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Abstract
In this paper, we propose a novel image deblurring framework,

which noticeably improves the effectiveness and efficiency of state-of-
the-art approaches. In professional imaging with its typical shallow
depth-of-field, it is challenging to estimate the exact focus distance
during recording, which often implies costly re-shooting. For the
correction of blurred material in post-production, there exist a few
deblurring methods, which are, however, challenged by working on
real camera data due to noise and the general ill-posedness of the
deblurring problem itself. Since the effective out-of-focus operating
range of deblurring methods is small and the blur characteristics
are strongly depth-dependent, we introduce a framework where a
depth map and measured lens characteristics ingest into a selection of
state-of-the-art deblurring methods. Therefor, we introduce a depth-
dependent parameter selection concerning blur kernels and smoothing
weights first. Second, using these parameters the out-of-focus areas
are selectively deblurred in order to overcome the emergence of strong
artifacts. The foundation for the provided evaluation is formed by a
dataset with eight real images captured with a cinematic RGB plus
depth camera containing multi-planar and in-scene depth-varying
image content. Therein, we show visually and numerically that intro-
ducing our depth framework improves the deblurring performance
and suppresses typical strong artifacts.

Introduction
In digital imaging, the physical representation of the world is

projected onto the silicon sensor by the lens. In general, an image
is naturally divided in focused and blurred regions. This holds for
all imaging system within a certain distance interval around the focal
distance, the projection is depicted at the imaging system’s maximum
modulation transfer function, which is related to the subjective term
“sharpness”. Elsewhere, the captured image becomes increasingly
blurred, which is known as blur from defocus.

Modern consumer-grade cameras and mobile phone cameras are
nowadays equipped with state-of-the-art auto-focus systems like phase
auto-focus. Contrary in professional cinematography, focus is still
adjusted manually. Although focusing is very reliable in the first case
and utilizing a lot of human experience as well as high-level semantics
in the second case, both approaches are prone to erronous focus esti-
mation. Automatic systems may fail on assumption mismatch while
human estimation is losing accuracy with, for example, increasing dis-
tance. Thus artifact-free deblurring approach are still highly required.

The approach presented in this work is biased to cinematic
image creation while not being limited to it. In this particular case,
we face the typical situation where the focus adjustment is slightly
off its target distance. Combined with common shallow depth-of-field
settings, the intended in-focus object is then blurred, depending on
its depth profile. For example, targeting an actor’s eyes often results
in blurring the latter and focusing his ears. As research on deblurring
shows, this problem fits to the restoration capabilities provided by

naturally ill-posed deblurring approaches.
Furthermore, as blur caused by defocusing is depth dependent,

we propose a system that acquires all necessary information to
significantly reduce the ill-posedness. Thus, we employ a camera
capturing color and dense depth information without occlusions at,
in the context of the blur process, highly important object boundaries.
Finally, the degree of blur introduced by the camera’s lens is equivalent
to the lens’ point-spread function (PSF). Hence, we encounter by
measuring those PSFs physically.

Our contribution in this paper is the finalization of 4 state-of-
the-art deblurring methods in order to use prior information in form
of measured depth and PSF information. Our dedicated evaluation,
which uses an acquired deblurring data set with depth and color image
ground truth information, underlines the achieved improvements in
using 5 different methods with increasing complexity to utilize the
aforementioned auxiliary information.

Prior Art
This section gives insight in the context of non-blind deblurring

methods first. Afterwards, related methods in blind deblurring as well
as methods using additional priors are discussed.

Non-Blind Deblurring
Already used for sharpening of analog film material decades ago,

unsharp masking (USM), today, is still present as a standard method
in relevant digital image processing tools. In USM, a sparse high-pass
component of the image is added to the observed representation. We
include USM in our testbed because it is still considered as significant
method in image processing. All included methods are referred to
as selected methods throughout the paper.

Van-Cittert iterations reveal the latent image by convolution with
an iteratively optimized operator to mach the observed image [27].
The proposal of Van-Cittert converges to a typical objective function
which is often used in MAP estimators for deblurring [9]. In contrast
to the more recent methods, there is an absence of prior assumptions
and hence only one free parameter.

The Wiener filter is designed to minimize the expected error
E{|L( f )−L̂( f )|2} of the unknown sharp image L and the deblurred
estimate L̂( f )=G( f )B( f ) [30], where G denotes the transfer function
of the Wiener filter and B refers to the blurry input. The Wiener filter
allows for spectral attenuation of noisy frequency components while
deblurring.

Richardson and Lucy (RL) [20, 16] describe a maximum
likelihood estimation principle that is based on the Poisson distribution
yielding an iterative computation rule [3]. We also choose RL for
our testbed due to its successful application throughout research and
perseverance although being proposed 40 years ago.

