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Abstract. With the introduction of compressed sensing (CS)
theory, investigation into exploiting sparseness and optimizing
compressive sensing performance has ensued. Compressed
sensing is highly applicable to images, which naturally have
sparse representations. Improvements in the area of image
denoising have resulted from the combination of highly-directional
transforms with shrinkage and thresholding techniques along
with imposition of a model to account for statistical properties of
images. Using this approach, statistical modeling of dependencies
in the transform domain is incorporated into high-performance and
efficient state-of-the-art CS image reconstruction algorithms with
highly-directional transforms incorporating redundancy and bivariate
shrinkage and thresholding to further refine image reconstruction
performance improvements. Additionally, hierarchical structural
dependency modeling is incorporated to account for parent–child
coefficient relationships. These techniques exploit hierarchical
structure and multiscale subbands of frequencies and orientation,
exploiting dependencies across and within scales. Additionally, these
techniques are incorporated with minimal additional CPU execution
time into block-based CS (BCS) algorithms, which are known
for their efficient and fast computation time. Experimental results
show increased refinements of image reconstruction performance
over current state-of-the-art image reconstruction algorithms,
particularly at the higher CS ratios (lower sampling rates) of interest
in compressed sensing. c© 2015 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2015.59.6.060406]

INTRODUCTION
Compressed sensing (CS) theory shows that it is possible
to defy the Nyquist Sampling Theorem and still recover
complete signal information in signals with sparse represen-
tations in some transform domain.1,2 The Nyquist Sampling
Theorem presents required minimum sampling limits based
on signal band limitedness. However, compressed sensing
shows that data and signals in many real-world problems
(composed of sparse non-linear mixtures) can be accurately
represented by sparse representations. Indeed, application of
compressed sensing in imaging, video, and audio applica-
tions has been advantageous due to the fact that most images
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and video and audio recordings of practical interest have
sparse representations in a transform domain.

Given the ability to recover information from a non-
linear mixture, compressed/sparse sensing is a promising
area to explore the addressing of optimization of signal re-
construction based on accounting for variable dependencies
in a non-linear signal. Initial compressed sensing recovery
techniques assumed that the sparsity transform coefficients
were independently distributed, and these techniques did
not exploit dependencies between transform coefficients
to improve recovery performance. More recently, some
algorithms have been proposed to exploit some variable
dependencies for improved compressed sensing recovery.
To efficiently exploit variable dependencies, the nature and
characteristics of the dependencies need to be accurately
accounted for. This article proposes to apply theoretical
properties of highly-directional and redundant transforms,
and the optimized structural and statistical modeling of
dependencies, in the reconstruction algorithm to improve
image reconstruction and feature optimization in the pres-
ence of non-linear mixtures.

Hierarchical structure in the transform domain of the
Discrete Wavelet Transform (DWT), Dual-tree Discrete
Wavelet Transform (DDWT) and Contourlet Transform
(CT) is exploited by incorporatingmodeling of dependencies
between parent and associated child coefficients using statis-
tical properties shown to accurately model variable depen-
dencies in images. These statistical properties are also used
to model dependencies within intra-scale neighborhoods
of transform domain coefficients for the DWT, DDWT,
Discrete Cosine Transform (DCT) and CT Block-based
Compressed Sensing (BCS) Smoothed Projected Landweber
(SPL) algorithms. Although some previous algorithms have
applied statistical modeling in the transform domain to
improve image reconstruction performance, as discussed in
our previous published research,3 the proposed combination
of structural and statistical modeling with application of
highly-directional transforms and thresholding and shrink-
age techniques shows that the combined application of these
techniques provides improved image reconstruction results.
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BACKGROUND
The goal of compressed sensing is to find sparse solutions
given compressive linear measurements. For example, un-
dersampled linear measurements b ∈ RM obtained by an
undersampled imaging system can be expressed as

b=89−1x, (1)

where
x=9y ∈RN (2)

denotes sparse transform coefficients of the vector image
y ∈ RN and the CS matrix is composed of an M × N
compressive measurement matrix 8 and the inverse of a
sparsity transform 9−1 (such as DWT or Discrete-Cosine
Transform), whereM�N .1,2,4,5

A fundamental criterion for compressed sensing per-
formance is sparsity of signals in the transform domain.
For an S-sparse signal, coefficients are represented as S
non-zero entries (with the remaining entries set to zero). An
S-compressible signal is sufficiently approximated by the S
largest coefficients. Exact signal recovery can be achieved if
an N -dimensional signal is S-sparse and if the number of
incoherent linear measurements follows

M ≥O(S log(N/S)). (3)

An additional condition for compressed sensing is the
Restricted Isometry Property (RIP), which is an incoherence
condition for the sensing matrix used to acquire the mea-
surements.6 This guarantees an approximately orthonormal
projection for any S-sparse signal. Given signal sparsity
and the RIP, signals can be reconstructed from noisy
measurements by solving the l1 minimization problem:

arg min
x
‖x‖1 such that ‖b−89−1x‖22 ≤ ε,

where the lP norm is defined as

‖x‖P =

(∑
i
|x(i)|P

)1/P

. (4)

By solving the l1 minimization problem, it becomes a
constrained optimization problem. A penalty function is
utilized with a Lagrangian multiplier λ:

‖b−89−1x‖22+ λ‖x‖1, (5)

where the regularization parameter λmodulates the relative
importance between data consistency and the l1 norm
penalty.

The CS reconstruction problem is the regularization of
the inverse problem:

y=9−1x. (6)

Energy compact representations provided by transforms
typically yield compressible representations of signals, which
allows application of CS Theory to a diverse set of signals.

