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Abstract

We recently introduced a spectral filter array design for
single-shot multispectral imaging that is based on Fourier trans-
form spectroscopy. In this article, we investigate feasibility of
guided filter demosaicking for our SFA design.

Introduction

Conventional colorimetric image sensors capture red, green,
and blue samples. Multispectral image (MSI) system capture
more than three spectral components with the goal to detect, iden-
tify, or track objects based on their spectral characteristics. Draw-
ing on the success of the color filter array (CFA) in conventional
cameras, spectral filter arrays (SFA) have been proposed as a
single-shot MSI solution [1, 2, 3, 6, 5, 4]. Specifically, N pre-
determined spectral filters are spatially multiplexed over the pixel
array. An interpolation step (known as demosaicking) is needed to
recover a full resolution multispectral image. Most existing SFA
designs use narrowband filters that make measurements over a
small interval of wavelength/wavenumber ranges. However, ques-
tion remains as to whether narrowband samples faithfully repre-
sent spectral features such as the wavelengths at which spectral
peaks and attenuation occur.

We recently proposed a novel MSI based on Fourier trans-
form spectroscopy [10], aimed at presenting the spectral features
of interest with fewest spectral samples. Appealing to the fact
that each interferometric measurement is equivalent to taking in-
ner product between a sinusoidal function and the full spectrum in
the wavenumber domain, we replaced the narrowband filter with
broadband filters whose transmittance follows sinusoidal shape,
a process by which we obtain interferometric measurements at
every pixel. We proved that Fourier spectroscopy-based MSI pre-
serves spectral features more accurately than the narrowband MSI
[11], and proposed spatial arrangements of SFA using these sinu-
soidal filters (hereafter referred to as Fourier SFA) [10]. In our
earlier work, less emphasis was placed on the demosaicking pro-
cedure. In this paper, we investigate the feasibility of repurposing
demosaicking method in [5] for the Fourier SFA pattern in [10].

Fourier Spectral Filter Array Design

Spectral imagery is typically represented as a three di-
mensional cube, where two dimensions are associated to pixel
coordinates and one dimension is in wavelength/wavenumber.
Figure 1(a) illustrates a typical hyperspectral image in space-
wavenumber representation X (n,0), where n € 72 is the pixel in-
dex and & is the wavenumber index. Since X (n,0) is a high band-
width data for all 6 € (Oyin, Omax) values, it is difficult to deter-
mine which narrowband filter sets should be chosen for MSI. By
comparison, the interferometric measurements in Fourier trans-
form spectroscopy are sampled in the optical path difference
(OPD) domain. A forword Fourier transform is applied to the
OPD samples to yield spectral data in wavelength/wavenumber
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domain. Figure 1(b) shows hyperspectral image in space-OPD
domain:

X(n,¢) = /R X(n,0)e 7%, (1)

which has the same pixel index n and the corresponding OPD
index §. The representation in X (n,{) enjoy a rapid decay in
signal strength as § increases. This phenomenon suggests that
sampling in OPD domain would result in optimal MSI capture
with minimal loss in spectral fidelity. In [10], we proposed a five
band SFA pattern shown in Figure 2(a) designed to minimize the
risk of aliasing stemming from spatial-spectral under-sampling.
The measurements taken by these filters can be represented by

A(n) X(nvgl)

B(n) X(n,&)

Cn)| =M |X(n,03) |,

D(n) X(n7C4

E(n) X(n,&s)
1 0 0 0 0
og(&1) 6p(&) 0B(G) B(L4) OB(Cs)

M= 6c(&1) 0c(&) 6c(&) o6c(&) dc(Cs) |, @

op(C1) 6p(&) 6p(&3) dp(8s) 6p(ls)
Op(61) Op(&) Or(&) Oe(l4) Op(ls)

where {A(n),...,E(n)} are the sensor measurements from fil-
ters A-E, X (n, §;) are the OPD samples, and {0p({y), ..., 0 (&)}
represents the contribution of OPD sample X(n,{;) to
{B(n),...,E(n)}, respectively. Specifically, a spectral image cap-
tured by this SFA results in SFA-sampled data

A(n) ifney
B(n) ifneAp
Z(n)=C(n) ifneAc 3)
D(n) ifneAp
E(n) ifne Ag

where A4, ...,Ap C Z2 correspond to locations of filters A — E in
Figure 2(a). The key contribution of our prior work in [10] is the
way to choose {8(§), -, 8 (&)} in (2) and Ay, ...,Ap C Z2 in
(3) such that the risks of aliasing is small. Indeed, the compos-
ite image Z(n) yields spatial Fourier decomposition that approxi-
mately decouples OPD samples, as shown in Figure 2(b).