Similar to the Wiener filter and understood as the deblurring
extension of the truncated SVD, spectral attenuation of singular
components is also achieved by the Tikhonov regularization [26].
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Levin et al. propose a fundamental method using natural image
priors [13, 14]. The natural image prior is represented by ρ(z)= |z|α ,
which is either assumed to be Gaussian (α =2) or sparse (α =0.8).
As the Gaussian prior does not necessarily favor the image edges over
the noise, the sparse prior yields to concatenations of edges rather then
emphasizing noise influences.

In general, recent methods tend to use Gaussian likelihoods and
Laplacian priors on the gradients [1, 28].

Krishnan et al. generalize Levin’s energy employing a hyper
laplacian prior, where 0.5≤ α ≤ 1 [11]. The hyper laplacian prior
fits to emperically estimated gradient distributions of natural images.
We include and adopt their method, named Hyper-Laplacian-Prior
(HLP), in our framework as one of the state-of-the-art bases due to
its popularity and reported robustness as well as its applicability to
local deblurring approaches [2, 8].

Fortunato et al. introduce a distinct representation of the image
gradients by retrieving and deploying edges from a bilaterally filtered
representation of the blurred observation to the optimization energy [5].
The final result for the vectorized latent sharp image l is then obtained
solving a set of linear equations Ul=v, where U and v are given in Eq.
3. We also include this method, called Shape-Adaptive-Prior (SAP),
in our framework as a representative of the most recent approaches.

Considering local deblurring requires the blur operator K to
be fed with local blur kernels, which differ in each row. Hence, the
system loses linear shift-invariant properties and thus computational
speed by deploying Fourier methods. Local deconvolution is widely
studied for motion blur rather than blur from defocus. The majority of
methods in this field utilize the Richardson and Lucy energy. Methods
by Whyte et al. and others differ mainly in estimating and applying
the local functions into the framework [29, 32, 25, 24]. Further
computational optimization can be found in Nagy et al. [18].

The method by Krishnan et al. was adopted by Couzine-Devy
by employing a local convolution matrix [2]. In contrast, Sun et al.
locally adopt priors utilizing the likelihood between a database of
sharp images and deblurred image patches [22].

Blind Deblurring
By definition, blind deblurring comprises the alternating

estimation of the sharp image and the point-spread function [9].
Krishnan et al. also present a method for blind deblurring based

on their non-blind approach above. The blind deblurring method is
based on a multiscale approach, where the PSF is estimated in the
first scale level [12]. Having found the best matching operator K, it
can be applied in the non-blind deblurring method to find the latent
image L. If the PSF would be known a priori, computational costs
were saved and erroneous PSF estimations prevented.

Additional Priors
Considering motion deblurring, Tai et al. provide a system of

cameras which run at a low and high frame rate to find a solution for
reducing motion blur [23].

Similarly, Li et al. make use of a tri-focal camera system, in-
cluding the computation of depth maps for motion deblurring [15]. A
method that makes explicit use of a depth map is proposed by Xu et al.
targeting motion deblurring [31]. Therein, the depth map is obtained
from a stereoscopic camera setup and the PSFs are estimated for all
different depth layers. Yue et al. employ depth information to estimate
the motion of the camera itself to support the PSF estimation step [33].

Obviously, current research strongly focuses on motion

deblurring. Especially focus deblurring using a depth map has not yet
been touched directly. Closely related is an approach of Navarro et al.
where the depth-of-field in integral imaging systems is enlarged by
using the inherent depth map [19]. Therein, the image is segmented
in accordance to the depth map and a specialized RL approach is
used for deblurring all single layers. Finally, the resulting images are
blended to obtain a larger depth-of-field area.

Luft et al. apply depth-dependent stretching of local contrast at
depth discontinuities [17]. Next to computing a high pass component
of the depth map, they modulate color, luminance and local contrast
of the input color image, yielding perceptually increased depth
separations of the image objects.

Depth-Guided Deblurring Framework
Our methodical contribution enables the four selected deblurring

methods to accept the required additional priors and to allow for
different complexity levels of spatio-axial operation.

Methodology
All methods are provided with the captured and fully or partly

blurred color image that represents the observation, available in the
photo-linear domain Blin and in the gamma-corrected monitor Bmon
domain, and the corresponding depth map, provided as the captured
TOF depth map Dreal and as a ground truth depth map Dgt .

Furthermore, the blur matrix Ki for discrete distances, containing
the according PSFs, is supplied. Besides the measured PSFs, there
is also a Gaussian kernel provided in order to evaluate the benefit of
using a measured ones. Next to conventional shift-invariant global
matrices Ki, local matrices are employed in this work. Local is
defined such that the row entries of Ki are selected depth-dependently.

Each method is also extended to handle a local regularization
weight matrix W =W(x,y). As the standard scalar weight controls the
smoothing or sharpening of the entire image, the matrix W now allows
for local control, which is the individual weighting of single pixels.