Compressed sensing reconstruction algorithms are usu-
ally iterative. They use the previous signal estimate in conse-

quent reconstruction to identify significant coefficients. They
implicitly or explicitly introduce weights, which are often
based on the magnitude of the former signal estimate. Early
CS reconstruction algorithms typically do not exploit nor
account for signal dependencies between coefficients. They
typically set:

wk(i)= 1/|xk−1(i)|, (7)

where wk(i) denotes a weight associated with the wavelet
coefficient xk(i) and xk−1(i) denotes the wavelet coefficient
at iteration k− 1.

The Iterative Hard-Thresholding (IHT) compressed
sensing reconstruction algorithms, of interest herein, solve
the S-sparse problem7,8

arg min
x
‖b−89−1x‖22 such that ‖x‖0 ≤ S, (8)

using the iterative algorithm

ẍk = ẋk+ (1/γ )98T (b−89−1ẋk)

ẋk+1
=

{
ẍk, |ẍk| ≥ τ (k);
0, otherwise,

(9)

where γ is a scaling factor and τ (k) is a threshold set
appropriately at each iteration. Haupt and Nowak in Ref. 9
use the largest eigenvalue of 8T8 to set the scaling factor
γ . Techniques based on projections form ẋ by successively
projecting and thresholding. It is noted that Projected
Landweber (PL) algorithms of the IHT class provide reduced
computational complexity.

Lu and Do,10 Blumensath and Davies,11 and Baraniuk
et al.12 have shown theoretically that it is possible to
substantially decrease the number of measurements needed
for robust recovery in CS by incorporating more realistic
signal models into signal recovery. More recently, some
algorithms have incorporated structural dependency models
into algorithms, and these have, indeed, yielded improved
image reconstruction. For single image reconstruction (for
modeling dependencies within the single image, which can
vary highly in regard to correlation between ‘neighbors’), the
BCS-SPL-DWT, BCS-SPL-DDWT, BCS-SPL-DCT and BCS-
SPL-CT algorithms,13 particularly the BCS-SPL-DDWT,
BCS-SPL-DCT and BCS-SPL-CT versions, appear to out-
perform many other proposed CS image reconstruction
algorithms.3 In addition, the BCS-SPL algorithms as a whole,
being block-based, tend to execute ∼1.5 to 110 times faster
than other algorithms based on published CPU execution
times.3,13 Therefore, the enhanced algorithmic modification
proposed herein was applied to these four state-of-the-art
algorithms.

Additional considerations for optimizing CS recon-
struction can be gained from related research in image
denoising. In image denoising, one successful technique has
been to apply spatially adaptive wavelet thresholding with
context modeling.14 In addition, significant improvement
comes from the use of representations with a higher
degree of redundancy, as well as increased selectivity in
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orientation.15–18 It is also noted that denoising solutions
(such as estimating local signal variance and then applying
the standard linear least squares (LLS) solution) can be
substantially more powerful when applied in a multiscale
oriented representation.15,19–23 Also, solutions based on
Gaussian-scale Mixtures (GM) models, with different prior
assumptions about the hidden variables, have produced some
of the most effective methods for removing homogeneous
additive noise from natural images to date.24

This article proposes to explore further optimization
of reconstruction algorithms by applying these theoretical
principles, and the structural and statistical modeling of
dependencies, in the reconstruction algorithm to improve
image reconstruction and feature optimization in the pres-
ence of non-linear mixtures.

TECHNICAL APPROACH
In the wavelet transform domain of natural images, the
amplitudes of coefficients in similar positions, orientations,
and scales are highly correlated. These higher-order de-
pendencies, as well as the higher-order marginal statistics,
may be modeled as Gaussian distributions with a hidden
Markov model (hidden random variable). This can be char-
acterized by Gaussian-scale Mixtures, which can account for
both marginal and pairwise joint distributions of wavelet
coefficients.25,26 Gaussian-scale Mixtures (GM) densities
are symmetric and zero-mean, and they have leptokurtotic
marginal densities (i.e., heavier tails than a Gaussian). They
represent an important subset of the elliptically symmetric
distribution, which are those that can be defined as functions
of a quadratic equation norm of the random vector.

Our approach to optimization is to incorporate
optimized structural and statistical image dependency
characteristics into the compressed sensing reconstruction
algorithms to optimize reconstruction performance. This
will account for variable dependencies and optimize
performance of compressed sensing for many real-world
applications, including image processing, particularly in
regard to reconstruction of natural images with random-
appearing/complex dependencies.

We focus on highly-directional sparsifying transforms,
an overcomplete tight frame representation, and the Bayes
Least Squares-Gaussian-scale Mixtures (BLS-GM) model
and hierarchical structural dependency modeling to model
dependencies and optimize reconstruction of images. Spar-
sifying transforms, such as the Discrete Wavelet Transform
(DWT), the Dual-tree DWT (DDWT), the Discrete Cosine
Transform (DCT), and the Contourlet Transform (CT), are
used for spatial dependencies such as in natural images
and provide multiresolution and local characteristics of the
signal. Highly-directional transforms such as the DDWT
and CT are utilized, which have significant directional
selectivity and redundancy, with the DDWT, taken as a
whole, being a redundant tight frame. This can exploit
hierarchical structure and multiscale subbands of frequency
and orientation, exploiting dependencies across and within
scales. Bayes Least Squares-Gaussian-scale Mixtures (BLS-
GM) accurately describe statistical dependencies of wavelet

coefficients in images,24 and, therefore, can be incorporated
to further address dependencies and optimize performance.
Furthermore, hierarchical structural dependencies between
parent- and child-coefficients as well as neighborhood
coefficients in the transform domain are incorporated within
the model.

As discussed, one of the best-performing state-of-
the-art algorithms is the Block-based Compressed Sens-
ing Smoothed Projected Landweber (BCS-SPL),13 which
employs smoothing and the bivariate shrinkage method.
The BCS-SPL-DDWT and BCS-SPL-CT also employ highly-
directional and redundant transforms.

