-aware features and fitting them into a
multivariate Gaussian (MVG) model

3 NR SSEQ Spatial Spectral Entropy based
Quality

Predicting scores by pooling entropy features computed
from the spatial and spectral domain (particularly based
on the DCT coefficients)

NR : no-reference image quality assessment models

age into N overlapped sub-blocks with the size of W ×H pixels
(see Fig. 3). Then, we compute the scores of three no-reference
IQA models, i.e., BRISQUE [10], NIQE [11], and SSEQ [12],
on each sub-block. Since the human visual system (HVS) does
not require a reference sample to determine the quality of a given
image, we just follow this assumption for our IQA-based spoofing
detection scheme. More specifically, BRISQUE simply adopts
the normalized luminance information without any feature trans-
formation (e.g., DCT, wavelets, etc.) to measure the “naturalness”
in the spatial domain. The relationship between pixel intensities
are modeled by utilizing the generalized Gaussian model (GGD)
(i.e., it requires the training phase) and the quality score is finally
computed based on the support vecotr machine (SVM) regres-
sor [13]. NIQE defines the natural scene statistics (NSS) based
on the intensity-based statistical information (e.g., mean and vari-
ance) obtained from local patches of a given image. These fea-
tures are fitted into the multivariate Gaussian (MVG) model and
yield the quality score by using parameters of MVG as follows:

D=

√

((v1−v2)T
(

σ1+σ2
2

)

−1
(v1−v2), (1)

where v1,v2 and σ1,σ2 are the mean vectors and covariance ma-
trices of the natural MVG model and the distorted one. It is worth
noting that NIQE does not require any training phase and thus
called “double-blind”. Finally, SSEQ allows the spatial-spectral
entropy for assessing the quality of a distorted image across mul-
tiple distortion categories. It divides the given image into non-
overlapped M×M blocks (e.g., M = 8) and compute the spatial
entropy and spectral one utilizing DCT coefficients as follows:

Es =−∑
x
p(x)log2p(x), (2)

E f =−∑
i

∑
j
p(i, j)log2p(i, j), (3)

where p(i, j) = C(i, j)2
∑i∑ jC(i, j)2

andC denotes the matrix of DCT coef-
ficients. x indicates the pixel value with the empirical probability
density p(x), which is defined based on the intensity distribution
in the local patch. Feature pooling is conducted by using values
of spatial and spectral entropies to predict the quality scores. Note
that other no-reference IQA models also can be involved into our
ensemble scheme without any additional task.
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Figure 5. Performance evaluation. (a) Distributions of confidence values computed from the linear SVM classifier. Note that some significant falsely detected
scores occur in the previous method [5] (see the circled regions). (b) ROC curves for the performance comparison (best viewed in colors). We can see that the
proposed method has an ability to provide the reliable fake detection performance with the high accuracy at the low-level of the false positive rate.

The corresponding results (i.e., scores from BRISQUE,
NIQE, and SSEQ) are concatenated on each block and formu-
lated as follows:

F= (f1, f2, · · · , fN), where fi = (SBi ,SNi ,S
S
i ). (4)

Here SB,SN , and SS denote the scores of BRISQUE, NIQE, and
SSEQ in the ith sub-block, respectively. Therefore, the feature
dimension is set to N× 3 in our method. The feature vector F
is fed into the linear SVM classifier to learn about the differ-
ence between live and fake fingerprints. The overall procedure
of the proposed method is shown in Fig. 3. Furthermore, the pro-
posed approach can be efficiently incorporated into the late-fusion
scheme. That is, a single score of each block, which is driven by
BRISQUE, NIQE, and SSEQ, respectively, is separately trained.
The corresponding confidence values can be concatenated and de-
fined as our feature, which is fed into the linear SVM classifier
once again. Note that the late-fusion scheme is apt to yielding
the slightly better performance in visual recognition tasks [14],
however, it requires more training phases as mentioned, which is
time-consuming. The overall procedure of the late-fusion based
scheme is shown in Fig. 4. It should be emphasized that our focus
is not to design the IQA models but to efficiently combine their
scores.

