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Abstract
Certain events of low probability that occur in material

systems have a considerable impact on system characterization.
Though rare event simulation has been a well-researched problem
in areas like financial risk assessment and communication sys-
tems, modeling and simulation of rare events in material systems
remain under-explored.

In this paper, we turn to large deviations theory and impor-
tance sampling to develop a solution to simulate an important rare
event that arises in polycrystalline materials. More specifically,
the microstructure of a polycrystalline material consists of grains
that have different orientations associated with them. These grains
evolve over time and this phenomenon is called grain growth. The
growth of grains is a slow process, making direct observation ex-
pensive and impractical. To alleviate this problem, computational
methods have been developed to simulate grain growth. However,
one event of interest which occurs with low probability involves
a single grain that grows abnormally large at the expense of other
grains. Though Gibbs distribution based models exist for such ab-
normal grain growth, occurrence of this event under such models
is still rare enough that we still need to draw many samples before
an abnormal growth manifests.

We propose an importance sampling distribution from which
to draw samples to simulate abnormal grain growth, instead of
the conventional Gibbs distribution used to model grain growth.
Our proposed importance sampling distribution is based on an
asymptotically efficient rare event probability estimator. With our
method, we consistently generate abnormal grain growth, thus
providing a reliable solution to this important materials science
problem. Our solution can potentially be used in general to sim-
ulate rare events in any system that is modeled by a Gibbs distri-
bution.

Introduction
Several materials science phenomena that occur with low

probabilities are crucial for designing reliable materials. An im-
portant example is a microstructure evolution phenomenon called
abnormal grain growth in polycrystalline materials [10, 9]. It is
a condition in which a few (typically one or two) “grains” (i.e.,
connected lattice sites of the same crystal orientation) grow ab-
normally big at the cost of other grains.

Modeling microstructure evolution with physical experi-
mentation is a very slow process, making direct observation of
grain growth expensive and impractical. Further, abnormal grain
growth is considered to be a rare event, making it even more dif-
ficult to observe in a real material. This problem calls for accu-
rate model-based simulation of microstructure evolution. Grain
growth is sometimes modeled using a Gibbs distribution [10, 9],
and can be simulated using Markov chain Monte Carlo techniques

like the Metropolis-Hastings algorithm [15]. Though we can use
Gibbs distribution-based models for simulating abnormal grain
growth, occurrence of this event under such models is still rare
enough that we need to draw many samples before an abnormal
growth manifests. A solution to this problem is rare event simula-
tion – a set of specific tools to simulate rare events [17, 4, 16, 19].

Rare event simulation has been a well-researched problem in
areas like financial risk assessment [5, 6, 22], queueing and reli-
ability modeling [2, 7], communication systems [18], and power
system blackouts [23]. However, modeling and simulation of rare
events in materials systems remain largely unexplored.

In this paper, we turn to large deviations theory and impor-
tance sampling to develop a solution to simulate abnormal grain
growth. This solution builds upon the cohesive signal process-
ing framework laid out for grain growth by Kubature et al. [12].
One of the most important considerations with respect to events
like abnormal grain growth is how rare the event is. More specif-
ically, we would want to know how rapidly the probability of this
event falls toward zero as the size of the abnormal grain increases.
To answer this and other questions, we first look at the theory of
large deviations – an important branch of probability theory that
is concerned with the asymptotic behavior of tails of probability
distributions. More specifically, large deviations theory studies
how fast the probability of certain events of interest falls to zero
[21].

The rare event of abnormal grain growth can be seen as a
large deviation from the expected grain growth patterns. If we
assume that the probability measure associated with grain growth
(modeled by a Gibbs distribution) obeys a large deviation princi-
ple [3], then we can use the rate function to propose another dis-
tribution in the Gibbs family under which the original rare event is
more likely to occur. Sampling from this new distribution would
consistently produce abnormal grain growth. The idea behind this
solution to rare event simulation is called “importance sampling”.

We set out to design an importance sampling distribution
from which to draw samples to simulate abnormal grain growth.
First, we turn to Bucklew’s treatment to find a necessary and suf-
ficient criterion to ensure an asymptotically efficient importance
sampling density [4]. Then we invoke a powerful theorem from
Baldi et al. [3] that gives the general form of an importance
sampling density for a Gibbs distribution that satisfies the con-
ditions outlined by Bucklew. This implies that our proposed im-
portance sampling distribution leads to an asymptotically efficient
rare event probability estimator.