We utilize a Bayes Least Squares-Gaussian-scale
Mixtures (BLS-GM) model and hierarchical structural
dependency modeling within the BCS-SPL-DWT, BCS-SPL-
DDWT, BCS-SPL-DCT and BCS-SPL-CT algorithms to
model the statistical dependencies of wavelet coefficients
in the sparsity domain. This enhanced modeling of the
wavelet coefficients further accounts for the dependencies
between neighboring coefficients and enhances the detection
of features and image reconstruction. In particular, more
significant coefficients are given additional weight, thereby
emphasizing and enhancing features and boundary/edge
detection.

We incorporate this model into algorithms through the
iterative application of weights in the transform domain by
(1) computing an intermediate signal estimate, and then
(2) updating/pruning the signal estimate by computing and
applying weights, based on the previous signal estimate
(wavelet coefficients) and on the BLS-GM model and
hierarchical structural dependency modeling. This incorpo-
rates structural and statistical dependencies of neighboring
coefficients within the sparse transform domain.

The neighborhood is defined as the spatially-adjacent
coefficients in the same subband (v1, . . . , v8) (for a 3× 3
neighborhood) as well as the parent coefficient (vp) at the
next coarser scale of the wavelet decomposition:

v= [v1, . . . , v8, vp]T . (10)

The Bayes Least Squares (BLS) estimate of the center
coefficient (vc) can be derived by modeling the local cluster
as a Gaussian-scale Mixture:

v d
=
√
zu, (11)

where d
= indicates equality in distribution, u is a zero-mean

Gaussian vector and z is an independent positive scalar
random variable (known as themultiplier), where the density
of v is determined by

pv(v)=
∫

p(v | z)pz (z)dz . (12)

In Gaussian-scale Mixtures the conditional density of v
given z is also Gaussian, therefore the density of v is an
infinite mixture of Gaussians with a mixing density pz (z).
GM densities are symmetric and zero-mean, and they have
leptokurtotic marginal densities (i.e., heavier tails than a
Gaussian). The scalar z acts as a local variance of a set of
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highly correlated coefficients by modulating their values.
This enables the GM model to accurately characterize the
high-kurtosis nature of the wavelet coefficient marginals
in images.25 Therefore, the BLS-GM model captures local
dependencies between neighbors in similar locations, scales,
and orientations, and is particularly suited for capturing
dependencies in images, here utilized in the sparsity domain.

Noisy observations can be given by

y= v+ e=
√
zu+ e, (13)

where e denotes the noise vector. Given that u and e are
independent, zero-mean Gaussian vectors with covariance
matrices Cu and Ce, respectively, the random variables u, z ,
and e are independent. Under these conditions, an estimate
of a coefficient vc in the center of a particular observed
neighborhood y is given by

v̂c = E{vc | y} =
∫

p(z | y)E{vc | y, z}dz . (14)

This conditional mean given the observation y can be
numerically determined using a local Wiener estimate for
E{vc | y, z} and the posterior mixing density p(z | y).24 This
is utilized in the implementation of the proposed algorithms.

GM-BCS-SPL ALGORITHM IMPLEMENTATION
The proposed Bayes Least Squares-Gaussian-scale Mix-
tures model Block-based Compressed Sensing Smoothed
Projected Landweber (GM-BCS-SPL) adds a Bayes Least
Squares (BLS) Gaussian-scale Mixtures (GM) model to
account for dependencies between wavelet coefficients in the
sparsity domain. The BLS-GM model is imposed to model
and account for variances and changing dependencies in
highly correlated coefficients in similar locations, scales, and
orientations. The GMmodel is applied to update coefficients
before thresholding. Hierarchical structural dependency
modeling is incorporated, taking into account parent–child
hierarchical coefficient relationships, as well as in-band
neighborhood coefficients.

A Gaussian distribution with heavy tails, such as
Gaussian-scaleMixtures, tends to characterize the signal data
in the transform domain of the DWT, DCT, CT, and DDWT
transforms for natural images. This has also been shown
to be the case in related research in image denoising in
characterizing image data in wavelet transform domains.24
The transform domains of the DWT, DCT, CT, and DDWT
transforms extract different components/frequencies of the
signals, and application of the Gaussian-Scale Mixtures
model to these similar components/frequencies improves the
overall image quality, as shown in Tables II and III and in
Figure 2.

The updated algorithmic implementation, modified
from the Block Compressed Sensing (BCS)27 and Block-
based Compressed Sensing Smoothed Projected Landweber
(BCS-SPL),13 for the computation of the approximation
of the image is as shown in Table I. The algorithm was
implemented in Matlab utilizing and building upon the
BCS-SPL algorithm available at http://www.ece.msstate.ed

Table I. GM BCS-SPL algorithm implementation.
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u/∼fowler/BCSSPL/, the Contourlet Toolbox (http://www.
ifp.illinois.edu/∼minhdo/software/), and the Polytechnic
Institute Wavelet Software package (http://eeweb.poly.edu/
iselesni/WaveletSoftware/).

The noise variance estimate, σ , quantifies the severity
of the undersampling artifacts and measurement noise.
The sample variance of the noise is proportional to the
sample variance of the noisy wavelet coefficients in the
highest-frequency subband (here represented as HH1). As
such, the sample variance of the noise is estimated using a
robust median estimator28 applied to the highest-frequency
subband, as shown in Table I. Since the reconstruction
error is reduced throughout the iterations, σ is re-estimated
at each iteration. The estimate of σ is used for both the
BLS-GM structured modeling and for the Threshold
function.Operationswithin theGM_Model_ 2D_Structured
function could be reduced for computational speed (such
as cancellation of the multiplication of M * N with division
of prod(nhood)), but all operations are shown here for
clarity. The GM_Model_2D_Structured function allows
for application of Bayes Least Squares-Gaussian-scale
Mixtures modeling and hierarchical structural dependency
modeling of parent–child coefficient relationships, as well as
optimization of the transform coefficient neighborhood size
for in-band modeling of Gaussian-scale mixtures.

