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Abstract
This paper formulates the hyperspectral anomaly detection

problem in terms of a local context by modeling the relationship
of individual pixels with the annuli of pixels that surround them.
In this formulation, a locally anomalous pixel is one that might
even be quite typical in the context of the whole image, but is
“out of place” with respect to its local neighborhood. The prob-
lem of anomaly detection is cast as a supervised learning prob-
lem, in which samples from one class (normal) are provided by
pixel/annulus pairs that occur in the scene, and samples from the
second class (anomalous) can be created by making pixel/annulus
pairs in which the pixels and annuli are effectively scrambled with
respect to each other.

Although the formulation is in terms of machine learning,
the experiments performed here use a simplified approach in
which parametric (multivariate Gaussian and fatter-tailed mul-
tivariate t) distributions are fit to the data. This leads to a suite
of local anomaly detectors that we compare to standard local RX
and global RX detectors.

I been in the right place
But it must have been the wrong time
I’d of said the right thing
But I must have used the wrong line
I been in the right trip
But I must have used the wrong car
My head was in a bad place
And I’m wondering what it’s good for

— Dr. John

Introduction
The rich variety of anomaly detection algorithms that have

been proposed for hyperspectral imagery [1] speaks to their ap-
peal. Anomaly detection offers a way to deal with the burgeon-
ing glut of image data by providing a principled and scalable ap-
proach to cue more expensive (e.g., human) analysis on an ad-
justably small fraction of the available imagery. Hyperspectral
imagery is especially attractive for remote sensing applications
because each pixel contains information about the material prop-
erties of whatever is in the scene. A hyperspectral pixel can con-
tain hundreds of channels of spectral information (far more than
the three – red, green, and blue – channels of traditional im-
agery). In fact, because there is so much information per pixel,
many hyperspectral analysis algorithms treat the image as a “bag
of pixels,” processing each multichannel pixel independently, and
a pixel is considered anomalous if it is unlike all of the other pix-
els in the bag. For the local anomaly detection problem, however,
spatial context is taken into account as well.

The main contribution in this paper is the formulation of

local anomaly detection as a binary classification problem, for
which the tools of machine learning (both traditional and mod-
ern) can be applied. In this formulation, a pixel is characterized
by two (usually vector-valued) quantities, y and x. Here, y corre-
sponds to the pixel itself and x = [xT

1,x
T
2, . . . ,x

T
K ]

T corresponds to
the K pixels in the annulus surrounding the pixel of interest. For
multispectral images with d channels, y is a d-dimensional vector,
while x has Kd components. See Fig. 1.

As a practical matter, we can reduce the number of vectors K
that we use to characterize the annulus, by selecting linear combi-
nations of the pixel values. A symmetry-inspired feature selection
approach, described in [2], can reduce K = 40 to K = 7.

The key to any target (or anomaly) detection problem is the
characterization of the background [3]; the background, or non-
target, or “normal” class, corresponds to the bulk of the image,
and samples drawn from this class are provided by the image it-
self. In this case, the background model includes the coupled
pixel-annulus system, denoted (x,y). We write p(x,y) as the prob-
ability distribution function associated with the normal class.

Anomalies are deviations from the background model, but in
order to optimize the detection of anomalies, we need a model for
those anomalies. If we write pa(x,y) as a model for local anoma-
lies, then we can use the likelihood ratio to measure anomalous-
ness:

A (x,y)∼ pa(x,y)
p(x,y)

. (1)

We use ‘∼’ to indicate a kind of informal equality. We treat
“anomalousness” as a relative term, so any positive monotonic
function (e.g., a logarithm) of the likelihood ratio will serve
equally well as an anomalousness measure.

We argue that the proposed formulation enables optimized
detection (in the Neyman-Pearson sense) of local anomalies in
hyperspectral imagery. This will be demonstrated with numerical
experiments on real data with artificial anomalies (obtained by
taking pixels from one part of an image and moving them to an-
other) showing ROC curves that compare the performance of de-
tectors based on the proposed formulation versus traditional and
regression-based anomaly detectors.

In what follows, we write p(x) and p(y) as the marginal dis-
tributions associated with p(x,y).

Global and Local RX
As a point of comparison, we also consider anomaly detec-

tors that do not use the local annulus information in x. That is:

A (y)∼ pa(y)
p(y)

. (2)
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Figure 1. A pixel y is surrounded by an annulus of pixels x1, x2, . . . , xK .