Once we have the form of an asymptotically efficient im-
portance sampling density for the Gibbs distribution, we choose
an appropriate importance sampling potential that relates to the
amount of abnormality in the microstructure. Application of the
Metropolis-Hastings algorithm to draw configurations from such
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an importance sampling distribution would reduce the system en-
ergy while increasing the likelihood of an abnormal grain config-
uration.

What is Grain Growth?
Polycrystalline materials are made up of grains that have

varying sizes and orientations. These grains undergo evolution
under the application of heat and pressure. This process is known
as grain growth (or more generally microstructure evolution). The
growth of grains in a polycrystalline material is a very complex
phenomenon and the factors that affect grain growth are not well
understood. One approach to understanding the microstructure
evolution is through computational simulation. In recent years,
many computational methods have been developed to simulate
grain evolution, and to study the effects of grain growth on the
overall properties of a material. One such method uses the Potts
model, with simulation based on Metropolis sampling[10, 1, 13].
The image processing community refers to the Potts models as a
Markov Random Field (MRF). The MRF model can be written as
a Gibbs distribution.

Figure 1. Electron microscope image of a real polycrystalline material.

Figure 2. Illustration of grain boundaries, with each grain labeled with an

index representing its crystallographic orientation.

Figure 1 shows an electron image of a real polycrystalline
material. Figure 2 illustrates the boundaries between different
grains. The label on each grain is an index indicating the crys-
tallographic orientation of each grain.

In certain situations, one or more grains may grow abnor-
mally compared to other grains in the system. This phenomenon
is termed abnormal grain growth and it can be an undesirable, and
sometimes catastrophic phenomenon. However, the occurrence of
abnormal grain growth is stochastic, and relatively rare [8]. The

purpose of this work is to model and simulate the event of abnor-
mal grain growth using rare event simulation techniques.

Simulating Normal Grain Growth
Before we present our solution for simulation of abnormal

grain growth, it is helpful to visit a state-of-the-art method for
simulation of normal grain growth. We start with the Potts model
and then describe how Metropolis-Hastings algorithm is adapted
to simulate grain growth that is characterized by the Potts model.

Potts Model and Metropolis-Hastings Sampling
In this section we describe the simulation of the Potts model

using a Metropolis method. The method presented in this section
describes a technique to sample from a Gibbs distribution, which
will later be adapted to the specific problem of grain growth.

Consider a system defined on an n×m lattice L⊂ Z2 where
each site in the lattice has one of Q possible orientations associ-
ated with it. Let S = (S1, ...,SN) be a random configuration of
orientation indexes on L, where Si is an index that represents the
orientation at site i, and N = mn is the number of sites in the 2D
lattice. Let Oi = [φi,ψi,Θi] be the vector of Euler angles repre-
senting the crystallographic orientation at site i [14]. It should
be noted that, due to the physics of grain growth, the number of
possible orientations among grains in a polycrystalline material is
finite.

Once we have assigned each lattice site j an orientation index
S j, we can define the notion of grains and related properties. A
grain is defined to be a connected set of lattice sites, so that all
lattice sites within a grain have the same orientation.

The energy of a configuration of orientations is often de-
scribed by a Hamiltonian of the form,

E(s) =
J
2

N

∑
i=1

z

∑
j=1

(1−δ (Si,S j)), (1)

where J is the energy associated with any pair of lattice sites with
dissimilar orientation states, N is the total number of sites in the
lattice, and z is the number of neighbors of each lattice site, and δ

is the Kronecker delta function.
Assuming a Gibbs distribution, we can use the Hamiltonian

of Eq. (1) to formulate the stationary distribution π from which
to sample:

π(s) =
1
Z

exp
(
−E(s)
kBT

)
, (2)

where s denotes a possible configuration of the orientation states
across all sites in the lattice, Z is the partition function, the inter-
action potential, E(s), is the system Hamiltonian, kB is the Boltz-
mann constant, and T represents the temperature.