The Threshold (•) operator in SPL is theMAP estimator
of the transform coefficient, v, given its parent coefficient, vp,
in the next coarser scale:

Threshold(v, λ)=

(√
v2+ v2

p − λ
√

3σ (k)
/
σv
)
+√

v2+ v2
p

v, (15)

where (g )+ = 0 for g < 0 and (g )+ = g otherwise. σ (k)
is the median estimator as described above, σ 2

v is the
marginal variance of coefficient v estimated in a local 3× 3
neighborhood surrounding v, as described in Ref. 29, and λ
is a convergence-control factor.

As shown in Table I, multiple SPL stages are employed to
refine performance. In our experiments, we used ten stages
as a near-optimal iteration value based on convergence curve
plots for the number of stages versus reconstruction error.

We optimized the in-band neighborhood size within
the transform domain for application of the structural and
statistical modeling, as well as optimizing the inclusion of
the parent coefficient within the structural and statistical
modeling.

Different sensing matrices have been used in com-
pressed sensing. Here, we use structurally-random matrices
(SRMs)30,31 used as a sensing matrix in the image/spatial
domain. SRMs are based on the scrambled block Hadamard
ensemble, and the resulting structured sampling eliminates
the need for dense measurement matrices and is thus
suitable for large images. SRM-based sensing also has the
advantages of low implementation complexity and nearly
optimal performance in terms of the required number of
measurements for exact recovery.

As in13 we use the highly-directional transform Dual-
tree Discrete Wavelet Transform (DDWT) proposed by
Kingsbury in Ref. 32. In the DDWT, real-valued wavelet
filters produce the real and imaginary parts of the transform
in parallel decomposition trees. DDWT yields a decompo-
sition with a much higher degree of directionality than that
possessed by the traditional DWT; however, since both trees
of the DDWT are themselves orthonormal or biorthogonal
decompositions, the DDWT taken as a whole is a redundant
tight frame. The use of a highly-directional transform, and in
particular the DDWT, has been shown to provide improved
reconstruction performance.13

We also employ our algorithmic implementation using
the CT transform, which couples a Laplacian-pyramid
decomposition with directional filterbanks, inheriting the
redundancy of the Laplacian pyramid (i.e., 4/3).33 Addi-
tionally, we employ our algorithmic implementation using
the DWT transform for a baseline comparison with other
algorithms and using the DCT transform which has demon-
strated strong sparsifying properties.

We implement our algorithmic enhancement within the
Smoothed Projected Landweber (SPL) structure in order to
apply the thresholding and bivariate shrinkage techniques
in combination with highly-directional transforms and
image-optimized structural and statistical modeling of
dependencies.

Finally, we implement a block-based CS (BCS) algorith-
mic version in order to achieve the superior CPU execution
times characteristic of BCS algorithms.

EXPERIMENTAL RESULTS
Existing databases can be utilized for test data and to
provide meaningful comparisons with existing algorithms
and techniques to quantify performance improvements of
feature optimization and overall image quality achieved by
addressing variable dependencies in image reconstruction.
For comparison purposes, standard images used in recent
publications for testing of compressed sensing algorithms
were used, including the images commonly known as ‘Lenna’
and ‘Barbara’ (widely used in image processing literature)
and images from several classes of the Microsoft Research
Image Database available at http://research.microsoft.com/
en-us/projects/. Images from classes were chosen based on
the greatest appearance of randomness—as being the images
of most interest to target for high-performance compressed
sensing algorithms. As shown in Figure 1, eight images were
selected: ‘‘Lenna’’ and ‘‘Barbara’’ (from the University of
Southern California (USC) Signal and Image Processing
Institute (SIPI) Image Database), and Flowers_109_0983,
Birds_111_1163, Sheep_117_1760, Buildings_152_5234,
Countryside_152_5249, and Urban_184_8487 representing
six classes of images from the Microsoft Research Image
Database.

Experiments were carried out on 512× 512 gray-scale
images. Since the quality of reconstruction can vary
due to the randomness of the measurement matrix, 8B,
reconstruction error and Peak Signal-to-Noise Ratio (PSNR)
are averaged over five independent trials. Also, five different
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Original 512 × 512 Images: (a) ‘‘Lenna’’ and (b) ‘‘Barbara’’ from the USC-SIPI Image Database, and (c) Flowers_109_0983,
(d) Birds_111_1163, 1 (e) Sheep_117_1760, (f) Buildings_152_5234, (g) Countryside_152_5249, and (h) Urban_159_5923 from the Microsoft
Research Image Database.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2. Reconstructed ‘‘Lenna’’ image at the lowest subrate of 0.1 (highest CS ratio) for the original algorithms: (a) BCS-SPL-DWT, (b) BCS-SPL-DCT,
(c) BCS-SPL-CT, and (d) BCS-SPL-DDWT, and for the enhanced algorithms: (e) GM-BCS-SPL-DWT, (f) GM-BCS-SPL-DCT, (g) GM-BCS-SPL-CT, and
(h) GM-BCS-SPL-DDWT.

subrates were used corresponding to measurement ratios
(M/N) of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. For the
bivariate shrinkage we used λ= 20 for BCS-SPL-DWT and

GM-BCS-SPL-DWT, λ = 25 for BCS-SPL-DDWT and
GM-BCS-SPL-DDWT, λ = 6 for BCS-SPL-DCT and
GM-BCS-SPL-DCT, and λ = 10 for BCS-SPL-CT and
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Table II. Relative l2 norm of reconstruction error.

