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Abstract
Sparse sampling schemes have the potential to reduce image

acquisition time by reconstructing a desired image from a sparse
subset of measured pixels. Moreover, dynamic sparse sampling
methods have the greatest potential because each new pixel is
selected based on information obtained from previous samples.
However, existing dynamic sampling methods tend to be compu-
tationally expensive and therefore too slow for practical applica-
tion.

In this paper, we present a supervised learning based algo-
rithm for dynamic sampling (SLADS) that uses machine-learning
techniques to select the location of each new pixel measurement.
SLADS is fast enough to be used in practical imaging applica-
tions because each new pixel location is selected using a simple
regression algorithm. In addition, SLADS is accurate because
the machine learning algorithm is trained using a total reduc-
tion in distortion metric which accounts for distortion in a neigh-
borhood of the pixel being sampled. We present results on both
computationally-generated synthetic data and experimentally-
collected data that demonstrate substantial improvement relative
to state-of-the-art static sampling methods.

Introduction
In conventional point-wise image acquisition, all pixels in a

rectilinear grid are measured. However, in many imaging applica-
tions, a high-fidelity pixel measurement could take up to 1 second.
Examples of such methods include electron back scatter diffrac-
tion (EBSD) microscopy and Raman spectroscopy, which are of
great importance in material science and chemistry [1]. Then, ac-
quiring a complete set of high-resolution measurements on these
imaging applications becomes impractical.

Sparse sampling offers the potential to dramatically reduce
the time required to acquire an image. In this approach, a sparse
set of pixels is measured, and the full resolution image is re-
constructed from the set of sparse measurements. In addition to
speeding image acquisition, sparse sampling methods also hold
the potential to reduce the exposure of the object being imaged to
destructive radiation. This is of critical importance when imaging
biological samples using X-rays, electrons, or even optical pho-
tons [2, 3].

Sparse sampling approaches fall into two main categories:
static and dynamic. In static sampling, pixels are measured in
a pre-defined order. Examples of static sparse sampling meth-
ods include random sampling strategies such as in [4], and low-
discrepancy sampling [5]. As a result some samples from these
methods may not be very informative, as they do not take into ac-
count the object being scanned. There are static sampling meth-
ods based on an a priori knowledge of the object geometry and

sparsity such as [6, 7]. However a priori knowledge is not always
available for general imaging applications

On the other hand, dynamic sampling (DS) methods adap-
tively determine new measurement locations based on the infor-
mation obtained from previous measurements. This is a very pow-
erful technique since in real applications previous measurements
can tell one a great deal about the object being scanned and also
about the best locations for future measurements Therefore, dy-
namic sampling has the potential to dramatically reduce the to-
tal number of samples required to achieve a particular level of
distortion in the reconstructed image. An example of a dynamic
sampling method was proposed in [8] by Kovačević et al. Here
initially an object is measured with a sparse grid. Then, if the
intensity of a pixel is above a certain threshold, the vicinity of
that pixel is measured in higher resolution. However, the thresh-
old was empirically chosen for the specific scanner and thus this
method cannot be generalized for different imaging modalities.

For general applications, a set of DS methods has been pro-
posed in previous literature where an objective function is de-
signed and the measurements are chosen to optimize that objec-
tive function. For instance, dynamic compressive sensing meth-
ods [9–11] find the next measurements that maximally reduces
the differential entropy. However, dynamic compressive sensing
methods use an unconstrained projection as a measurement and
therefore are not suitable for point-wise measurements where the
measurement is constrained.

Apart from these methods, application specific DS methods
that optimize an objective function to find the next measurement
have been developed. One example is [12], where the authors
modify the optimal experimental design [13] framework to incor-
porate dynamic measurement selection in a biochemical network.
Seeger et al. in [14] also finds the measurement that reduces the
differential entropy the most but now to select optimal K-space
spiral and line measurements for magnetic resonance imaging
(MRI). In addition, Batenburg et al. [15] propose a DS method
for binary computed tomography in which the measurement that
maximizes the information gain is selected. Even though these
measurements are constrained they are application specific and
therefore not applicable to general point-wise measurements.