The question of interest is whether y is anomalous in the local context of

the x-pixels. The annuli shown here are 7× 7 with a 3× 3 hole, so K = 40.

Exploiting the eight-fold symmetry of the square annulus, we can work with

a reduced dimensionality of K = 7 features per band.

If we take pa(y) to be uniform and p(y) to be multivariate Gaus-
sian, then we obtain one of the simplest anomaly detectors, given
by the Mahalanobis distance [4] to the center of the data. This
gives

A (y) = (y− ŷ)TR−1
yy (y− ŷ)T, (3)

where Ryy =
〈
(y− ŷ)(y− ŷ)T 〉. Here, ŷ is a mean spectrum. For

global RX, ŷ is the average pixel spectrum over the whole im-
age. A global anomaly is something like a pink spaceship, which
would be an unusual sighting anywhere in the image.

For local RX,

ŷ = 〈x〉= (1/K)
K

∑
k=1

xk (4)

is the average pixel over the annulus surrounding the pixel of in-
terest. The average that defines Ryy can be over the same an-
nulus that defines ŷ (as originally suggested by Reed, Yu, and
Stocker [5, 6]), over a larger annulus (as suggested by Matteoli
et al. [1]), or over the entire image. For computational efficiency
and to avoid issues of covariance regularization [7–16], we use a
global average for Ryy even as we are using a local average for
ŷ. The pink spaceship will likely still be anomalous, but so will
more ordinary objects that are in unusual locations (e.g., a blue
Prius in the middle of the dense forest).

Wrong (i.e., conditionally anomalous) spectrum
The anomalous y is modeled as a broad flat distribution, e.g.,

pa(y) = const. Thus, pa(x,y) = const× p(x), which leads to an
anomaly detector of the form

A (x,y)∼ p(x)
p(x,y)

. (5)

This expression recalls the definition of conditional proba-
bility: p(y|x) = p(x,y)/p(x). Thus, Eq. (5) can be interpreted
as a kind of conditional anomalousness: A (x,y) is large when
p(y|x) is small. In other words, y is unusual in the context of
the annulus pixels x. This anomaly detector is similar to Local
RX, in that it is sensitive not only to pink spaceships but to hy-
brid automobiles in rural settings. Where Local RX makes an ad
hoc estimate of anomalousness, however, the conditional anoma-
lousness in Eq. (5) aims for optimality by employing a likelihood
ratio.

Right spectrum in the wrong place
Another kind of anomalous pixel is anomalous in the context

of the annulus pixels without being anomalous in its own right.
That is, the spectrum y is ordinary compared to the other pixels
in the image (i.e., it has the “right spectrum”), but it is locally
anomalous in the context of the pixels in its surrounding annulus
(i.e., it is “in the wrong place”). For example, a tree in a forest
might not be at all unusual, but a lone tree surrounded by build-
ings (assuming there are no other lone trees in the city) would
qualify as anomalous in this framework. Here, instead of taking
pa(y) = const, we take pa(y) = p(y), where p(y) is the distribu-
tion associated with image pixel spectra y.
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Our local anomaly detector is again expressed as a likelihood
ratio:

A (x,y)∼ p(x)p(y)
p(x,y)

. (6)

When this quantity is large for a specific (x,y) pair, then we take
y as anomalous with respect to its local context x. Although it
is possible to estimate p(x,y) directly – e.g., as a Gaussian or
heavy-tailed elliptically-contoured distribution – we observe that
the expression p(x)p(y)/p(x,y) can be interpreted as a likelihood
ratio, which means that it can also be estimated indirectly using
binary classification algorithms from machine learning.

This formulation treats location as paramount. Our aim is
not to determine whether the spectrum of a pixel y is by itself
anomalous, but whether it is anomalous in the context of the pixels
surrounding it. And, in contrast to the conditional anomalousness
defined in Eq. (5), a pixel that is unusual in its own right (e.g.,
that pink spaceship) will be less anomalous in this RSWP (Right
Spectrum in the Wrong Place) formulation.