Equations (1) and (2) represent the ”Potts” model. To simu-
late the Potts model for grain growth [15], a lattice site i is chosen
at random, and the orientation Sk of one of its unlike neighbors
is selected as a potential new orientation for site i. The change in
system energy corresponding to the new orientation at site i would
be given by

∆E = E(s(i))−E(s(k)), (3)

where s(i) is the current lattice configuration and s(k) is the new
lattice configuration with Sk as the new index at site i.
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If ∆E ≤ 0, then the orientation index of the given lattice site,
Si, is changed to the candidate orientation index Sk. If ∆E > 0,
then the orientation index at site is changed to the candidate index

with probability p(∆E) = exp
(
−∆E
kBT

)
.

This is the simulation method based on the Potts model only.
In order to more accurately model true grain growth, the method
can be modified in accordance with domain knowledge to yield
more realistic simulations [15]. This necessitates a clear mathe-
matical outline of some properties of materials that make for use-
ful simulation variables and parameters. This is described in the
next section.

Grain Growth Simulation with Metropolis-
Hastings Sampling

Boundaries between grains have important properties that
have been shown to affect how the grains evolve. Holm et al. [9]
discuss two important boundary properties relevant to this prob-
lem – boundary energy and boundary mobility, both of which de-
pend on a scalar value called the misorientation angle. Given a
boundary between sites i and j with unlike indexes Si and S j, we
can define the misorientation angle as the smaller difference in
angle between the orientations of the two grains on either side of
the boundary. The misorientation angle between sites i and j is
defined as the L2 norm between the orientations Oi and O j. That
is, the misorientation angle θi j is given by,

θi j = ||Oi−O j||2. (4)

A grain boundary between sites i and j has a boundary en-
ergy γi j and a boundary mobility Mi j . These properties, which
are both functions of misorientation angle θi j , are critical factors
in grain growth. The boundary energy can be modeled by the
Read-Shockley function [9] as,

γi j =γ(θi j)

=


θi j

θ1

{
1− ln

(
θi j

θ1

)}
θi j < θ1

1 θi j ≥ θ1

(5)

The boundary mobility can be modeled by Huang and
Humphreys equation [11] as,

Mi j =

1− exp

(
−n
(

θi j

θm

)d
)

θi j < θm

1 θi j ≥ θm

, (6)

where n, d, θ1, and θm are parameters that are experimentally de-
termined. These two functions are plotted in Fig. 3 and Fig. 4,
which show graphically how the energy and mobility of a bound-
ary increase as the orientation difference between the grains in-
creases.

Now, we redefine the total system energy (or Hamiltonian)
to reflect the grain boundary energy of all grains that make up the
system on the 2D lattice, as follows.

E(s) =
N

∑
i=1

z

∑
j=1

γi j. (7)

Figure 3. Boundary energy as a function of misorientation angle. Here,

θ1 = 15 °.

Figure 4. Boundary mobility as a function of misorientation angle. Here,

θm = 15 °, n = 5 and d = 4.

Also, we redefine the acceptance probability so as to induce
a dependence on grain boundary mobility. This dependence is
the link between this specific problem and the generic metropolis
sampler.

a(S(k+1)
i |S(k)i )

= min

(
p0, p0 exp

(
− (E(s(k+1))−E(s(k)))

kBT

))
,

(8)

where s(k) and s(k+1) represent the lattice configurations where
the i-th lattice site has an orientation index of S(k)i and S(k+1)

i ,
respectively.

Here, p0 is the reduced mobility, given by,

p0 =
Mi j

Mm
(9)

where Mi j is the reduced mobility of the boundary between grains
gi and g j, and Mm is the maximum reduced mobility in the system.

Grain growth is simulated using the Metropolis algorithm
with the updated equations for the Hamiltonian, and acceptance
probability as outlined in Eqs. (7) and (8) respectively. An outline
of the Metropolis-Hastings algorithm is given in algorithm 1:
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Algorithm 1 Simulation in [15]

1: procedure EVOLVED GRAIN STRUCTURE ← SIMU-
LATE(initial grain structure, max time)

2: (Inputs: Initial grain orientation states, max time)
3: (Output: Simulated grains, after growth modeled by

Metropolis algorithm)
4: while (t < max time) do
5: Choose a lattice site, i, at random.
6: S←{all unlike states in the neighborhood of i}
7: s(i) is chosen randomly from S
8: Compute the change in the system energy, ∆E – re-

sulting from this state reassignment.
9: if ∆E > 0 then

10: Generate a random number r ∈ (0,1).