In [16] Godaliyadda et al. propose a DS algorithm for gen-
eral point-wise measurements. Here, the authors use a Monte-
Carlo simulation method to approximate the conditional vari-
ance at every unmeasured location, given previous measurements,
and select the pixel with largest conditional variance. However,
Monte-Carlo simulation methods such as the Metropolis-Hastings
method are very slow and therefore this method is infeasible for
real-time applications. Furthermore, the objective function in this
method does not account for the change of conditional variance in
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the entire image with a new measurement.
In this paper, we propose a new DS algorithm for point-wise

measurements named supervised learning approach for dynamic
sampling (SLADS). The objective of SLADS is to select a new
pixel so as to maximally reduce the conditional expectation of the
reduction in distortion (ERD) in the entire reconstructed image.
In SLADS, we compute the reduction in distortion for each pixel
in a training data set, and then find the relationship between the
ERD and a local feature vector through a regression algorithm.
Since we use a supervised learning approach, we can very rapidly
estimate the ERD at each pixel in the unknown testing image.
Moreover, we introduce a measure that approximates the distor-
tion reduction in the training dataset so that it accounts for the
distortion reduction in the pixel and its neighbors. Since comput-
ing the distortion reduction for each pixel during training can be
intractable, particularly for large images, this approximation is vi-
tal to make the training procedure feasible. Experimental results
on sampling a computationally-generated synthetic EBSD image
and an experimentally-collected image have shown that SLADS
can compute a new sample locations very quickly (in the range of
5 - 500 ms), and can achieve the same reconstruction distortion
as static sampling methods with dramatically fewer samples (2-4
times fewer).

Dynamic Sampling Framework
The objective in sparse sampling is to measure a sparse set of

pixels in an image and then reconstruct the full resolution image
from those sparse samples. Moreover, with sparse dynamic sam-
pling, the location for each new pixel to measure will be informed
by all the previous pixel measurements.

To formulate the problem, we denote the image we would
like to measure as X ∈ RN , where Xr is a pixel at location r ∈ Ω.
Furthermore, let us assume that k pixels have been measured at a
set of locations S = {s(1), · · · ,s(k)}, and that the corresponding
measured values and locations are represented by the k×2 matrix

Y (k) =


s(1),Xs(1)

...

s(k),Xs(k)

 .

Then from Y (k), we can reconstruct an image X̂ (k), which is our
best estimate of X given the first k measurements.

Now, if we select Xs as our next pixel to measure, then pre-
sumably we can reconstruct a better estimate of the image, which
we will denote by X̂ (k;s). So then X̂ (k;s) is our best estimate of X
given both Y (k) and Xs.

So at this point, our goal is to select the next location s(k+1)
that results in the greatest decrease in reconstruction distortion. In
order to formulate this problem, let D(Xr, X̂r) denote the distortion
measure between a pixel Xr and its estimate X̂r, and let

D(X , X̂) = ∑
r∈Ω

D(Xr, X̂r) , (1)

denote the total distortion between the image X and its estimate
X̂ .

Then using this notation, we may define R(k;s)
r to be the lo-

cal reduction in distortion at pixel r that would result from the

measurement of the pixel Xs.

R(k;s)
r = D(Xr, X̂

(k)
r )−D(Xr, X̂

(k;s)
r ) (2)

Importantly, the measurement of the pixel Xs does not only reduce
distortion at that pixel. It also reduces the distortion at neighbor-
ing pixels. So in order to represent the total reduction in distor-
tion, we must sum over all pixels r ∈Ω.