Image Lenna Image Sheep
CS ratio CS ratio

Algorithm 0.1 0.2 0.3 0.4 0.5 Algorithm 0.1 0.2 0.3 0.4 0.5

GM-BCS-SPL-DDWT 0.055514 0.039771 0.031687 0.026287 0.022146 GM-BCS-SPL-DDWT 0.060628 0.048533 0.040574 0.033437 0.027799
GM-BCS-SPL-CT 0.057366 0.041702 0.033581 0.027938 0.023551 GM-BCS-SPL-CT 0.057390 0.043427 0.036247 0.030730 0.026167
GM-BCS-SPL-DCT 0.058251 0.042708 0.034068 0.028202 0.023556 GM-BCS-SPL-DCT 0.055022 0.041726 0.034736 0.029356 0.024481
GM-BCS-SPL-DWT 0.058505 0.041798 0.033446 0.027821 0.023470 GM-BCS-SPL-DWT 0.058125 0.044092 0.036372 0.030545 0.025745

BCS-SPL-DDWT 0.056602 0.039836 0.031685 0.026285 0.022144 BCS-SPL-DDWT 0.060663 0.048555 0.040577 0.033459 0.027814
BCS-SPL-CT 0.057504 0.041717 0.033557 0.027912 0.023519 BCS-SPL-CT 0.058057 0.043344 0.036169 0.030654 0.026103
BCS-SPL-DCT 0.059995 0.043970 0.035390 0.029414 0.024767 BCS-SPL-DCT 0.059797 0.046903 0.039431 0.033560 0.028429
BCS-SPL-DWT 0.058888 0.041946 0.033455 0.027807 0.023453 BCS-SPL-DWT 0.058575 0.044050 0.036331 0.030513 0.025712

Image Barbara Image Buildings
GM-BCS-SPL-DDWT 0.112080 0.094850 0.080273 0.067426 0.056241 GM-BCS-SPL-DDWT 0.097451 0.078910 0.066705 0.056924 0.048640
GM-BCS-SPL-CT 0.113630 0.094076 0.078492 0.064723 0.052915 GM-BCS-SPL-CT 0.096053 0.078224 0.066921 0.057899 0.049907
GM-BCS-SPL-DCT 0.112650 0.093819 0.078545 0.065917 0.055046 GM-BCS-SPL-DCT 0.096458 0.080613 0.070126 0.060817 0.052231
GM-BCS-SPL-DWT 0.115360 0.098536 0.084610 0.072122 0.060610 GM-BCS-SPL-DWT 0.099682 0.080766 0.068134 0.058224 0.049625

BCS-SPL-DDWT 0.113340 0.095332 0.080264 0.067413 0.056207 BCS-SPL-DDWT 0.098564 0.079478 0.066795 0.056931 0.048645
BCS-SPL-CT 0.113820 0.094330 0.078628 0.064833 0.052988 BCS-SPL-CT 0.096424 0.078305 0.066955 0.057862 0.049875
BCS-SPL-DCT 0.114240 0.094222 0.078496 0.065980 0.053967 BCS-SPL-DCT 0.100140 0.082471 0.077345 0.063457 0.055099
BCS-SPL-DWT 0.115680 0.099003 0.085082 0.072315 0.060681 BCS-SPL-DWT 0.100300 0.081229 0.068325 0.058256 0.049636

Image Flowers Image Countryside
GM-BCS-SPL-DDWT 0.081818 0.050758 0.036308 0.027148 0.020995 GM-BCS-SPL-DDWT 0.060958 0.049035 0.041698 0.035923 0.030729
GM-BCS-SPL-CT 0.081925 0.051591 0.037865 0.029073 0.023014 GM-BCS-SPL-CT 0.059233 0.048490 0.042095 0.036793 0.031884
GM-BCS-SPL-DCT 0.082146 0.051102 0.037006 0.028221 0.022191 GM-BCS-SPL-DCT 0.058787 0.049041 0.042857 0.037599 0.032466
GM-BCS-SPL-DWT 0.083919 0.051087 0.036760 0.027746 0.021675 GM-BCS-SPL-DWT 0.060387 0.049372 0.042410 0.036731 0.031446

BCS-SPL-DDWT 0.081866 0.050748 0.036336 0.027161 0.021008 BCS-SPL-DDWT 0.061196 0.049089 0.041714 0.035935 0.030728
BCS-SPL-CT 0.082719 0.051727 0.037920 0.029125 0.023047 BCS-SPL-CT 0.059271 0.048504 0.042104 0.036801 0.031888
BCS-SPL-DCT 0.086663 0.053932 0.039307 0.029992 0.023582 BCS-SPL-DCT 0.060080 0.050157 0.043832 0.038427 0.033272
BCS-SPL-DWT 0.085620 0.051299 0.036822 0.027782 0.021703 BCS-SPL-DWT 0.060870 0.049561 0.042526 0.036782 0.031471

Image Birds Image Urban
GM-BCS-SPL-DDWT 0.080060 0.062991 0.051392 0.041647 0.033702 GM-BCS-SPL-DDWT 0.074150 0.054153 0.041197 0.033052 0.027105
GM-BCS-SPL-CT 0.076394 0.058106 0.047097 0.038713 0.031998 GM-BCS-SPL-CT 0.072760 0.052461 0.041652 0.034078 0.028242
GM-BCS-SPL-DCT 0.074823 0.056394 0.045286 0.036834 0.030124 GM-BCS-SPL-DCT 0.072839 0.053726 0.043017 0.035300 0.029221
GM-BCS-SPL-DWT 0.079496 0.061931 0.050311 0.041375 0.034357 GM-BCS-SPL-DWT 0.074370 0.052631 0.041327 0.033492 0.027519