Guided Filter Demosaicking and Spectrum
Recovery

The authors of [5] proposed a demosaicking method called
guided filter demosaicking used on the narrowband SFA pattern

VIPC-228.1



©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.2.VIPC-228

= large o

small { < (b) Space-OPD representation X (n, {). = large {
Figure 1. Hyperspectral image signal in various forms of representation.
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Figure 2. (a) Fourier SFA [10]. (b) Spatial Fourier transform of the Fourier SFA-captured sensor data. The color represents various OPD measurements. (c)

Spectral transmittance of filters in (a). (d) Narrowband SFA in [6]. (e) Spectral transmittance of narrowband filters in (d).

in [6] shown in Figure 2(d). In this paper, we exploit the fact
that the resultant Fourier SFA pattern share similarity with the
narrowband SFA of [6].

Specifically the proposed Fourier SFA pattern has 5 broad-
band filters spatially arranged in the same pixel positions as the
narrowband SFA, even through the pattern was designed based
on its spatial Fourier decomposition as illustrated by Figure 2(b).
The spectral transmittance is quite different, however. Filters B-
E in Figure 2(c) are linear combinations of a few OPD samples.
We investigate the feasibility of the repurposing demosaicking al-
gorithm in [5] intended for a SFA pattern in [6] to demosaick
the proposed Fourier SFA pattern in [10] to recover complete
measurements {A(n),...,E(n)} from Z(n). We subsequently use
{A(n),...,E(n)} to reconstruct OPD samples X (n,{), and then
the spectrum X (n,0). In our pattern in [10], filter A is designed
as a panchromatic filter shown in Figure 2(c). Because the filter
A spans half of the sampling density in the Fourier SFA pattern,
the filter A-sampled data is chosen to generate the guide image.
In this original form as developed in [5], the guide image-based
demosaicking result from filter B takes the form

B(n) = p(n)A(n) +g(n), )

where B(n) is the demosaicking output, A(n) = X(n, ;) is the
intensity of the guide image, and (p(n),q(n)) are demosaicking
coefficients. {C(n),...,E(n)} are recovered similarly. The coeffi-
cients (p(n),q(n)) are determined by minimizing reconstruction
errors of the known pixel values in Ag within a neighborhood W,
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near n where B-filtered measurement are made:

(p-A(m)+q—Z(m))*+ep*
meW,NAg

(p(n),q(n)) = argrggl

(6))

where € is a smoothing parameter. However, (2) suggests that
A(n) =X (n,{)) is already mixed into {B(n),...,E(n)}:

B(n) = 8p(51)A(n) +6p(82)X (n, &) + ...+ 65(&5)X (n, §s). (6)

Hence we propose to modify the guide image-based demosaick-
ing as follows:

(p(n),q(n)) =argn’;iqp ZV,V ((P+88(¢1)) - A(m) +G—Z(m))*
+ep?,

)

This essentially subtracts away 8g({;)A(n) from the filter mea-
surement Z(n)—p? should be smaller than p?, and the demo-
saicking coefficients should be more accurate and stable as a re-
sult. The demosaicked image is:

B(n) = p(n)A(n) +4(n), ®)

which is a proxy for a guide image-based estimate for B(n) —

85(&1)A(n). The same process is also applied to {C(n), ..., E(n)}.
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Figure 3. Color images rendered frc(Jm)hyperspectral data. (a) and (b): ground truth and the spectrum reconstructi(OZI compassion, what the color boxes in (a)
indicate where they are sampled. The blue line is ground truth; the red line is the Fourier SFA using demosaicking methods in [5] ; the pink line is Fourier SFA
using demosaicking methods in [10]; the green line is SFA in [6] using PCA spectrum recovery; and the black line is SFA in [6] using cubic interpolation spectrum
recovery. (c) and (d): reconstructed from Fourier SFA using demosaicking methods in [5] and [10], respectively. (e) and (f): reconstructed from SFA in [6] using
demosicking method in [5] with PCA and cubic interpolation spectrum recovery, respectively.
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Mean squared errors (MSE) and execution times of of recovered hyperspectral image averaged over 73 image set in [9].

SFA Pattern

Fourier SFA [10]

Narrowband SFA [6]

Demosaicking Method

Guided Filter [5] [ Demodulation [10]

Guided Filter [5]

Spectrum Recovery Method

Fourier Transform [10]