USM can accordingly be formulated as

S=B+W ◦Γ(B−(B∗Ki∈{g,l})), (1)

where ◦ denotes the Hadamard product, ∗ is the convolution operator
and Γ is a thresholding operator yielding a sparse high frequency
image. The latter is generated by subtracting a blurred representation
from the blurry input image B. This subsequent blurring process
is achieved using either the “global” shift-invariant Kg or “local”
shift-variant blur Matrix Kl.

RL is handled slightly different. The smoothing or sharpening
parameter is controlled by different amounts of iterations. Applying
local weights does then mean that the image has to be stitched after
different amounts of iterations for the according sub images.

HLP is modified such that we can integrate our weighting
matrix W and convolution matrix Ki. Therefore, Eq. 4 in the paper
of Krishnan et al. [11] can be re-written as

x=

F−1

(
F(F1)∗F(w1)+F(F2)∗F(w2)+W

β
F(Ki)∗F(B)

F(F1)∗F(F1)+F(F2)∗F(F2)+W
β

F(Ki)∗F(Ki)

)
,

(2)

where the gradient filters Fn, auxiliary variables wn and the weight β

stay unchanged. The last summand of the nominator and denominator
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turn out to be dependent of the convolution matrix Ki and the blurred
observation. In order to adapt it towards local changes, we transfer
both summands to the time domain. Therefore, the part F(Kl)∗F(B)
turns into F(Kl ∗ b). Computing the correct denominator term
F(Kl)∗F(Kl) introduces an enormous complexity when the entries
of Kl are locally adaptive. Due to this computational demand,
we approximate the result retaining the given computation in the
frequency domain using Kg.

The adaptation of SAP requires a similar adoption like for HLP,
yielding a modified set of linear equations

U=KgT Kg+
5

∑
s=1

λsdT
s ds, v=Klb+

5

∑
s=1

λsdT
s ws. (3)

The blur matrix is replaced by its local counterpart Kl. Equally
to the adaptation of HLP adaptation, the term KgT Kg in the first
equation is computed with one, shift-invariant blur kernel, due to the
computational complexity.

As this is a non-complete adaptation to local behavior in general,
SAP and HLP are applied in a depth-guided sliced way with one
single constant PSF for each slice. Furthermore, SAP incorporates
two σ parameters adjusting the bilateral filter. The parameters were
visually optimized for the real camera data and are set to σspat =10
and σcolor=0.0004.

PSF Prior
The proposed PSF measurement process is described in this

section. Figure 1 shows a coarse illustration of the measurement
setup. The general idea is to capture a light point, assumed to be a
point source, which moves from pre-focus to post-focus while the lens
settings are fixed. The employed lens in this paper is a Zeiss Master
Prime 50mm, which was set to an aperture of T = 1.3 and a focus
of 2m, which is an often used setup to achieve shallow depth of field.

Figure 1: Experimental overview of our PSF measurement. The
point light carrier is moved around the focal distance to stimulate the
corresponding PSFs.

All deblurring methods in this work are applied to real images
captured with an ARRI Alexa digital film camera mounted with the
aforementioned lens. Therefore, the capturing device of the PSFs is
chosen as the same camera model and lens to keep sensor and optical
responses constant within the whole chain [7].

To acquire the PSFs for different depth levels, the measurement
device, which is a Trioptics ImagesMaster, is equipped with a point
light of circular shape with a diameter of 30µm. The carrier is then
moved from pre-focus to post-focus in distance steps of 5cm. Figure
1 also depicts some of the resulting PSF measurements exemplarily.
It shows the change of diameters and intensity structures with altered

distance to the focus plane. Additionally the asymmetrical depth
behavior of the lens is prominent.

All recording was done with the native sensor resolution in the
camera’s raw format to allow for utilization of the high spatial resolu-
tion and usage the linear data additionally. To reduce image noise, 25
frames were captured each. The subsequent temporal mean operation
restores an estimate of the signal. Furthermore, an automatic, depth
dependent control of the exposure time was implemented to keep the
exposure constant and to retain the full dynamic range of the PSF.

In order to be able to evaluate the benefit of the measured PSFs,
a synthetic Gaussian kernel with depth-varying sizes is adduced in
this work. The Gaussian PSF is motivated by its frequent usage in
the community. However, the parameters of the Gaussian kernel are
oriented on the real PSFs. Heuristically, a good starting value was
found to be σ =2.5·dreal(z) with dreal(z) being the diameter of the
real PSFs at depth z.

Depth Models
The methodical approach in this paper is structured as follows.

First, we explain how depth and PSF priors are effectively employed
in a pre-learned deblurring framework for deblurring of single depth
layers. Second, the approach is extended for an arbitrary number of
depth layers.

Single-Layer Deblurring
The two main unknowns for deblurring are the regularization

weight and the PSF. Naively applying the measured PSF referring
to its measured location z might not lead to convincing results due to
aberrations and the introduced measurement quantization. Hence, z is
varied to query the best matching PSF within a certain neighborhood.
Let ẑ describe the optimized distance, this can be formulated as
PSF(ẑ)=PSF(z+ô(z)). In this paper, the hat denotes all parameters
optimized by this principle.