Gaussian and Elliptically-contoured models
Without loss of generality, assume that the (global) mean val-

ues of x and y have been subtracted, and are now zero. For a zero-
centered Gaussian model of x and y, we specify a covariance Rzz,
which is estimated by the second moments of the data:

Rzz =

[
Rxx RT

yx
Ryx Ryy

]
=

[ 〈
xxT 〉 〈

xyT 〉〈
yxT 〉 〈

yyT 〉 ] , (7)

where we have written Rxx =
〈

xxT 〉 and Ryy =
〈

yyT 〉 and

Ryx =
〈

yxT
〉

. Let us also write the Mahalanobis dis-

tances: ξx(x) = xTR−1
xx x, and ξy(y) = yTR−1

yy y, and ξz(x,y) =[
xT yT ]R−1

zz

[
x
y

]
.

In this context, we can write the wrong-spectrum detector as

A (x,y) = ξz(x,y)−ξx(x) (8)

and the right-spectrum-wrong-place anomaly detector as

A (x,y) = ξz(x,y)−ξx(x)−ξy(y). (9)

In fact, we can also write the Global RX detector in Eq. (3) as

A (y) = ξy(y). (10)

This expression can be extended from multivariate Gaussian
to more general elliptically-contoured distributions. In partic-
ular, for the multivariate t distribution suggested by Manolakis
et al. [17] for hyperspectral data in general, we can again follow
the lead of anomalous change detection to write [18]:

ξ
′ = H(d,ν ,ξ ) = (d +ν) log

(
1+

ξ

ν−2

)
, (11)

where ν is the degrees of freedom parameter in the t distribution.
Observe that in the ν → ∞ limit, ξ

′ becomes ξ . Fig. 2 shows a
plot of ξ

′ vs ξ ; we see that ξ
′ increases monotonically with ξ , but
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Figure 2. Function H(d,ν ,ξ ) defined in Eq. (11) for elliptically-contoured

multivariate t distribution. Here d = 10 and ν takes on values 3, 5, 10 (solid),

50, and 1000 (very nearly linear).

with decreasing slope as ξ gets larger. Informally, we can think
about this in terms of the effect of outlier values of ξ being less
significant.

This leads to an algorithmically trivial modification (replace
ξ with ξ

′) of Eq. (8)

A (x,y) =ξ
′
z(x,y)−ξ

′
x(x) (12)

=H(dx +dy,ν ,ξz(x,y))−H(dx,ν ,ξx(x)) (13)

=(dx +dy +ν) log
(

1+
ξz(x,y)
ν−2

)
− (dx +ν) log

(
1+

ξx(x)
ν−2

)
(14)

and of Eq. (9):

A (x,y) =ξ
′
z(x,y)−ξ

′
x(x)−ξ

′
y(y) (15)

=(dx +dy +ν) log
(

1+
ξz(x,y)
ν−2

)
− (dx +ν) log

(
1+

ξx(x)
ν−2

)
− (dy +ν) log

(
1+

ξy(y)
ν−2

)
. (16)

Here, dx and dy are the dimensions, respectively, of the x and y
vectors. In particular, dy = d is the number of channels in the hy-
perspectral image, and dx =Kd, where K is the (effective) number
of pixels in the annulus.

Here, the covariance matrix is estimated from second mo-
ments of the data. But for anomaly detection, where it is the
periphery of the distribution that is important, an alternative ap-
proach might be to estimate the covariance associated with an el-
lipsoid that encloses most of the data [19].

Analogy with Anomalous Change Detection
Since we have an x and a y for each pixel, we can think of

them as two separate images (the x image will have many more
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Figure 3. Cooke City, MT; HyMap sensor with 126 bands [25].

bands than the y image), and can imagine for the purposes of this
thought experiment that the x image was taken before the y image.
For most of the pixel pairs (x,y), the “change” from x to y is
normal. But saying that a given pixel y is anomalous in the context
of an associated annulus x would be interpreted as saying that y
indicates an anomalous change at that pixel compared to the x that
was observed at that pixel in the previous image.

The analogy may be imperfect, but the mathematics is very
similar to that developed for the anomalous change detection
problem [20–22], including the use of elliptically-contoured dis-
tributions [18].