11: if (r < p0 exp
(
−∆E
kBT

)
) then accept the new ori-

entation state.
12: end if
13: elseAccept the new orientation state with probability

1.
14: end if
15: t++
16: end while
17: end procedure

Theoretical Tools for Simulating Abnormal
Grain Growth as a Rare-Event

One of the most important considerations when simulating
events like abnormal grain growth is how rare the event is. In
other words, we need to ask if the probability of the event to be
simulated is very low. The notion of “very low” is vague and
imprecise. Even if it were to be made precise, why should the
simulation designer consider the rarity of the event? To answer
these questions, we first look at the theory of large deviations – an
important branch of probability theory that is concerned with the
asymptotic behavior of tails of probability distribution sequences.
After answering these questions using large deviations theory, we
outline the theory of importance sampling that builds upon the
foundations laid by large deviations theory.

Large Deviations Theory
Large deviations theory studies how fast the probability of

certain events of interest falls to zero [21]. The “rate function” is
a measure of the speed of the probability decay and will play a
pivotal part in designing a density function from which to sample
grain texture.

Before we start with the details, let us describe a simple fair-
coin tossing experiment to explain the main ideas of large devia-
tions theory. Though it does not concern microstructure evolution,
this simple experiment serves our expository needs.

Let F be a random variable that records the outcome of a
single toss of a fair coin. Then, F can take on two possible values,

F =

{
0 if heads is tossed
1 if tails is tossed

. (10)

The probability mass function for this experiment is given

by,

p(F = 0) = p(F = 1) = 0.5. (11)

Now, let us toss this coin n times. Suppose Pn is the
probability measure associated with this experiment. Let X =
(F(1),F(2), ...,F(n)) be the outcome of the experiment and Tn =
Tn(X) be the average number of times tails is tossed.

Tn =
1
n

n

∑
k=1

F(k), (12)

where F(k) is the outcome of the k-th toss (see Eq. (10)).

Suppose we would like to calculate the probability of the
event A = {Tn > t}. We know, in this experiment, that Ep[Tn] =
0.5. Therefore if t > 0.5, the event A would be a deviation from
what is expected. Further, it would be reasonable to conclude that
as t−0.5 increases, the probability of event A under the measure
Pn, Pn(A), decreases.

Given a value of t > 0.5, the probability of event A, due to
the WLLN, converges to 0 as n→ ∞, and this can be expected to
generally decrease with increasing n. In addition to this behavior,
if the deviation of t from the expected value increases, the proba-
bility, Pn(A) decays. If this probability decay is exponential, then
we say the sequence {Pn}n∈N possesses a large deviations prop-
erty. In case of the coin tossing experiment, the probability den-
sity function of the average number of tails has a large deviations
property (see Fig. 5).

Mathematically, {Pn}n∈N has a large deviations property if

∃ a function I(A) s.t. Pn(A)≈ exp(−nI(A)). (13)

The function I(A) is related to the so-called rate function,
I(x), as follows,

I(A) = inf
x∈A

I(x). (14)

The rate function associated with the coin-tossing experi-
ment can be seen in Fig. 6.

The rate function, I(x), is convex in x, and is defined through
the Legendre transform 1 [20] as,

I(x) = sup
θ

[θx−φ(θ)], (15)

where θ ∈R, and φ(θ) = limn→∞
1
n log(Ep[exp(θTn)]). The rate

function, I(x), achieves its minimum at Ep[Tn], which is 0.5 in
this example.

1also called the Legendre-Fenchel transform.
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Figure 5. Probability density function, p(x), of the the average number of

tails in a fair-coin tossing experiment. Here, n is the number of tosses.