R(k;s) = ∑
r∈Ω

R(k;s)
r (3)

= D(X , X̂ (k))−D(X , X̂ (k;s)) . (4)

Now of course, we do not know what the value of Xs until it is
measured; so we also do not know the value R(k;s). Therefore, we
must make our selection of the next pixel based on the conditional
expectation of reduction in distortion which we will refer to as the
ERD given by

R̄(k;s) = E
[
R(k;s)|Y (k)

]
. (5)

So with this notation, our goal is to efficiently compute the
next pixel to sample, s(k+1), as the solution to the following opti-
mization.

s(k+1) = arg max
s∈{Ω\S }

(
R̄(k;s)

)
(6)

Once we measure the location Xs(k+1) , then we form the new mea-
surement vector

Y (k+1) =

[
Y (k)

s(k+1),Xs(k+1)

]
, (7)

and we repeat the process recursively until the stopping condition
discussed below is achieved.

Supervised Learning Approach for Dynamic
Sampling (SLADS)

Our SLADS approach will be based on supervised learning.
To do this, we will use training data in an off-line procedure to
predict the value of R̄(s) from the available data Y . Notice that
in this section, we suppress the dependance on the time index k
since the training is done in a batch process.

More specifically, we will compute the ERD by fitting a re-
gression function, f , so that

R̄(s) = f θ
s (Y ) . (8)

Here f θ
s (·) denotes a non-linear regression function determined

through supervised learning, and θ is the parameter vector that
we must estimate in the learning process.

Now in order to train f θ
s (·), we will first construct a training

data base containing many corresponding pairs (R(s),Y ). Notice
that since R(s) is the reduction in distortion it requires knowledge
of the true image X . However, since this is an off-line training pro-
cedure, this information is available. Also, the regression func-
tion, f θ

s (Y ), will compute the required conditional expectation
required for R̄(s).

While it is possible to compute the corresponding value of
R(s) for each possible set of sample measurements Y , this is very
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computationally expensive since it requires that one compute a
full reconstruction, X̂s, for each of the training pairs. In practice,
we will use a large number of training samples, so we will intro-
duce an approximation to R(s) that will dramatically reduce the
computation required for training. Our approximation is given by

R(s)
r ≈ h(s)r D

(
Xr, X̂r

)
, (9)

where

h(s)r = exp
{
− c

2(σ (s))2
‖r− s‖2

}
(10)

and where c is a user selectable parameter and σ (s) is the distance
between the pixel s and the nearest previously measured pixel.
More formally, σ (s) can be computed as

σ
(s) = min

t∈S
{‖s− t‖} , (11)

where S is the set of measured locations.
So intuitively, the function h(s)r is a Gaussian shaped weight-

ing with an approximate radius σ (s) where σ (s) is the distance
between s and the nearest measurement. Figure 1 illustrates the
shape of the function h(s)r . Figures 1(b) and (c) illustrate the shape
of h(s)r for two different cases. In (b), the pixel s1 is further from
the nearest measured pixel; and in (c), the pixel s2 is nearer.

The interpretation of equation (9) is that the reduction of er-
ror at the pixel r is proportional to the initial distortion at the lo-
cation r multiplied by the weighting factor h(s)r . When r = s, then
h(s)s = 1 and we have that

R(s)
s = D

(
Xs, X̂s

)
. (12)

However, as r becomes more distant from the pixel being mea-
sured s, then the reduction in distortion will be attenuated by the
weight h(s)r < 1.

s1 σ (s1 )

s2σ (s2 )

(a) Measurements

s1 

(b) h(s1)
r

s2 

(c) h(s2)
r

Figure 1. Illustrates the shape of the function h(s)r . (b) and (c) illustrate the

shape of h(s)r for two different values of σ (s), σ (s1) and σ (s2) respectively. Note

that the distance from pixel s1 to the nearest measurement is larger than the

distance from pixel s2 to the nearest measurement. Therefore, σ (s1) > σ (s2).

As a result the kernel h(s1)
r is spread over a wider region when compared to

the kernel h(s2)
r .

Using this approximation, we can now compute an approxi-
mation to the TRD given by

R(s) = ∑
r∈Ω

R(s)
r ≈ ∑

r∈Ω

h(s)r D
(
Xr, X̂r

)
. (13)

From this point on, we will use this approximation to R(s) in all
our computations.