That means, for each input depth value z, a depth-dependent
offset is selected. Therefor, a training procedure is required. Let D be
a set of neighboring distances for a given focus set. The training phase
maximizes the function φ , representing the relevant metric, which is
adduced in the respective evaluation. All metrics accept the deblurring
result LSLD and the reference image R. This step is repeated for each
depth plane z∈D individually, denoted as

(ô(z),ŵ(z))=argmax
o(z),w(z)

φ(LSLD,R) ∀z∈D. (4)

After yielding ô(z) and ŵ(z) from this training on multiple planar
(multi-planar) targets of the test data set, they can be applied to the
selected deblurring methods as the distance of the object of interest
in known by the captured depth map.

Still, deblurring methods are not capable of sharpening strongly
blurred regions. Naively applying deblurring methods on the whole
image will introduce severe artifacts. In order to overcome this
problem, the Single Layer Deblurring (SLD) approach is introduced.
The basic idea is to split the image into two regions based on the depth
map, which is a secondary deployment of the latter. The first selection
describes all areas where the deblurring result is used for the resulting
image. The second selection describes all areas where the original
image is used in the final image. Thereby the original background or
foreground blur is effectively kept in the final image free of artifacts.
To do so a validity matrix V =V(x,y) is introduced. The matrix has
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the same size containing only the values 0 and 1. Therein, a metrical
range zrange can be defined to compute the validity map by

V(x,y)=

{
V(x,y)=1, D(x,y)−zrange<D(x,y)<D(x,y)+zrange

V(x,y)=0, otherwise.

(5)

Subsequently, the deblurred image L is computed by

L=V ◦LSLD+(11T−V)◦B. (6)

LSLD corresponds to a deblurrred image which results when deblurring
the image applying using either naive or optimized PSFs and
optimized weights. This approach allows for the explicit control of
depth ranges in which the deblurring methods are applied. Occuring
stitching artifacts can finally be overcome by a small smoothing
kernel on V in order to achieve soft blended edges.

Multi-Layer Deblurring
Although SLD is very promising for scenarios where a single

depth layer needs to be reconstructed, like in the eye and ear example
from the introduction, we also propose a generalization of the SLD
to Multi-Layer Deblurring (MLD). In particular, we want to stress
to cases, which are designed for the comprehensive evaluation. First,
we use only optimized weights and PSFs as measured and second, we
also include optimized PSFs. This procedure allows for the specific
measurement of the effectiveness of both optimization options.

In order to allow for per-pixel weights the matrix W =W(x,y)
is introduced. Again, depth-dependent weights are selected from the
training phase. The procedure is applied for each depth slice to show
the benefit when a local weight selection is performed. Additionally
a depth-dependent extension Vz(x,y) of the validity operator V is in-
troduced. It will be denoted by where the z indicates the distinct depth
layer. Thereby, the image can be reconstructed by computing the sum

LMLD=∑
z

Vz◦LSLD(Ŵ ,PSF(z)), (7)

where LSLD again corresponds to one SLD result, however, neglecting
optimized PSFs.

The final methodological step adds the selection of the optimized
point-spread function. Besides creating local weights via W(x,y),
hato(z) is evaluated for each image coordinate (x,y,z), where z is
obtained from the depth map. This enables the optimized selection
of blur kernels PSF(ẑ). The problem is similarly expressed as

LMLD=∑
z

Vz◦LSLD(Ŵ ,PSF(ẑ)). (8)

Evaluation
There is no publicly available data set, which provides high

resolution images, captured depth maps and a corresponding PSF
archive. Thus, we generated a versatile data-set with different image
content, amount of blur, depth variation and ground truth. After the
data-set is explained in the following section, suitable metrics are
presented. In the last part, the underlying questions are evaluated
by subdividing the problem. First, the selected methods are applied
on scenes which do not contain depth variation. This comprises
investigations on the PSF type, the best photo-metric domain and
color representation for deblurring. Next, the methods’ parameters are
trained on different depth levels. Finally, this information is utilized
in the proposed approach for images which contain depth variations.

Figure 2: Measurement setup for the data set type plane. The focus
distance of z f ocus=2m is fixed for all shots. The target with different
textures slides in the range of the focus position±20 cm.

Data Set Generation
The data set provides the ability to obtain numerical and visual

evaluation as well as adequate content to demonstrate the benefit of
deblurring. The following list contains the core specification:

• Realistic and depth varying blur
Whereas the majority of scientific contributions works on syn-
thetically blurred data, we work on real camera data. This
implies realistic blur, which is generated using a large physical
aperture.

• Sharp reference for visual and numerical comparison
Our data set allows for numerical evaluation, parameter learning
and visual assessment. In particular, the human observer is given
a reference to estimate the image sharpness after deblurring.