Figure 6. Rate function, I(x) for the fair-coin tossing experiment

The idea of large deviations can be extended to any exper-
iment. In the case of a Gibbs distribution, n takes the value of
the lattice size instead of the number of independent trials (coin
tosses, in our example). Intuitively, this means that the probabil-
ity of a grain deviating from the “normal” (expected) size decays
exponentially with the size of the material lattice, in conjunction
with its own rate function. The next section deals with the ques-
tion of simulating events that represent large deviations from the
expected value of the random variable in question.

Importance Sampling
Suppose X is a random variable describing a random exper-

iment on a sample space, with probability density given by p(x).
We are interested in evaluating the probability:

ρ = E[1A(X)], (16)

where, 1A(x) is an indicator function on the set A which is
of interest to us. One way to evaluate Eq. (16) is to sample n
i.i.d. random variables X1,X2, ...,Xn from p(x) and calculate the
estimate,

ρ̂ =
1
n

i=n

∑
i=1
1A(Xi). (17)

Here, ρ̂ is known as the Monte Carlo estimate of ρ . An al-
ternative way to evaluate Eq. (16) is to sample n i.i.d. random
variables X1,X2, ...,Xn from a distribution q(x) known as the im-
portance sampling distribution, and to calculate the estimate,

ρ̂IS =
1
n

i=n

∑
i=1
1A(Xi)

p(Xi)

q(Xi)
. (18)

Here, ρ̂IS is known as the importance sampling estimate, and
q(x) is such that 1A(x)q(x) is non-zero for values of x at which
1A(x)p(x) is non-zero . We must choose the importance sampling
density carefully. Ideally, the importance sampling density should
be such that it hits the rare event of interest (A) more often. It can
be seen that Eq[ρ̂IS] = ρ , implying ρ̂IS is an unbiased estimator of
ρ .

We are now tasked with the problem of finding the criteria
for a “good” importance sampling density. We turn to Bucklew’s
treatment to find a necessary and sufficient criterion to ensure an
asymptotically efficient importance sampling density [4]. We be-
gin by finding the variance of the estimator ρ̂IS:

n∗ var(ρ̂IS) =
∫
(1A(x)

p(x)
q(x)

−ρ)2q(x)dx (19)

=
∫
12

A(x)
p2(x)
q(x)

dx−ρ
2 (20)

=: Vq−ρ
2 (21)

where, Vq =
∫
12

A(x)
p2(x)
q(x) dx.

We want to minimize the estimator variance. Since variance
is always non-negative, the minimum value that the variance can
take is zero. With variance equal to zero, we get:

Vq = ρ
2

=⇒ 1
n

log(Vq) =
1
n

log(ρ2)

=⇒ 1
n

log(Vq) =
2
n

log(ρ)

=⇒ lim
n→∞

1
n

log(Vq) = lim
n→∞

2
n

log(ρ)

=⇒ Rq(A) = 2I(A), (22)

where, Rq(A) is the rate function associated with Vq, and I(A)
is the rate function associated with ρ . We consider Eq. (22) to be
the necessary and sufficient criterion for an importance sampling
estimator to be asymptotically efficient. Returning to our abnor-
mal grain growth simulation problem, we can now work on pick-
ing an importance sampling distribution for the Gibbs distribution
such that the criterion of Eq. (22) is satisfied.
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Importance Sampling for Gibbs Distribution
Formulating an importance sampling solution to the problem

of microstructure evolution is, in principle, similar to that of the
coin tossing experiment. However in practice, the underlying dis-
tribution, parameters of the model, and the physical experimental
setting all make microstructure evolution a far more complicated
problem than the coin tossing experiment. The differences, there-
fore, run deeper than the event of interest and the correspond-
ing experimental outcome, necessitating a sophisticated simula-
tion framework. A trial of this experiment consists of drawing a
2D sample (or configuration) from the Gibbs distribution, which
is reproduced below:

π(s) =
1
Z

exp
(
−E(s)
kBT

)
, (23)

where the interaction potential, E(s), is the Hamiltonian of con-
figuration s as given in Eq. (7).

The function, Tn, is simply the fraction of the area occupied
by the largest grain. Tn : Rn→ R, is a mapping from the n-tuple
of all lattice sites on the 2D grid to a single real number. More
formally,

Tn := Tn(s) =
1
n
·max

k

n

∑
i=1
1[g(i)=k](i), (24)

where g(i) gives the index of the grain to which the lattice site i
belongs, and k = 1,2, ...,K is grain index, and K is the number of
grains in the configuration s.