In order to train the SLADS algorithm, we must estimate the
regression function f θ

s (Y ) using machine learning techniques. To
do this, let Vs denote a p-dimensional feature row vector extracted
from the data Y . In our example, this feature vector is formed
by the 6 scalar descriptors Zs,1,Zs,2, . . .Zs,6 listed in Table 1. In
particular,

Vs =
[
1,Zs,1, . . . ,Zs,6,Z

2
s,1,Zs,1Zs,2, . . . ,Z2

s,6

]
, (14)

so that p = 28.

Measures of gradients
The gradient in the x-direction.

Zs,1 = D
(
X̂sx+ , X̂sx−

)
The distortion between the esti-

mate of the pixel adjacent to s in the

positive x-direction, X̂sx+ , and the

estimate of the pixel adjacent to s

in the negative x-direction, X̂sx− .

The gradient in the y-direction.

Zs,2 = D
(
X̂sy+ , X̂sy−

)
The distortion between the esti-

mate of the pixel adjacent to s in the

positive y-direction, X̂sy+ , and the

estimate of the pixel adjacent to s

in the negative y-direction, X̂sy− .

Measures of standard deviation

Zs,3 =

√
1
L ∑

r∈∂ s
D
(
Xr, X̂s

)2

Here ∂ s is the set containing the

indices of the L nearest measure-

ments to s.

Zs,4 = ∑
r∈∂ s

w(s)
r D

(
Xr, X̂s

)

Here w(s)
r =

1
‖s−r‖2

∑
u∈∂ s

1
‖s−u‖2

.

Measures of density of measurements

Zs,5 = min
r∈∂ s
‖s− r‖2

The distance from s to the closest

measurement.

Zs,6 =
1+A(s;λ )

1+A∗
(s;λ )

Here A(s;d) is the area of a circle λ%

the size of the image around pixel s,

A∗(s;λ ) is the measured area inside

A(s;λ ).

Table 1: List of descriptors used to construct the feature vec-
tor. There are three main categories of descriptors: measures
of gradients, measures of standard deviation, and measures
of density of measurements surrounding the pixel s.

However, more generally Vs may be any set of local descrip-
tors that can be used to predict the value of R̄(s). From this feature
vector, we can then compute the ERD using a linear predictor with
the following form.

R̄(s) = f θ
s (Y ) =Vs θ (15)

We can estimate the parameter θ by solving the following least-
squares regression

θ̂ = arg min
θ∈Rp

‖R−V θ‖2 , (16)

where R is an n-dimensional column vector formed by

R =
[
R(s1), . . . ,R(sn)

]
, (17)
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and V is given by

V = [Vs1 , . . . ,Vsn ] . (18)

So together, (R,V ) consist of n training pairs, {(Rsi ,Vsi)}n
i=1, that

are extracted from separate training data in an off-line procedure.
The parameter θ is then given by

θ̂ =
(
V tV

)−1 V tR . (19)

Once the θ̂ is estimated, then it can be used for fast on-line
dynamic sampling by selecting the pixel that maximizes the ERD
given by

s(k+1) = arg max
s∈{Ω\S }

(
V (k)

s θ̂

)
, (20)

where V (k)
s denotes the feature vector extracted from the measure-

ments Y (k) for a possible measurement of the pixel Xs. The pseudo
code for SLADS is shown in Figure (2).

function Y (K) ← SLADS(Y (k), θ̂ ,k)

S ←{s1,s2, . . .sk}

while Stopping condition not met do

for do∀s ∈ {Ω\S }

Extract V (k)
s

R̄(k;s)←V (k)
s θ̂

end for

s(k+1) = arg max
s∈{Ω\S }

(
R̄(k;s)

)

Y (k+1)←

[
Y (k)

s(k+1),Xs(k+1)

]

S ←
{
S ∪ s(k+1)

}
k← k+1

end while

K← k

end function

Figure 2. SLADS algorithm in pseudo code. The inputs to the function are

the initial measurements Y (k), the coefficients needed to compute the ERD,

found in training, θ̂ , and k the number of measurements. When the stopping

condition is met the function will output the selected set of measurements

Y (K).