BCS-SPL-DDWT 0.080067 0.062992 0.051406 0.041659 0.033712 BCS-SPL-DDWT 0.074195 0.054160 0.041207 0.033057 0.027109
BCS-SPL-CT 0.076270 0.057961 0.046972 0.038616 0.031920 BCS-SPL-CT 0.072887 0.052524 0.041713 0.034133 0.028291
BCS-SPL-DCT 0.081458 0.062683 0.050990 0.042142 0.034906 BCS-SPL-DCT 0.073965 0.054548 0.043694 0.035900 0.029903
BCS-SPL-DWT 0.079514 0.061845 0.050244 0.041326 0.034316 BCS-SPL-DWT 0.074992 0.052921 0.041403 0.033519 0.027534

GM-BCS-SPL-CT. Finally, up to 200 iterations of each
algorithm were performed to allow for convergence of each
algorithm.

Reconstruction accuracy was evaluated as the relative l2
norm of reconstruction error, defined by

‖y− ŷ‖2/‖y‖2, (16)

where y is the original signal and ŷ is the recovered
image. In Table II, results are shown for the l2 norm

reconstruction error for the eight algorithms: GM-BCS-SPL-
DDWT, GM-BCS-SPL-CT, GM-BCS-SPL-DCT, GM-BCS-
SPL-DWT, BCS-SPL-DDWT, BCS-SPL-CT, BCS-SPL-DCT,
and BCS-SPL-DWT. Corresponding reconstruction error
is lower for the proposed algorithms, particularly at the
lower sampling rates of interest in compressed sensing.
Due to the random and highly varying nature of im-
age data, occasionally the GM-algorithmic version of a
particular transform does not result in improvement and
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Table III. PSNR performance in dB.

Image Lenna Image Sheep
CS ratio CS ratio

Algorithm 0.1 0.2 0.3 0.4 0.5 Algorithm 0.1 0.2 0.3 0.4 0.5

GM-BCS-SPL-DDWT 28.2989 31.3734 33.4567 35.1782 36.7481 GM-BCS-SPL-DDWT 30.3842 32.4603 34.0337 35.6702 37.2388
GM-BCS-SPL-CT 28.1015 30.9747 32.9425 34.6332 36.1956 GM-BCS-SPL-CT 30.5930 33.1003 34.7192 36.1829 37.6132
GM-BCS-SPL-DCT 27.9572 30.7693 32.8242 34.5624 36.2128 GM-BCS-SPL-DCT 30.8980 33.4287 35.0926 36.5994 38.1985
GM-BCS-SPL-DWT 27.7444 30.8775 32.9361 34.6384 36.2071 GM-BCS-SPL-DWT 30.4810 33.0015 34.7201 36.2640 37.7790

BCS-SPL-DDWT 28.0797 31.3550 33.4578 35.1791 36.7489 BCS-SPL-DDWT 30.3757 32.4569 34.0335 35.6655 37.2348
BCS-SPL-CT 28.0801 30.9709 32.9488 34.6417 36.2081 BCS-SPL-CT 30.4497 33.1170 34.7385 36.2064 37.6355
BCS-SPL-DCT 27.6713 30.4916 32.4873 34.1982 35.7832 BCS-SPL-DCT 30.1614 32.4328 34.0190 35.4698 36.9580
BCS-SPL-DWT 27.6680 30.8368 32.9326 34.6425 36.2137 BCS-SPL-DWT 30.3869 33.0080 34.7301 36.2730 37.7902

Image Barbara Image Buildings
GM-BCS-SPL-DDWT 22.7421 24.1957 25.6750 27.1988 28.7963 GM-BCS-SPL-DDWT 24.4239 26.2946 27.7920 29.2035 30.5930
GM-BCS-SPL-CT 22.7293 24.3007 25.8654 27.5532 29.3247 GM-BCS-SPL-CT 24.6496 26.4039 27.7724 29.0494 30.3573
GM-BCS-SPL-DCT 22.8406 24.3835 25.9178 27.3907 28.9344 GM-BCS-SPL-DCT 24.5997 26.1749 27.4255 28.6831 30.0172
GM-BCS-SPL-DWT 22.4345 23.8297 25.1633 26.5358 28.0417 GM-BCS-SPL-DWT 24.1572 26.0743 27.5930 28.9928 30.4053

BCS-SPL-DDWT 22.5769 24.1392 25.6746 27.1999 28.8022 BCS-SPL-DDWT 24.2910 26.2245 27.7781 29.2020 30.5919
BCS-SPL-CT 22.7067 24.2696 25.8440 27.5328 29.3066 BCS-SPL-CT 24.6133 26.3945 27.7688 29.0536 30.3627
BCS-SPL-DCT 22.7507 24.3599 25.9172 27.3991 29.1679 BCS-SPL-DCT 24.2942 25.9860 26.6386 28.3465 29.5902
BCS-SPL-DWT 22.3936 23.7733 25.0995 26.5052 28.0263 BCS-SPL-DWT 24.0733 26.0121 27.5643 28.9865 30.4013

Image Flowers Image Countryside
GM-BCS-SPL-DDWT 29.5977 33.7338 36.6126 39.1216 41.3571 GM-BCS-SPL-DDWT 27.7174 29.5305 30.9541 32.2853 33.6643
GM-BCS-SPL-CT 29.5621 33.4149 36.0785 38.3970 40.4622 GM-BCS-SPL-CT 27.9343 29.6291 30.8767 32.0707 33.3372
GM-BCS-SPL-DCT 29.5017 33.5457 36.3525 38.7302 40.8491 GM-BCS-SPL-DCT 27.9461 29.5071 30.6907 31.8910 33.1805
GM-BCS-SPL-DWT 29.2224 33.4728 36.3188 38.7913 40.9712 GM-BCS-SPL-DWT 27.6343 29.4040 30.7830 32.0777 33.4524