Experimental Results
In this section, we demonstrate the performance of the pro-

posed method based on our fingerprint liveness (SFL) dataset.
The SFL dataset is constructed by utilizing the capacitive-based
fingerprint sensor under real-world situations. For generating the
fake fingerprint, we attempt to combine the wood glue with the
graphite, and thinly cut the surface of the fingerprint. Since play-
doh and silicon hardly transfer the electric signals, those are not
suitable for our experiments. In the SFL dataset, 324 fingerprints
(live: 162 images / fake: 162 images) were collected for train-
ing while the test dataset comprised 429 fingerprints (live: 162
images / fake: 267 images). It should be noted that these are mu-
tually exclusive. Based on the extensive experiments, we divide

Table 2. Performance comparison of fingerprint liveness de-
tection on the SFL dataset

Method Live Fake Accuracy
Global IQA [5] 130/162 259/267 90.68%
Proposed 157/162 247/267 94.17%

Table 3. Detection accuracy at the FAR = 1%

Method Global IQA [5] Proposed
FAR=1% 78.40% 95.68%

the fingerprint image into 10 sub-blocks with the small amount of
the overlap area (i.e., N = 10 in (4) with the 8-pixel overlap).

For the quantitative evaluation, we compare the proposed
method with the most competitive approach in the literature [5]
based on the early fusion scheme as shown in Fig. 3. The cor-
reponding results are shown in Fig. 5 and Table 2, respectively.
Specifically, we first show the confidence value of the linear SVM
classifier for both methods in Fig. 5(a). As can be seen, the previ-
ous method often fails to detect the live fingerprint while the pro-
posed scheme provides more reliable results for fingerprint live-
ness detection. The correponding ROC curves are also shown in
Fig. 5(b). The detection accuracy is shown in Table 2 in detail.
We can see that the proposed method has an ability to accurately
discriminate fake fingerprints from live ones even with the pres-
ence of small distortion parts. In addition, we also check the per-
formance at the level of 0.1 false positive rate (i.e., FAR = 1%)
and the comparison results are shown in Table 3. Since the pro-
tected system requires high-level security, anti-spoofing methods
need to strongly reduce falsely accepted cases. Therefore, it is
thought that our approach can be efficiently applied to various
mobile applications. Some examples of misclassification on our
SFL dataset are shown in Fig. 6. Note that these two cases are
hardly discriminated from each other based on the image quality.
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Figure 6. Some examples of misclassification on the SFL dataset. (a) Live
but falsely detected as fake. (b) fake but falsely detected as live. Note that
thses two cases are hardly discriminated from each other.

Discussion
In order to improve the detection performance, full-reference

IQA models, which require both live and fake fingerprint images
simultaneously, can be incorporated into the proposed framework.
Since users generally enroll their “live” fingerprints for the smart-
phone, we can reliably construct the spoofing-free model based
on such enrolled information. When fingerprint images are in-
put to the device, the proposed method may attempt to detect
whether a given image is live or fake based on the stored spoofing-
free model. In this point of view, we can employ a variety of
full-reference IQA models, e.g., from simple difference-based
metrics (MSE [15], PSNR [16], maximum difference [17], total
edge difference [18], etc.) to the structured metrics (SSIM [19],
VIF [20], and RRED [21]), with our main features (i.e., scores
from BRISQUE, NIQE, and SSEQ). However, full-reference
IQA models require the additional memory space and thus we
need to consider the combining strategy for the memory-limited
environment of the mobile device in a very efficient way. To al-
leviate this problem, we can allow for the alternative combina-
tion scheme, i.e., full-reference IQA models computed in a global
manner while our features are obtained from local patches.

Conclusion
A novel method for fingerprint liveness detection has been

proposed in this paper. The key idea behind the proposed ap-
proach is that the difference between traits of live and fake finger-
prints is well revealed in a quality-aware manner. To this end, we
first divide the given image into multiple sub-blocks and compute
the quality scores by exploiting three representative image quality
assessment (IQA) models. By concatenating those quality scores,
we define our feature vector, which is fed into the linear SVM
classifier. Experimental results show that the proposed method
successfully discriminates fake fingerprints from live ones. Our
future work is to incorporate full-reference IQA models into the
proposed framework without the significant increase of the mem-
ory usage.
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