Stopping Condition for SLADS
Ideally, dynamic sampling should stop when the normalized

reconstruction distortion (NRD) reaches a predetermined thresh-

old.

1
|Ω|

D
(
X , X̂

)
≤ T (21)

However, since we do not know the underlying object X , it is not
possible to know the NRD.

In our implementation, at each step of SLADS we compute a
running average of the reconstruction distortion between the mea-
sured pixel and the estimate of that pixel from previous measure-
ments. Then we use a threshold on this quantity to decide when
to stop sampling.

To do this, we apply the following recursion, after each new
sample is taken,

ε
(k) = αε

(k−1)+(1−α)D
(

Xs(k) , X̂
(k−1)
s(k)

)
, (22)

where α is a user selected parameter that determines the amount
of temporal smoothing. Intuitively, the value of ε(k) measures
the average level of distortion in the measurements. So a large
value of ε(k) indicates that more samples need to be taken, and a
smaller value indicates that the reconstruction is accurate and the
sampling process can be terminated.

So therefore, we must find the threshold T̃ (T ) on ε(k) that
corresponds to the desired threshold T on the NRD. For this pur-
pose, we perform dynamic sampling on a known image X . We
stop sampling when the NRD ≤ T , and record the value of ε(k).
Next, we define

K(T ) = max
k

{
k :

1
|Ω|

D
(

X , X̂ (k)
)
≤ T,k ∈ {1,2, . . .N}

}
.

(23)

Now we repeat the process for M different images and record
ε(K

m(T )) for each image m ∈ {1,2, . . .M}. Then we average
ε(K

m(T )) over the M experiments to find T̃ .

T̃ (T ) =
1
M

M

∑
m=1

ε
(Km(T )) (24)

Typically, T̃ (T ) is a decreasing function of T , although this is not
guaranteed.

During the first few steps of dynamic sampling the value of
ε(k) can be relatively small. Hence, using only the threshold T̃
can lead to premature termination. However, during the first steps
the function ε(k) increases with k. We take advantage of this fact
to design a second condition of stopping. The condition is that the
average change of ε(k) over J steps has to be non-positive i.e. ε(k)

on average is decreasing with k over J steps.

J

∑
j=1

[
ε
(k)− ε

(k− j)
]
≤ 0 (25)

Results
In this section we compare SLADS with two static sam-

pling methods — low-discrepancy sampling (LS) and Ran-
dom Sampling (RS). We performing sampling experiments on
a computationally-generated synthetic EBSD image and on an
experimentally-collected image. We compare the sampling meth-
ods by plotting the NRD versus the number of samples and by the
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visual quality of the reconstructed images. The method we use to
construct the training database for SLADS is detailed below.

We start by selecting M training images
{

X1,X2, . . .XM}.
Now from image X1 we select 5% of pixels using a uniform ran-
dom distribution and consider them as the measurements Y . Then
for all the unmeasured locations in X1 we compute (R(s),Vs) and
save this vector in the training database. Figure 3 illustrates this
procedure for the case when p% is measured. We then repeat this
process for the same image but now select 10,20,40, and 80% of
pixels as measurements. Next, we repeat the same process for the
other training images.

Training 
Image 

Measured Image  
(p% measured) 

Training 
Database 

 Extract Vs   
∀s ∈ Ω \ S{ }  

Compute R(s )

∀s ∈ Ω \ S{ }

Figure 3. Illustration of how we extract one set of entries from one image to

create the training database. We first select p% of the pixels in the image and

consider them as measurements Y . Then for all unmeasured pixel locations

(s ∈ {Ω\S }) we extract a feature vector Vs and compute R(s). Here again Ω

is the set of all locations in the training image and S is the set of measured

locations. All these pairs of
(
Vs,R(s)

)
are then stored in the training database.

For all the experiments in the next two sections we start by
sampling 1% of the image, according to low-discrepancy sam-
pling. Then we continue RS and LS until 20% of the image is
measured, and SLADS until a specified stopping condition is met.