BCS-SPL-DDWT 29.5896 33.7351 36.6075 39.1186 41.3517 BCS-SPL-DDWT 27.6308 29.5044 30.9470 32.2813 33.6646
BCS-SPL-CT 29.4656 33.3885 36.0582 38.3712 40.4382 BCS-SPL-CT 27.9263 29.6237 30.8728 32.0678 33.3355
BCS-SPL-DCT 29.0473 33.0470 35.8065 38.2012 40.3229 BCS-SPL-DCT 27.7664 29.3253 30.5189 31.6956 32.9640
BCS-SPL-DWT 28.9989 33.4185 36.2894 38.7633 40.9421 BCS-SPL-DWT 27.5277 29.3576 30.7516 32.0619 33.4436

Image Birds Image Urban
GM-BCS-SPL-DDWT 28.4463 30.6033 32.4031 34.2124 36.0343 GM-BCS-SPL-DDWT 23.2439 25.9402 28.2326 30.1381 31.8851
GM-BCS-SPL-CT 28.7556 31.1432 33.0039 34.7306 36.4111 GM-BCS-SPL-CT 23.3328 26.0737 28.0802 29.8304 31.4812
GM-BCS-SPL-DCT 28.8926 31.3931 33.3464 35.1758 36.9532 GM-BCS-SPL-DCT 23.2083 25.8276 27.7759 29.5145 31.1791
GM-BCS-SPL-DWT 28.4236 30.6303 32.4615 34.1759 35.8087 GM-BCS-SPL-DWT 22.8972 25.9454 28.0928 29.9455 31.6779

BCS-SPL-DDWT 28.4459 30.6034 32.4008 34.2103 36.0319 BCS-SPL-DDWT 23.2214 25.9391 28.2310 30.1370 31.8839
BCS-SPL-CT 28.7693 31.1657 33.0280 34.7529 36.4326 BCS-SPL-CT 23.3189 26.0644 28.0676 29.8177 31.4675
BCS-SPL-DCT 28.1579 30.4775 32.3243 34.0224 35.6920 BCS-SPL-DCT 23.0854 25.6903 27.6192 29.3646 30.9694
BCS-SPL-DWT 28.4141 30.6424 32.4732 34.1864 35.8194 BCS-SPL-DWT 22.8032 25.8868 28.0741 29.9374 31.6724

may result in a slight degradation; however, one of the
GM-algorithmic versions always has the best performance
over all other algorithms at the lowest sampling rates.
Reconstruction accuracy is closer between several algorithms
at the higher sampling rates, which is not surprising
since the higher sampling rates (sampled in the transform
domain) contain a greater percentage of the image data. The
GM-algorithmic versions provide improved performance,
and the improved minimization of reconstruction error is

statistically significant. It is noted that the proposed algo-
rithmic modification demonstrates enhanced performance
refinement improvements over state-of-the-art CS image re-
construction algorithms that already achieve exceptional
performance.

Performance results were also compared based on
the computed PSNR in dB for the reconstructed im-
ages for the original and proposed algorithms. Table III
shows the PSNR for the eight algorithms: GM-BCS-SPL-
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DDWT, GM-BCS-SPL-CT, GM-BCS-SPL-DCT, GM-BCS-
SPL-DWT, BCS-SPL-DDWT, BCS-SPL-CT, BCS-SPL-DCT,
and BCS-SPL-DWT.

As with the l2 norm reconstruction error results, the
corresponding PSNRs of the proposed GM-algorithmic
versions outperform the original algorithms, particularly
at the lowest sampling rates (highest CS ratios), with
performancemuch closer at the higher sampling rates. As can
be seen, the GM-BCS-SPL-DDWT algorithm has the best
performance for the ‘Lenna’ image at the highest compressed
sensing ratios, with performance very close between theGM-
BCS-SPL-DDWT and BCS-SPL-DDWT algorithms at the
higher sampling rates that contain more of the information.
For the ‘Barbara’ image, the GM-BCS-SPL-DDWT and GM-
BCS-SPL-DCT algorithms outperform all other algorithms
at the lowest sampling rates, while the GM-BCS-SPL-CT
algorithm has the best performance at the higher sampling
rates. For the ‘flowers’, image, the GM-BCS-SPL-DDWT
algorithm outperforms all other algorithms at each sampling
rate except for the 0.2 subrate where the BCS-SPL-DDWT
had slightly better performance. For the ‘Birds’ and ‘Sheep’
images, the GM-BCS-SPL-DCT algorithm outperforms all
other algorithms. For the ‘Buildings’, ‘Countryside’, and
‘Urban’ images, the GM-BCS-SPL-CT algorithm, and GM-
BCS-SPL-DCT for the ‘Countryside’ image, outperform
all other algorithms at the highest CS ratios, while the
GM-BCS-SPL-DDWT provides better performance at the
highest sampling rates.

As expected, performance results are similar in terms of
the PSNR as to the relative l2-norm of reconstruction error,
with the proposed GM modification providing improved
results at the lower measurement rates. The improvement in
performance is statistically significant at the lowest sampling
rates. At higher sampling rates the performance is close for
all algorithms with statistically close results between the GM
and non-GM algorithmic versions. Of course, the higher
sampling rates contain a higher percentage of the signal
information. In CS, the goal is optimal reconstruction given
highly compressed sensing of signals (low sampling rates).
The proposed algorithms show performance improvements
over current state-of-the-art CS image reconstruction algo-
rithms.