• Corresponding depth map
To evaluate the given assumption, it is necessary to capture a
dense depth map. In order to asses the quality of the captured
depth map for deblurring, a ground truth depth map needs to be
provided for this part of the data.

• Variety of image content and depth variation
We evaluate the utilization of learned parameters. Under these
requirements, the data set should exhibit a great amount of
variety. Additionally, it should contain different types of depth
structures. Thus, multi-planar and depth-varying scenes are
required.

• Different color domains for processing
Data in the monitor domain (ITU Rec. 709) has been passed
through numerous processing steps. Since blurring has a physical
origin, we provide the same content in the monitor and in the
linear domain (sensor linear).

The deployed camera is a modified version of a RGB+Z camera
by Hach et al. [6]. It allows capturing of spatio-temporal synchronized
RGB and dense depth data without occlusions. The data is recorded
in the camera’s raw format allowing to transform the image into the
domains linear and monitor.

To create a blurred and a sharp image, we employ two different
lens apertures and a moving slider shifting the object of interest
in and out of the depth-of-field area. For the used lens, the largest
aperture setting is T =1.3. Given a focus setting of 2 m, the pre-focus
point situates at f 1.3

pre =1.98 m and the post-focus distance measures
f 1.3
post =2.02m. In contrast, for the smallest aperture setting of T =16,

both distances are f 16
pre = 1.75m and f 16

post = 2.31m, respectively,
assuming a circle-of-confusion of 13 µm. Between the range of fpre
and fpost the image content is depicted at the system’s maximum
sharpness and increasingly blurred elsewhere.

Blur variation is created by shifting the object of interest in depth.
Starting from 20 cm in front up to 20 cm behind the focus, the object
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was moved by a precise and automated slider with a stepping of 2 cm
while having the aperture set to T = 1.3 and T = 16, respectively.
Additionally, the exposure is controlled to account for the attenuation
by the aperture. The overall setup can be seen in Figure 2.

Figure 4 shows an overview of the entire data set. For the planar
test charts, there exists also a reference value for the depth map. Images
that are referred to as non-planar, contain depth variations. It means
that besides the object of interest, there are foreground or background
objects. This setup is intended to evaluate the degradation caused
by deblurring methods in intact image regions or, to the contrary, the
preservation effectiveness of selective deblurring methods.

The last group of images contains a synthetic depth reference.
Whereas the planar images are assigned a reference depth by
measuring the unique position of the target, these images contain
in-scene depth variations. Hence, the ground truth was drawn
manually using the precisely measured geometry of the scene. This
group of images can be seen in Figure 4i and Figure 4j. For the
remainder of the evaluation all planar multi-planar images are referred
to as D1 and all depth-varying images are referred to as D2.

Metrics
For numerical evaluation, we chose 2 often used metrics

from literature and define a third metric, which provided visually
convincing results in the realm of deblurring.

The PSNR Human Visual System (PSNRHVS), proposed by
Egiazarian et al. is based on the usual PSNR. To optimize the metric
for human observers, they suppose that the HVS is more sensitive
to low-frequency changes instead of changes in the high frequencies.
They feed this weighting into the computation of the PSNR [4].

The Visual Image Fidelity (VIS) by Sheikh et al. investigates
on statistical properties of natural images [21].

Our third metric, which we call FCORR is computed by measur-
ing the cross-correlation of the spectra between the reference image
and the deblurred image. Before converting to the frequency domain,
the mean is subtracted to focus on the structural elements and to ignore
small intensity offsets in the data set. The correlation is measured per
color channel and subsequently, the mean cross-correlation value of
all three color channels is computed.

Visual and Numerical Results
An overview of the evaluation can be obtained from Figure

3. Therein, the evaluation process is depicted in accordance to the
raised questions. The letters on the right of the image identify the part
problems and correspond to:

(A) Evaluation of the optimal domain type, color type (RGB or
Luminance) and blur kernel type. This evaluation is done on
the data set D1.

(B) After the basic parameters have been evaluated a detailed,
depth-dependent optimization of the blur kernel offset and
weights is performed. Similar to part A, the multi-planar test
data D1 is used.

(C) Having trained the parameters, the SLD and MLD approaches
are evaluated using the data set D2.

Experiment A: Blur Kernel, Domain and Color
The blurred image can either be provided in linear (dl) or

monitor (dm) domain. Furthermore, it is possible to work either on

Figure 3: Evaluation overview. The letters A,B and C correspond to
different evaluation parts. The identification D1 and D2 correspond
to subsets of our data set. D1 represent multi-planar images and D2
contains images with depth variation.

all RGB channels separately (cr) or on the luminance channel only
(cl). The last and most important parameter is the usage of the PSF
type. It is either possible to work with the real measured PSFs (pr)
or on synthetic Gaussian kernels (ps).