Comparing SLADS with Static Sampling Methods
on Computationally-Generated Synthetic EBSD
Image

In this section we compare SLADS with LS and RS by sam-
pling a computationally-generated synthetic EBSD image gener-
ated using the Dream.3D software [17]. This image, shown in
Figure 5, has a resolution of 512× 512 pixels. This image con-
tains discretely labeled regions each corresponding to different
crystal orientations. Therefore in this experiment, we define the
distortion D(a,b) between two values a and b as,

D(a,b) =

{
0 a = b

1 a 6= b.
(26)

The training images for SLADS were also generated using
the Dream.3D software and have the same resolution as the test
image. These images are shown in Figure 4(a). To compute R(s)

we use c = 8 in equation (9) and perform reconstructions using
weighted mode interpolation.

The weighted mode interpolation of a pixel s is Xr∗ if

r∗ = argmax
r∈∂ s

{
∑

t∈∂ s

[
(1−D(Xr,Xt))w(s)

r

]}
. (27)

where,

w(s)
r =

1
‖s−r‖2

∑
u∈∂ s

1
‖s−u‖2

. (28)

For this experiment we let |∂ s| = 10. We use weighted mode
interpolation to compute reconstructions needed to for descriptor
computation as well.

Also, for this experiment the desired NRD was set to 2×
10−5 (T = 2×10−5). To find the corresponding stopping thresh-
old T̃ on ε(k) we use the set of images shown in Figure 4(b).
To compute ε(k) we set α = 0.99 and once more use weighted
mode interpolation for interpolations. The threshold we found
was 0.0041 (T̃ = 0.0041).

(a) Discrete: Training Images

(b) Discrete: Images to find stopping condition

Figure 4. Training images and images used to find stopping condition for

SLADS experiment on a computationally-generated synthetic EBSD image.

The first set of images, (a), were used to find the regression parameters
ˆT heta. The second set of images, (b), were used to find the stopping thresh-

old.

We display results for sampling the computationally-
generated synthetic EBSD image in Figure 5. Figure 5(d) shows
the reconstruction performed after SLADS stops, which in this
case is after 6.94% of the image is sampled. Figures 5(b) and 5(c)
show the reconstructions performed from the same percentage of
samples (6.94%) acquired using RS and LS respectively. Figure
5(e) shows the NRD versus the percentage of samples, and finally
5(f-h) show the measurement masks corresponding to reconstruc-
tions (b)-(d).
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(a) Original Image (b) RS Reconstruction (NRD ≈
0.025)

(c) LS Reconstruction (NRD ≈
0.021)

(d) SLADS Reconstruction
(NRD ≈ 1.9e−05)

Percentage of Measurements
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n
D
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n

0
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0.02

0.03

0.04

0.05

0.06
SLADS

LS

RS

(e) Normalized reconstruction distortion
(range 0-1) vs Percentage of samples

(f) RS Measurement mask
(6.94%)

(g) LS Measurement mask
(6.94%)

(h) SLADS Measurement mask
(6.94%)

Figure 5. Dynamic sampling results for SLADS compared with RS and LS for a computationally-generated synthetic EBSD image. Here (a) is the image being

sampled. (d) shows the image reconstructed from the samples prescribed by the SLADS algorithm. (b) and (c) show the images reconstructed using the same

number of samples as SLADS but selected using from RS and LS respectively. (e) shows the normalized reconstruction distortion (NRD) versus the percentage

of samples curves for the three methods. (f), (g) and (h) are the measurement masks that correspond to the reconstructions (b), (c) and (d) respectively.

(a) Original Image (b) RS - Reconstruction (NRD =

6.0964)
(c) LS - Reconstruction (NRD =

5.2318)
(d) SLADS - Reconstruction
(NRD = 3.3676)
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(e) Normalized reconstruction distortion
(range 0-255) vs Percentage of samples

(f) RS - Measurement mask
(12.34%)

(g) LS - Measurement mask
(12.34%)

(h) SLADS - Measurement mask
(12.34%)