The event of interest, A, describes abnormal grain growth.
So intuitively, it must correspond to the case where the largest
grain has grown beyond a certain size (relative to the whole area).
We can thus formulate A as:

A = {s : Tn(s)> t}, (25)

where t ∈ [0,1].
With these foundations, we are now ready to formulate an

importance sampling density for this problem modeled by the
Gibbs distribution. We invoke a powerful theorem from Baldi
et al. [3] that gives the general form of the importance sampling
density for Gibbs distribution. We present a concise version of the
theorem below:

Theorem 1 An asymptotically efficient importance sampling
density for the Gibbs distribution is guaranteed to exist. Further,
the density function has the interaction potential given by,

W (s) = E(s)−gG(s), (26)

where G(s) is any translation-invariant, absolutely summable in-
teraction potential. The weight g can be found by solving the
following equation:

EW [Tn(s)] = t, (27)

where, EW [·] is the expectation taken with respect to the Gibbs
density, πW , with interaction potential given in Eq. (26), and con-
figuration s is drawn from the importance sampling density, πW .

Using Theorem 1, it follows that an asymptotically efficient
importance sampling density for Gibbs distribution is given by,

πW (s) =
1
Z

exp
(
−W (s)

kBT

)
=

1
Z

exp
(
−(E(s)−gG(s))

kBT

)
. (28)

This importance sampling density satisfies the criterion in
Eq. (22) and hence is asymptotically efficient. Now that we have
the form of the importance sampling density for Gibbs distribu-
tion, it remains to choose an appropriate expression for the poten-
tial G(s) that in some way relates to the measure of abnormality in
the microstructure. Application of the Metropolis-Hastings algo-
rithm would reduce the net potential, thereby reducing the system
Hamiltonian while increasing the abnormality of the grain config-
uration. The balance between these two objectives is controlled
by g, whose value we find by empirically solving Eq. (27).

An Importance Sampling Framework to
Achieve Abnormal Grain Growth

In this section, we formulate an expression for the interaction
potential, G(s), and therefore, W (s). For our purpose, G(s) must
satisfy two conditions - it must be a measure of abnormality of the
configuration, and it must have a form that can be summed over
all the lattice sites in the configuration.

But what does it mean for G(s) to measure the amount of ab-
normality in configuration s? A zeroth order approach would be
for G(s) to be a count of all sites in the configuration s that belong
to the (most) abnormal grain 2 (with grain index kabn). A better
expression of G(s) would not only count sites that belong to the
abnormal grain, but also weight each count by the abnormality of
the neighborhood of each site. The abnormality of the neighbor-
hood could simply be a count of the number of neighboring lattice
sites that belong to the abnormal grain. The second condition on
G(s) ensures that updating G(s) (after every lattice site update
in the Metropolis-Hastings algorithm) would be computationally
tractable.
With these considerations in mind, our proposed expression for
G(s) is as follows,

G(s) =
N

∑
i=1

ci(ni +1), (29)

where, N is the number of sites in the lattice,

ci =

{
c1 if site i belongs to the kabn-th grain
c2 otherwise

c1,c2 are constants such that c1 > c2.
ni = number of neighboring sites of i that belong to the kabn-th
grain.
kabn is the index of the most abnormally growing grain.
Note that the term (ni + 1) in Eq. (29) guards against the case
when none of the neighbors of site i belong to the abnormal grain,

2This would raise the question of what would make a grain (the most)
abnormal. We answer this important question after we develop an expres-
sion for G(s), and we assume for now that we have a grain, gkabn , that is
abnormally growing.
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as opposed to having just ni which would zero out G(s) even when
site i belongs to the abnormal grain.

We calculate the index, kabn, of the (most) abnormal grain
by considering two factors:
(1) the size of the grains in configuration s, and
(2) the velocity at which the grains are growing.