This investigation describes part A from Figure 3. In there the
three parameters d, c and p are varied. For the evaluation, the blur
kernel offset ô(z) and the weight ŵ(z) were optimized for each input
combination. This experiment was done on a subset of different depth
layers. For the four test shots of D1, the distances 190 cm and 210 cm
were selected. To get an overview of the test results, Figure 9 gives the
numerical results for all four selected methods while altering the inputs.

The question arises which of the varied inputs should be used and
which general trend is observable. Table 1 shows a summary of the
previously obtained numerical results. The values were computed, by
fixing the parameter of interest and computing the mean of the remain-
ing parameters. For example, when computing numerical differences
for dl and dm, each of the remaining variations cr, cl, pr and ps were
computed and subsequently the average value of the metric is picked.

The x marker in the table denotes that the corresponding input
performs better. Better means, that the majority of metrics voted for
the input to be the best for the selected method. Majority means that
at least 2 out of 3 results evaluated the input to be better. A star on
the corresponding x indicates that 3 of 3 metrics voted equally.

The usage of either a real or synthetic PSF shows the biggest dis-
agreement and varies for each method. However, an interesting obser-
vation can be done. It shows that the two older methods USM and RL
benefit from a real kernel whereas the more recent methods HLP and
SAP tend to benefit from the usage of synthetic kernels. That means,
approaches which are based on a prior minimization scheme work bet-
ter with synthetic kernels. A strong agreement can be derived for the
question on working on each color channel separately or on luminance.
All methods work better for the luminance channel. The selection of
linear or monitor domain varies strongly in dependence of the method.

Considering the measurement of the real PSFs, the overall
process requires a noticeable amount of efforts. This begins with that
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(a) SiemensPlane (b) WorldPlane (c) WomenPlane (d) TextPlane (e) Doll

(f) Doll (g) DollForeground (h) TextScene (i) DofFan (j) DofLyingPlane
Figure 4: Overview of the data set with corresponding depth maps

(a) Blurred input (b) Reference (c) USM (d) RL (e) HLP (f) SAP
Figure 5: Application of the trained parameters for the test shot Doll at a distance of 190 cm (best viewed in electronic version. Zoom for more
details)

(a) Blurred input (b) Reference (c) USM (d) RL (e) HLP (f) SAP
Figure 6: SLD using trained parameters for the test shot TextPlane at a distance of 190 cm (best viewed in electronic version. Zoom for more details)

(a) Blurred input (b) Reference (c) USM (d) RL (e) HLP (f) SAP
Figure 7: SLD using the trained parameters for the test shot SiemensPlane at a distance of 190 cm (best viewed in electronic version. Zoom
for more details)

(a) Blurred (b) Reference input (c) BHLP (d) USM (e) HLP (f) SAP
Figure 8: Visual comparison of non-blind and blind deblurring approaches for the shot ’WomanPlane’ at 190cm (best viewed in electronic version.
Zoom for more details)
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Figure 9: The three metrics VIF, FCORR and PSNRHVS for varying input combinations of the domain type (linear dl or monitor dm), PSF
type (real pr and synthetic Gaussian ps) and color model (RGB cr or on luminance only cl). The values are averaged for the distances 190 cm
and 210 cm for all four planar scenes. The colorization in the plot corresponds to the following methods:
—– USM —– RL —– HLP —– SAP

Table 1: Majority votes for the different input types p, c and d. A x
indicates that 2 out of three metrics voted for the distinct input type to
be the majority vote. A star indicates that all three metrics agree on the
same result. The values are computed by fixing one parameter and av-
eraging the result for the remaining parameters. The distances 190 cm
and 210 cm were used for all four planar test shots of the data set D1.

Type USM RL HLP SAP

PSF - real - pr x x -
PSF - syn - ps - - x x

Color - rgb - cr - - -
Color - lum - cl x x x x

Domain - lin - dl x x* - x
Domain - mon - dm - - x*

fact that PSFs behave differently for all physical lens setting and the
measurement has to be done with special hardware and appropriate
illumination circumstances. When weighing this fact towards the
benefit in the presented results, the measurement efforts hardly pay
off for very high quality applications. However, in our experiment,
the synthetic PSFs were created by deriving their sizes from the
sizes of the measured PSFs. Thus, it is of great benefit, if at least
the PSFs’ sizes are known. As it is shown in the following parts of
the evaluation, the knowledge of the PSF structure does not deliver
convincing improvement. All the more, the PSFs’ depth-dependent
sizes are of promising benefit.

Experiment B: Optimizing Depth-Dependent Parameters
In this experiment, the selected methods are applied to the four

planar test shots on each of the 21 depth layers. The evaluation shows
the benefit of the depth-guided parameter selection in terms of the best
PSF and the best weight per method. The first task is optimizing the
weights and PSF selection for each depth plane for each test image.

In order to point out the parameters’ depth dependency and
sensitivity, the four implementations noted in Figure 10 were created.