Figure 6. Dynamic sampling results for SLADS compared with RS and LS for a experimentally-collected image. Here (a) is the image being sampled. (d)

shows the image reconstructed from the samples prescribed by the SLADS algorithm. (b) and (c) show the images reconstructed using the same number of

samples as SLADS but selected using from RS and LS respectively. (e) shows the normalized reconstruction distortion (NRD) versus the percentage of samples

curves for the three methods. (f), (g) and (h) are the measurement masks that correspond to the reconstructions (b), (c) and (d) respectively.
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(a) Continuous: Training Images (b) Continuous: Images
to find stopping condition

Figure 7. Training images and images to find stopping condition for SLADS

simulations on an experimentally-collected image . The first set of images,

(a), were used to find the regression parameters ˆT heta. The second set of

images, (b), were used to find the stopping threshold.

It is clear from Figure 5 that the reconstruction from samples
collected using SLADS is superior to reconstructions from sam-
ples collected using RS and LS. The difference between the algo-
rithms is most noticeable along the boundaries between the differ-
ent grains. Furthermore, from Figure 5(e) we see that the NRD de-
creases more rapidly with SLADS. SLADS stops when the NRD
is below 2×10−5, thereby validating the stopping threshold.

Comparing SLADS with Static Sampling Methods
on Experimentally-Collected Image

In this section we use SLADS, LS and RS to sample the
experimentally-collected image shown in Figure 6(a). The values
in the testing and training images vary from 0 to 255. Therefore,
for this experiment, we define the distortion D(a,b) between two
values a and b as,

D(a,b) = |a−b|. (29)

The training images used for this experiment are shown in
Figure 7. The training images as well as the testing image were
provided by Ali Khosravani & Prof. Surya Kalidindi from Geor-
gia Institute of Technology.

In training, to compute R(s) we set c = 4 and perform re-
constructions using the Plug & Play algorithm [18]. However, to
compute the reconstructions for descriptor computations we use
weighted mean interpolation instead of Plug & Play. The reason
we do not use the Plug & Play algorithm when computing the fea-
ture vector is because it is slow, and will therefore effect the speed
of SLADS. We define the weighted mean for a location s

X̂s = ∑
r∈∂ s

w(s)
r Yr. (30)

For this experiment we let |∂ s|= 10.
In this experiment we set the desired NRD to 5 (T = 5). The

images used to find the stopping threshold are shown in Figure
7(b). Again, to compute ε(k) we use α = 0.99. The stopping
threshold was found to be 13.0815 (T̃ = 13.0815).

We display the dynamic sampling results in Figure 6. Fig-
ure 6(d) shows the reconstruction performed after SLADS stops,
when 12.34% of the image is sampled. Figures 6(b) and 6(c)
show the reconstructions performed from the same percentage of
samples (12.34%) acquired using RS and LS respectively. Here,
the reconstructions are performed using the Plug & Play algo-
rithm [18]. Figure 6(e) shows the normalized reconstruction dis-
tortion (NRD) versus the percentage of samples, and finally 6(f-
h) show the measurement masks corresponding to reconstructions
(b)-(d).

From Figure 6(b)-(d) we can see that the reconstructions
from samples collected using SLADS have better boundary defi-
nition between the white and dark regions when compared to the
reconstructions from samples collected using RS and LS. From
Figure 6(e) we again see that the normalized reconstruction dis-
tortion (NRD) decreases more rapidly with SLADS. Furthermore,
we can also see that when SLADS stops the NRD is below 5 as
expected.

Conclusions
In this paper, we presented a framework for dynamic sam-

pling that can be optimized according to the class of im-
age. Furthermore, the SLADS algorithm is very fast, and
the reconstructions resulting from the sampled images show
substantial improvement over static sampling schemes. For
the computationally-generated synthetic EBSD image, SLADS
achieves a reconstruction distortion below 10−5, with only 6.94%
of the image sampled, while for RS and DS, the reconstruction
distortion is above 10−2 even with 20% of the image sampled. For
the experimentally-collected image SLADS reaches a reconstruc-
tion distortion less than 4 with only 13% of the image sampled,
while LS requires approximately 18% for the same distortion and
RS is above 4 even after 20% of the image is sampled.
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