Relation to Regression Framework
The formulation here extends what was previously devel-

oped as a “regression framework” [2, 23]. In that work, one uses
regression to fit a function f that provides an estimate ŷ = f (x)
of a center pixel y as a function of annulus pixels x. From this
estimator, one can compute a covariance of the estimation error,
Ree = (y− ŷ)T(y− ŷ), and from this an anomaly measure:

A (x,y) = (y− f (x))TR−1
ee (y− f (x)). (17)

If f (x) is a linear least-squares estimator, then this is equivalent
to the formulation in Eq. (5) under the assumption that p(y|x)
is Gaussian. One thing that the new formulation provides is the
ability to generalize the regression framework by treating p(y|x)
as non-Gaussian, such as an elliptically-contoured distribution.

Using a classification-based approach instead of a
regression-based approach follows Vapnik’s dictum, in that
it avoids solving a more general problem as an intermediate
step [24]. This frees us from the need to make assumptions
about underlying distributions, and permits us to make use of
well-developed off-the-shelf machine learning algorithms. It also
provides a more direct solution to the detection of anomalies
corresponding to pixels that exhibit the “right spectrum in the
wrong place.”

Experiments
To illustrate and compare these anomaly detectors, we per-

form experiments using artificial anomalies in real data.

Datasets
As background imagery, we selected three hyperspectral

datasets and one multispectral dataset. All of these images were
atmospherically compensated to approximate ground surface re-
flectance.

The Cooke City dataset [25] is a 280×800 pixel image with
d = 126 spectral channels that span the visible, near infrared,
and shortwave infrared electromagnetic spectrum (VNIR-SWIR,

Figure 4. SHARE 2012, near Rochester, NY; SpecTIR VS sensor with

229 bands [26].

Figure 5. Reno, NV; SpecTIR sensor with 72 bands [27].

Figure 6. Omaha, NB; WorldView-2 sensor with 8 bands [28,29].
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wavelengths 0.45-2.5µm). This dataset was collected by the
Rochester Institute of Technology (RIT) using the HyMap sensor
as part of the 2006 CHARM Collection; it was released in 2008
as a “blind test” package [30] and has been widely used for target
detection tasks. The imagery is of Cooke City, MT, and has an ap-
proximate ground sample distance (GSD, i.e., spatial resolution)
of 2m. See Fig. 3.

The SHARE 2012 experimental campaign [26] was con-
ducted by RIT to create standardized datasets available to the
entire remote sensing community. In this image (Fig. 4) there
are 280× 170 pixels, and 360 bands ranging from 0.4-2.45µm,
but we used a hand-selected subset of d = 229 of the highest-
quality bands: indices 7-114,128,140-143,153-177,211-252,292-
340. The image was collected by the ProSpecTIR VS sensor with
an approximate GSD of 1m.

The Reno dataset [27] was taken with a SpecTIR sensor;
there are d = 72 bands in the 600× 320 pixel image shown in
Fig. 5.

In contrast with the first three hyperspectral datasets, a fourth
dataset was collected by a multispectral sensor. The WorldView-
2 [28, 29] image of Omaha, Nebraska was provided by Digital
Globe. The sensor has 8 spectral bands, and this 512×512 pixel
subset is cropped from a much larger image of the region. See
Fig. 6.

Implanting targets
Asserting that a given pixel in a natural image is in fact

anomalous is inevitably a judgement call [31]. To assess the qual-
ity of different anomaly detectors, without falling into anecdo-
tal comparisons, we will implant anomalous targets into natu-
ral backgrounds. By asserting that all the implanted targets are
anomalous and that the rest of the image is non-anomalous, we
have a basis for computing detection rates, false alarm rates, and
receiver-operator characteristic (ROC) curves.

Two schemes were employed for implanting targets, corre-
sponding to different concepts of what a local anomaly is. In
both schemes, a small number of pixels (small compared to the
total number of pixels in the image) are chosen at random to be
anomalous.

In the first (“misplaced pixel”) scheme, the pixels in those
randomly chosen locations are replaced with pixels from some
other random location in the same image. By construction, then,
these new pixels are not by themselves anomalous. But they are
anomalous with respect to the neighborhoods in which they now
find themselves.

In the second (“uniform”) scheme, those pixels are replaced
with pixels whose spectra are generated from a uniform random
distribution. That is, each component of the vector-valued pixel
spectrum is chosen from a uniform distribution over the range
from the minimum to the maximum that that component takes on
over all the pixels in the image.