The chosen metric is the FCORR metric. The results can be
obtained in Figure 10. The horizontal axis shows the distance sweep
from−20 cm to 20 cm around the focus point at z f oc=2m in steps of

∆z=2cm. The measurements itself was computed by sweeping both
parameters o(z) and w(z) creating a 2D feature space containing the
numerical results for each depth level. The range for variation of o(z)
was limited to−14 cm and to 14 cm with respect to the initial depth
position. The step width was ∆z = 2cm. The distances which are
used in this part of the evaluation originate from precisely measuring
the ground truth distance. Since the test was fulfilled on the four
planar scenes individually, the resulting best parameter coordinates
are averaged and then considered as learned.

The green lines show, that adapting the PSF accordingly already
results in a great benefit. But, if the PSF is not adapted and remains as
measured but the weight is optimized, the benefit is also remarkable.
Hence both parameters strongly depend on depth and should be
adapted accordingly.

Figure 11 shows a comparison of the best results of each
selected method and additionally the metrics values, if no deblurring
is used. Again the distances reach from −20 cm to 20 cm cm with
respect to the focus at 2 m. Starting in the focus plane and slowly
increasing the distance, the first distinction can be done between
the methods. The two methods USM and RL perform best near the
focus distance since the can be parameterized in such a way that they
don’t have any significant influence. This does not hold for the two
methods HLP and SAP. Both methods are based on a minimization
scheme. The methods don’t behave well near the focus plane since
the weight cannot be set in a way that the image is kept untouched.
An improvement in comparison to the ‘no deblurring’ reference can
be observed at−3cm and +10cm around the focus point. Concerning
this observation, all methods nearly behave the same. When traveling
even further away from the focus plane, especially towards the
negative distance, the method RL is slightly ahead of the competition.
Considering the other methods, the is no clear ranking as they behave
similarly with respect to FCORR. Note, in the depth-of-field zone
(DOF), no method can be better than no deblurring.

The next step of the evaluation contains learning of depth-
dependent parameters. The purpose of evaluating each depth layer
builds the foundation to find the best parameters for depth offsets and
correct weights. This is beneficial for three reasons. First, if the depth
value of a planar scene is known, it is possible to directly apply the
parameters instead of the sweeping for the best. Second, if the scene
contains in scene depth variation the parameters can be applied locally.
Third, the typical lack of a sharp reference, which the methods are
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Figure 10: Mean FCORR results for the four different adaptations of parameters to asses the influence of weight and PSF optimization. Shown
are all four methods including a depth sweep over all planar scenes. The four adaptions are: —– PSF(z) and w(z), PSF as measured and fixed
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Figure 11: Shows all four methods with optimal parameters according
to FCORR per depth plane. It is also shown how the metrics react,
if no deblurring is performs. Close to the focus distance no deblurring
seems to be performing best. But at about−3cm and +10cm around
focus, the deblurring methods show an improvement. At the outer
positions the recent approaches HLP and SAP perform best.
—– USM —– RL —– HLP —– SAP —– No deblurring

optimized to, is overcome. The application of the trained parameters
for each method can be seen in the Figures 5, 6 and 7.

In there, the resulting images of the depth value 190 cm are
depicted. For the trained parameters the method USM delivers
the visually most convincing results although it introduces an
amplification of noise. The approach RL also delivers convincing
results whereas the details are not re-covered entirely. In general, the
RL approach turns out to be more hesitant in terms of sharpening the
image. The HLP results are comparable to the USM results. HLP,
however, still introduces noticeable artifacts on intensity and depth
discontinuities. This effect gets even worse for the method SAP.

Comparison to Blind Deblurring
The presented methods originate from the field of non-blind

deblurring. This means that they are provided with a PSF matrix in
order to perform the deblurring procedure. Our numerical comparison
can be obtained from Figure 12. Therein, all four planar shots at
a distance of 190 cm are computed with the blind method Blind
Hyperlaplacian Prior (BHLP), in comparison to the non-blind methods
with the trained parameters. The weight parameter λ of the method

BHLP was sweeped in order to get the best results. The initial blur
kernel was selected to be a 2×2 pixel area filled with ones in a black
patch of size 25×25. While sweeping the regularization weights, the
standard values, which can be found in the paper of Krishnan et al.
were used for all other parameters [12].

Taking a look at the numerical results, BHLP does not
outperform the non-blind methods in general. However, in a few cases,
BHLP outperforms the non-blind methods. In order to provide a better
impression, a visual comparison is also given in Figure 8. The results
show that BHLP introduces a great amount of sharpness but also pro-
vokes artifacts, especially at edges. The non-blind methods act more
preserving. Furthermore, it has to be kept in mind that blind deblurring
methods require an enormous amount of time due the alternating
minimization scheme optimizing the image and the PSFs. The method
BHLP took 64 times longer than the non-blind version of HLP.

Experiment C: Depth Models
This section focuses on depth variations. Thus, the proposed

SLD and MLD approaches are evaluated.