Fig. 2 shows the reconstructed ‘Lenna’ image for the
lowest subrate of 0.1 (highest CS ratio) for the original
algorithms and enhanced algorithms. Comparing the images
of the block-based SPL-DWT, -DCT, -CT, and -DDWT
algorithms with the modified block-based GM-SPL-DWT,
-DCT, -CT, and -DDWT algorithms, it can be seen that the
overall image quality shows improvement. There are still
some artifacts present due to the block-based implemen-
tation. These artifacts are not present if computations are
performed over the entire signal. Therefore, a trade-off exists,
as usual, with regard to computational time/efficiency versus
image quality with regard to these artifacts. However, the
modified algorithm shows overall improvement in image
quality and can be implemented across the entire signal
for very-high-quality image reconstruction with compressed
sampling or implemented in the efficient block-based

Figure 3. Reconstruction time for the ‘‘Lenna’’ image.

implementation for higher-quality images with efficient and
reduced computational processing.

Comparing the BCS-SPL-DDWT and the GM-BCS-
SPL-DWTwith theGM-BCS-SPL-DDWT, it can be seen that
neither the application of highly-directional and redundant
transforms nor the application of the GM structural and
statistical dependency modeling in the sparsity domain
alone provides the performance achieved as to when
the GM and hierarchical structural dependency model-
ing is combined with highly-directional and redundant
transforms. Optimized performance is achieved when the
GM and hierarchical structural dependency modeling is
applied in the sparsity domain of highly-directional and
redundant transforms. Within the GM-BCS-SPL-DDWT,
the GM and hierarchical structural dependency modeling
provides optimized values as input to the bivariate shrinkage
algorithm in the transform domain.

The proposed GM-BCS-SPL algorithms always statisti-
cally match or outperform the original BCS-SPL algorithms
at the lowest sampling rates, even outperforming the
smoothed and highly-directional BCS-SPL-DDWT.

The reconstruction time for the ‘Lenna’ image for
each algorithm and CS ratio is shown in Figure 3. CPU
reconstruction time is shown for algorithm execution on
a 1.6 GHz AMD E-350 dual-core processor. Due to the
added complexity of imposing the BLS-GM model, the total
computation time of the proposed algorithms is slightly
longer than the original algorithms. The CPU execution
times of the proposed GM-algorithmic versions are very
close to the fast CPU computation times of the original algo-
rithms. In addition, the GM-algorithmic versions converge
in approximately 20 iterations on average, resulting in fast
execution times for the additional algorithmic complexity.
In fact, the reconstruction time of the GM-BCS-SPL-DDWT
algorithm is actually faster than that of the BCS-SPL-DDWT
at the lowest subrate for the ‘‘Lenna’’ image due to the faster
convergence of the GM-algorithmic version.

It can be seen that the computation time of each GM
algorithm is still consistent with the superior computational
times provided by block-based compressed sensing, which
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tends to be an order of magnitude faster than non-block-
based algorithms, as noted above. In addition, block-based
compressed sensing algorithms have the added advantage of
increased throughput in implementation because computa-
tions can be performed on a block-by-block basis, so that
the encoder does not need to wait until the entire image is
processed, butmay send each block after its linear projection.

SUMMARY
Highly-directional and redundant transforms, thresholding
and shrinkage techniques, and structural and statistical
modeling of images were employed to yield improved recon-
struction performance of images in compressed sensing. Ex-
ploitation of hierarchical structure and multiscale subbands
of frequency and orientation provides increased selectivity
across orientations, scales, and frequencies. In addition,
the application of Bayes Least Squares (BLS)-Gaussian-scale
Mixtures (GM) modeling, shown to accurately model
the statistics of natural images (including local clustering
and leptokurtotic marginal statistics), was incorporated
through weights in the reconstruction algorithm. Hierar-
chical structural dependency modeling was incorporated by
taking into account parent–child coefficient dependencies
in the transform domain. This modeling of structural
and statistical dependencies applied with the selectivity of
highly-directional transforms across orientations, scales, and
frequencies provided improved performance over current
state-of-the-art algorithms. The new algorithmic versions
were implemented in block-based CS (BCS) algorithms and
are denoted as GM-BCS-SPL-DWT, GM-BCS-SPL-DCT,
GM-BCS-SPL-CT, and GM-BCS-SPL-DDWT.

Various classes of images were tested, including people,
nature, animals, buildings, and urban and countryside
scenes. For each of these classes of images, a GM-algorithmic
version obtained superior image reconstruction perfor-
mance. In all classes of images tested, a GM-algorithmic
version provided the most superior image reconstruction
accuracy, particularly at the most compressed sampling rates
of greatest interest in compressed sensing.

The GM algorithms particularly offer improved perfor-
mance for natural images, and natural images tend to have
non-linear mixtures incorporating more highly-random-
appearing dependencies. The GM algorithms provide the al-
gorithmic robustness needed to address these dependencies,
which tend to be more difficult to account for, particularly in
compressed sensing.

POTENTIAL FUTURE DIRECTIONS
Structural dependencymodels could be designed for specific
signal characteristics for specific classes/characteristics of
images. Potential performance enhancements could be
obtained by combining this method with automating iden-
tification of repetitive patterns and structural details, using
additional sharpening operations to identify edge compo-
nents, and reducing residual aliasing artifacts/reconstruction
artifacts. This could be incorporatedwithin the framework of
compressed/sparse sensing to provide performance improve-
ments. Combining this with optimization of the basis set

formation/feature extraction for non-linearly mixed signals
could provide further optimization.

Unsupervised learning and iteration could be used to
develop predictions and to test for measurement consistency.
Unsupervised learning provides automatic clustering of
features. It gives insight about the existent structures and
patterns in data. It enables more adaptive and meaningful
classes corresponding to the natural characteristics of the
data.
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