PCA8] [ Cubic Interpolation

Average MSE 7.23E-48 1.00E-47 7.45E-48 9.84E-48
Min MSE 3.23E-49 6.12E-49 6.45E-49 7.80E-49
Max MSE 1.51E-46 1.52E-46 1.16E-46 1.96E-46
Stdev MSE 1.82E-47 2.07E-47 1.40E-47 2.34E-47
| Average execution time (sec) || 600 400 | 162000 | 1800 |
Combining 2 and 7, OPD samples X (n,{) and demosaicked im- Substituting (10) and (11),
age {A(n),B(n),C(n),D(n),E(n)} are related by:
A(n) A(n) X(n,C1) r(n) #o)] |2 21 ¢ ' %E:%
B(n) B(n)— 85(£1)A(n) X(n,&) g(n) :AC/ 3(o) eost .n 20 " Cn)| do
C(n)| = [C(n)=6¢c(C1)A(n) | =N |X(n,G3) |, b(n) R 1b(c : D(n)
D(n) D(n)—8p(&1)A(n) X(n,84) 2cos(2mls50) E(n)
E(n) E(n)—8¢(81)A(n) X(n,Cs)
A(n)
where B(n)
1 0 0 0 0 =T |C(n) (13)
0 (&) 68(83) (&) BB(Cs) D(n)
N=|0 6&(&) 6c(l3) 6c(la) 6c(Ss) [, O E(n)
0 6p(%) 6p(CG) 6p(Cs) p(ls)
0 (&) 6e(G) 6e(8s) Oe(ls) where T € R3*5,
and 0p (&) represents the contribution of OPD sample X (n, ;) in 1 T
B(n), etc. We recover the OPD samples {X(n,{;),....,X(n,{s)} 70)] | cos(2ntr0)
by linearly uncombining the OPDs in demosaicked images T=AC / (o) ' 2 do | N1 (14)
{A(n), B(n),C(n), D(n),E(n)} by: R |3o) :
X(n,01) A(n) cos(2ns0)
X(”vCZ) § n) T 3%5 . .. .
_ a1 The multiplication by 7 € R”°* is a minimal computational over-
X(n.G)) =N"7|Clm) . (0 | cad, far less demanding th tructing the full spect
X(n,&) B(n) ead, far less demanding than reconstructing the full spectrum.
X(n,Gs) E(n)

Finally, the space-wavenumber image X (n,0) is reconstructed by
taking Fourier transform of the recoverd OPD samples:

X(n,0) = [ X(n,0)ePCug
~ [ ATY X (n.8)8 (5~ GoeRmeat
: k

=A{X(n,81)+2A8 ) X(n,§) cos(2n40),
x

amn

where A{ is the spacing between OPD samples §; and §; 1.

Fast Rendering of Color Image

Although the goal of proposed Fourier SFA scheme is to
reconstruct the hyperspectral image, RGB image can be re-
covered with minimal computation. Recall tristimulus val-
ues {r(n),g(n),b(n)} is computed by an inner product be-
tween the spectrum X (n,0) and the color matching functions

{r(0),8(0),b(0)}:

i / fo)| Zin o
n)| = g(o)| X(n,0)do (12)
i(n) K §(6>
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Simulated Experimental Results

We compared demosaicking of [5] repurposed for Fourier
SFA to a simpler demodulation-based demosaicking used in [10].
For simulation, we used hyperspectral data in [9] comprised
of 31 narrowband measurements in 420nm-720nm range over
1040x 1392 pixels. The color artifacts are observed in the de-
mosaicking result of [10] in Figure 3(d) are significantly reduced
by the guided filter demosaicking result in Figure 3(c). As shown
in Table 1, the mean squared error (MSE) values computed in
the wavelength domain also suggest significant improvement. We
also compared against the narrowband SFA in [6] with the same
guided filter demosaicking in [5], where the spectrum was recon-
structed using cubic interpolation through the filters’ center wave-
length shown in Figure 3(f) and by nonnegative projection onto 8
principal component analysis (PCA) vectors (as described in [8]
which the authors of [6] follow) trained over the data set in [9]
shown in Figure 3(e). The narrowband SFA reconstruction based
on cubic interpolation was far worse than the proposed combina-
tion of Fourier SFA and guided filter demosaicking, even though
the complexities are comparable to ours. The quality of hyper-
spectral image reconstructed from narrowband SFA with nonneg-
ative PCA projection was comparable to the proposed Fourier
SFA scheme, though the method in [8] was far more complex.
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The last row of Table 1 summarizes the execution time for
the algorithms considered using Matlab 2015a running on Mac
Pro (3.7 GHz Quad-Core Intel Xeon E5 and 64GB RAM). The
complexity of proposed configuration (combining Fourier SFA
with demosaicking in [5]) is comparable to the Fourier SFA de-
mosaicking of [10]. The proposed configuration is faster than
the combination of SFA in [6], guide image demosaicking in [5],
and cubic interpolation. The nonnegative PCA projection method
in [8] is clearly the computational bottleneck. Contrast this also
to the fast color image rendering technique proposed in (13) and
(14), which averages 10 second execution time.

Conclusions

We proposed to combine demosaicking method of [6] with
Fourier SFA pattern [10]. It improved the accuracy of spectrum
reconstruction over the demosaicking used in [10] as well as nar-
rowband SFA design of [6]. The speed of the hyperspectral image
recovery was significantly faster because of the linear reconstruc-
tion of X (n, &) from demosaicked images.
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