A variant is to consider sub-pixel anomalies. Here, based on
a parameter 0≤α ≤ 1, the new pixel has the form y′′=(1−α)y+
αy′, where y is the original spectrum at a given pixel location,
and y′ is the random pixel value. We employ subpixel anomalies
in this experiment because full-pixel uniform anomalies are so
anomalous that all of our detectors are able to detect virtually all
of our implanted targets.

Table 1. Anomaly detectors used in this exposition. Here,
RX refers to straightforward Mahalanobis distance based de-
tectors. G- and EC- refer to the Gaussian and Elliptically-
Contoured (based on multivariate t distribution) variants of the
algorithms. WS is the “wrong spectrum” anomaly detector
and RSWP is the “right spectrum in the wrong place.”

Name Equations ROC Curve legend
Global RX Eq. (3) Green
Local RX Eq. (3), Eq. (4) Black
G-WS Eq. (5), Eq. (8) Red solid
EC-WS Eq. (5), Eq. (14) Red dashed
G-RSWP Eq. (6), Eq. (9) Blue solid
EC-RSWP Eq. (6), Eq. (16) Blue dashed

Results
Fig. 7 illustrates several points. One is that global RX

anomaly detection is useless for detecting the local anomalies pro-
duced by an implanting method that recycles pixels already in the
image. This is demonstrated by the green curve, which shows
worse performance than the other detectors here. Two is that
the use of multiple features, instead of simply the local mean,
leads to better performance. Here we use the “dihedral” feature
set, which provides seven annulus features for each band. A third
illustration is that, when the anomalies are “purely local” – i.e.,
they are pixels taken randomly from other parts of the image –
the blue RSWP (“right spectrum in the wrong place”) detector
outperforms the red WS (“wrong spectrum”) detectors. Finally,
considerable improvement is observed using the transformation
in Eq. (11), shown here as dashed lines. This transformation cor-
responds to treating p(x,y) as a fat-tailed elliptically-contoured
distribution instead of a Gaussian. Here we used ν = d = 126.
(Although ν can be estimated from the data, for instance using
the scheme described in the appendix of [18], the simpler sugges-
tion of using ν = d was found to be useful in a target detection
context [32].)

Error bars on ROC curves can be tricky [33], and all the more
so given our approach of implanting targets at random, so we have
simply run multiple (five) trials and plotted the ROC curves for
each trial.

It is important to recognize that the relative performance
of the different anomaly detectors depends on the nature of the
anomalies. Fig. 11 shows what happens when the anomalies
are obtained from a flat distribution and included as subpixel
(α = 0.005) anomalies. Here the (green) global anomaly detector
is not that much different from the (black) simple local anomaly
detector. Also, opposite to the case in Fig. 7, the (solid red) Gaus-
sian WS detectors outperform the (solid blue) RSWP detectors.
Interestingly, the non-Gaussian detectors (dashed lines) very sub-
stantially outperform their Gaussian counterparts.

Conclusions and future work
Inspired by the regression framework, we developed a more

direct anomaly detection approach, and this enabled us to employ
a more general formulation. Although the Gaussian conditional
anomaly (“wrong spectrum”) detector in Eq. (8) is equivalent to
a variant of the regression model, the use of distributions allows
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Figure 7. Using the 126-channel Cooke City hyperspectral dataset [25]

as “background,” we implanted 150 targets at random, using the “misplaced

pixel” scenario, and computed ROC curves for various anomaly detectors.

The experiment was performed five times (i.e., five different sets of 150 tar-

gets), and the ROC curves for each trial are plotted. The annulus was of

size 7× 7 with a 3× 3 central hole. Here, green corresponds to the global

RX anomaly detector, black to local RX (but with global covariance), and red

and blue to feature-based annulus descriptors (D4Σ) with seven values per

annulus. Red uses the “wrong spectrum” detectors, solid assumes Gaus-

sian, and dashed assumes multivariate t with ν = 126 chosen to agree with

the dimension of the data. Blue uses the “right spectrum in the wrong place”

detectors; i.e., Eq. (9) for solid and Eq. (16) for dashed.
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Figure 8. Same as Fig. 7 but using 229 bands of the 360-band SHARE