Specifically, we compute the abnormal grain index by a very
simple two-objective optimization as follows:

kabn = argmax
k

(sk +wv(p)
k ), (30)

where sk is the size of the k-th grain, v(p)
k is its velocity, and the

weight, w, balances the size and velocity. In order to make an as-
sessment of how fast the grains are growing currently, we use the
notion of “instantaneous” velocity. The (instantaneous) velocity,
v(p)

k , of grain k can be defined as the net growth of the grain k in
the past p attempts 3.

Now that we have an expression for G(s), we use it in con-
junction with E(s) (see Eq. (7)) in the Metropolis-Hastings algo-
rithm as shown in algorithm 1 to simulate abnormal grain growth.

Putting all results together, the importance sampling density
πW (of Eq. (28)) can be explicitly written as,

πW (s) =
1
Z

exp


−

(
N

∑
i=1

z

∑
j=1

γi j−g
N

∑
i=1

ci(ni +1)

)
kBT

 . (31)

Results
We perform nine simulations4 by varying the value of the

importance sampling parameter, g (see Fig. 8, for representative
examples). In order to observe the effect g has on the microstruc-
ture evolution, we keep other parameters (velocity weight w, c1,
and c2) fixed. Specifically, we set c1 = 1, c2 = −1, and w = 0.8.
We then vary g from 0 to 0.24 in steps of 0.03. The case where
g = 0 corresponds to having no importance sampling potential
term (G(s)), and our simulation falls back to the regular Monte
Carlo framework. For each simulation s, we report the fraction of
the area occupied by the largest grain.

In our experimental results, we observe that the largest grain
size increases with increasing values of g. This property helps us
solve for the required value of g empirically, given the knowledge
of desired value of the largest grain size. Since we experiment
with a limited number of g values, we perform a curve fitting oper-
ation to establish the relationship between g and the largest grain
size. Specifically, we fit two polynomials (of degrees 2 and 3)
that fit the data best (in the least squares sense), and the resultant
curves are given in Fig. 7. While there is not much visual dif-
ference between the two curves, the 3rd degree polynomial curve

3The value of p = 1 would be make the velocity highly instantaneous,
but is not usually the best choice because of possible fluctuations. On the
other hand, a high value of p makes the velocity less instantaneous and
possibly “misleading”.

4We modified Sandia National Laboratory’s SPPARKS toolbox for our
simulations.

represents a bijective function, and is therefore the more useful
curve in determining the required value of g for a desired value of
the largest grain size.

(a) Curve fitted to polynomial of degree 2

(b) Curve fitted to polynomial of degree 3
Figure 7. Curve fitting to establish an empirical relationship between the

desired values of the largest grain size and the corresponding required value

of parameter g.

The curve fitted to a polynomial of degree 2 is given by,

p2(g) = 14.4360g2−0.8508g+0.0768. (32)

and the curve fitted to a polynomial of degree 3 is given by,

p3(g) = 17.4585g3 +8.1510g2−0.2820g+0.0689. (33)

Conclusion
In this paper, we used large deviations theory and importance

sampling to propose a simulation algorithm to simulate an impor-
tant rare event that arises in materials science. Specifically, the
phenomenon we dealt with was abnormal grain growth in poly-
crystalline materials.

We proposed an importance sampling distribution from
which to draw samples to simulate abnormal grain growth, instead
of the conventional Gibbs distribution. The proposed importance
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(a) Grains evolved after 20,000 MCS (b) Grain boundaries corresponding to (a)

(c) Grains evolved after 20,000 MCS (d) Grain boundaries corresponding to (c)

(e) Grains evolved after 20,000 MCS (f) Grain boundaries corresponding to (e)

(g) Grains evolved after 20,000 MCS (h) Grain boundaries corresponding to (g)
Figure 8. (a), (b) g = 0.00: regular (non-importance) sampling; largest grain size (relative to full area) = 0.052; (c), (d) g = 0.06; largest grain size (relative to full

area) = 0.114; (e), (f) g = 0.12; largest grain size (relative to full area) = 0.198; (g), (h) g = 0.24; largest grain size (relative to full area) = 0.667.
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sampling distribution is based on an asymptotically efficient rare
event probability estimator. With our method, we have been able
to consistently generate abnormal grain growth, thus providing a
reliable solution to this important materials science problem. This
work resulted in a general framework to simulate rare events in
any system that can be modeled by the Gibbs distribution.
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