Single-Layer Deblurring
Starting with an comparison between the ground truth and the

measured depth map, Figure 13 shows the FCORR results, when
the trained parameters are used in SLD. The selection of parameters
via the measured depth map yields results, which are comparable to
using the ground truth depth. Although this observation is slightly
dependent on the used deblurring method, there is no evidence that
shows mediocre results when using the real depth map. On the
numerical basis of this evaluation, we state that the depth precision,
delivered by the upscaled PMD 19kS3 depth map, is sufficient for
selecting PSFs and weights from a pre-learned library.

Figure 14 shows an application of the SLD procedure. Figure
14a shows the originally blurred image. The object of interest, the
doll, was located 14 cm in front of the focus point. Thus, the doll is
slightly blurred. The background objects also show a strong amount
of blur as they are far out of focus. Globally applying the deblurring
method SAP introduces a sharpened doll, but also the background gets
strongly degraded since the single weight and PSF are not adequate
for deblurring the strongly blurred background regions as shown in
Figure 14b. Using SLD instead is depicted in Figure 14c. The doll
clearly gains sharpness whereas the background is left untouched.
The mask was created using the real processed depth map, which was
upscaled using the popular joint-bilateral filter [10]. Then, the face
region was selected in order to derive the depth position of the face
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Figure 13: FCORR results for the selection of the pre-trained parameter by either the ground truth distance information or the depth map.
—– using the ground truth depth information —– using the captured depth map

by the depth map. Using zrange=10cm, a depth interval was selected
which guided the process. The used PSF(ẑ) and w(ẑ) were gathered
from the parameter optimization for the metric FCORR.

Considering the quality of the depth map, it can be seen that
the selection in the hair region of the doll is tricky, when inspecting
Figure 14c. However in this region, the depth map measured more
of the background since the infra-red light is partly transmitted by
the hair resulting in miss-measurement. Regarding the black tape on
text the plane, it can be observed that the blurred parts are used in
the stitched image instead of the deblurred counterparts. This can be
traced back to depth measurement artifacts.

Concluding, the depth-selective approach SLD delivers yet
convincing results. In the introductory example, it is not unusual to
utilize a small DOF. This means that the object of interest is intended
to be sharp while foreground and background are blurred in order to
direct the viewer’s attention of the portrait. If the focus is only slightly
wrong or the actor stepped slightly off his position, the blurred parts
do not change significantly while the face becomes inconveniently
blurred. Deblurring the object of interest using SLD, delivers a great
benefit if the depth map is accurate. Problems occur at corrupted
depth measurements, which require a correction prior to deblurring.

Multi-Layer Deblurring
To add more depth layers for deblurring, the method MLD was

introduced. Therein, first approach (PSF(z)+W(ẑ)) simply adapts the
optimized weight in dependence on depth and the second (PSF(ẑ)+
W(ẑ)) additionally optimizes the PSF selection. Thereby, the effect
of using the optimized PSF selection can be evaluated. The results,
utilizing the selected method SAP and the real depth map, are shown
in Figure 15. Whereas deblurring shows convincing results in this
setup, it is still problematic, that the usage of deblurring methods might
sharpen the image but manipulates it in a way that it can be visually
distinguished from the unprocessed or only slightly processed regions.

Conclusion
In this work, we discussed a comprehensive defocus deblurring

framework, which was ignited by the availability of a color image ac-
companied by a dense depth map. The methodological part addresses
the enhancement of four state-of-the-art deblurring methods. There-
fore, we provided single-layer and multi-layer deblurring strategies to
include depth information, measured lens point-spread functions and
depth-selective weighting. This includes a learning strategy to apply op-
timized parameters to general reference-free data as well as an a priori
captured point-spread-function archive to overcome scene unknowns.

We finally conclude that using the learned parameters and
depth-selective processing yields superior deblurring results while
strongly suppressing artifacts. This is confirmed by numerical and
visual evaluation on our captured test data set. Thus, we argue that
dense depth maps are already highly beneficial towards depth-guided
deblurring approaches, although they still noticeably lack in quality.
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(a) The blurred input image (b) Applying global deblurring method (c) Deblurring only applied in the region of interest
Figure 14: Depth selective image deblurring applied on the test shots Doll and TextScene by only deblurring the object of interest while leaving
the background unprocessed (SLD). Selecting the interval, deblurring is applied in, is guided by the captured depth map. The doll is located
14 cm in front of the focus. The text plane is located 20 cm in front of the focus. The used selected method is SAP.

(a) The blurred test image DofFan (b) Globally deblurring with SAP with only one optimized PSF and weight for
the entire image

(c) SAP, PSF(z) + W(ẑ) and real depth map (d) SAP, PSF(ẑ) + W(ẑ) and real depth map
Figure 15: Visual comparison of increasing complexity in our depth models using the test image DofFan. Employing the learned and optimized
PSFs and weights in 15d shows the most convincing results. The employed selected method was SAP.
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