2012 dataset.
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Figure 9. Same as Fig. 7 but using the 72-band Reno dataset.
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Figure 10. Same as Fig. 7 but using the eight-band WorldView-2 dataset.
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Figure 11. Experiment is similar to that shown in Fig. 7, but the implanted

anomalies are subpixel uniform (α = 0.005).
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Figure 12. Same as Fig. 11 but using 229 bands of the 360-band

SHARE 2012 dataset – also, with a much smaller α = 0.0005 (!). Similar

to Fig. 13, the Gaussian RSWP detector exhibits abysmal performance; the

non-Gaussian variant, however, is competitive (except in the very high de-

tection rate regime) with the other detectors.
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Figure 13. Same as Fig. 11 but using the 72-band Reno dataset.
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Figure 14. Same as Fig. 11 but using the eight-band WorldView-2 dataset.

Unlike Fig. 11, and contrary to our expectations, we see that the (blue) RSWP

detector slightly outperforms the (red) WS detector.

Figure 15. Urban pixels in the Cooke City image, indicated in red.
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Figure 16. Using the same 126-channel Cooke City hyperspectral image

as in Fig. 7, but using only the “urban” pixels as anomalies. In each of the five

trials, 150 pixels are chosen at random from the urban area (from the pixels

indicated in red in Fig. 15), and implanted at random locations throughout

the image. Comparing to Fig. 7, we see that urban pixels are more read-

ily identified as anomalies, but that the relative performance of the different

algorithms is preserved.
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us to make two improvements. One of them is to more directly
address the “right spectrum in the wrong place” scenario and to
produce an anomaly detector that is optimized for that case. The
second improvement (which appears, empirically, to have more
benefit) enables us to use non-Gaussian distributions to character-
ize our data, and in particular we can use a fat-tailed elliptically-
contoured distribution instead of a Gaussian, and get better per-
formance with only a minor change in the operation of the algo-
rithm (using ξ

′ = H(d,ν ,ξ ) in place of ξ ). This minor change
improves the performance of both the “wrong spectrum” and the
“right spectrum in the wrong place” anomaly detectors.

The open-ended nature of the new formalism provides many
opportunities for further practical improvements. Given that this
is a machine learning approach, we have a wide variety of ma-
chine learning tools – from Fisher discriminants and support vec-
tor machines to random forests and deep neural nets – that we can
potentially use to find the boundary in (x,y) space that separates
the normal pixels from the anomalies.

The moving window approach used here provides one way to
achieve a local context; another approach is use segmentation of
the image [34, 35]. In fact, we might be able to use segmentation
and moving windows together, defining a different p(x,y) in each
different segment.

The Mahalanobis distances based on Gaussian (or
elliptically-contoured) distributions can be replaced with dis-
tances to subspaces, and several authors have considered local
subspace models [36,37] for background estimation and anomaly
detection. We were particularly intrigued with an innovation
employed by Ranney and Soumekh [36] (compare Fig. 2 of
that reference with Fig. 1 here). In this case, four distances
are computed – a separate distance for each of four cardinal
directions – and a minimum is taken of the four. Thus, the
dimension of the subspace is kept small, but nonstationarity is
ameliorated. We believe that this four-distance innovation might
be applicable to our approach as well.

In our implantation of subpixel uniform targets, the param-
eter α corresponds to the fraction of the pixel occupied by the
anomaly. But the values that we used (α = 0.005 and α = 0.0005)
are unrealistically small. We used such small values because
larger α would lead to anomalies that are “too easy” to detect,
and as a result we would be unable to distinguish the relative per-
formance of different algorithms. But given that we are interested
in optimizing subpixel performance, we could follow the analogy
to anomalous change detection and employ expressions that were
developed for subpixel anomalous changes [38].

Although hyperspectral data is not Gaussian, it has been
observed that it can be more Gaussian in some directions, par-
ticularly the directions with lower variance. [39–41] Thus, we
might see improvement with a Gaussian/Non-Gaussian (G/NG)
scheme [42,43]. In general, this works by using principal compo-
nents analysis to decompose data into two components, a high-
variance non-Gaussian component (first few principal compo-
nents) and a lower-variance near-Gaussian component (remain-
ing principal components). The non-Gaussian component is low-
dimensional, and so can be modeled in more sophisticated ways
(the simplest perhaps is using the scheme in Eq. (11)), while the
Gaussian component is treated essentially by using a local version
of subspace RX [44].
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