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Abstract
In this paper we investigate the use of image pyramid within

a hierarchical registration framework for improved nonlinear im-
age registration. Gaussian image pyramid is commonly used to
reduce image complexity so that registration can be performed in
a coarse to fine manner. In this paper, we apply two edge preserv-
ing filters, the bilateral filter and the guided filter, to generate im-
age pyramids that can preserve strong gradient so as to improve
registration accuracy. In addition, we propose a bilateral frac-
tional differential based image enhancement filter and combine
its output with a guided filter to generate another image pyramid
that further enhances the gradient of strong image components.
Registration is performed within a hierarchical framework where
the model complexity of a Discrete Cosine Transformation (DCT)
based nonlinear model is increased to couple with the image pyra-
mid. Different image pyramids are compared by using three types
of synthetic deformation fields. Experimental results show that
registration using the gradient enhanced image pyramid achieves
more accurate registration than registration using the Gaussian
image pyramid.

Introduction
Image registration aims to establish one-to-one spatial cor-

respondence between two or more images of a same scene or
several similar scenes. It serves as an important pre-processing
step to image analysis tasks such as image fusion, change detec-
tion and multi-channel image restoration. It is also a fundamental
component in a variety of applications including remote sensing,
medical imaging, robot vision.

Image registration is an ill-posed problem where a minor
change in the input can lead to a totally different solution. Espe-
cially for nonlinear image registration, factors such as the similar-
ity metric, deformation model, and optimization method all play
important roles. In this paper we keep most of the factors in con-
trol so as to investigate the use of image pyramid in a nonlinear
image registration context.

Image registration problems are commonly solved hierarchi-
cally in a coarse to fine manner. The is done either in the image
space or in a transformation space. The purpose of using hierar-
chical registration is to first match global components at a coarse
level and gradually matching the more intricate components at
finer levels. The hope is that the reduction of complexity can help
avoid local minima traps in the optimization process.

In image space, the reduction of complexity is often achieved
by smoothing the input image with increasing amounts. The stack
of such increasingly simplified version of the input image is called
image scale space [1]. If the smoothed image is also downsam-
pled at each level, the obtained image is not only less complex but

also contains less amount of data. When a Gaussian smoothing
filter is applied and the downsampling factor is selected as 2, we
obtain the commonly used Gaussian image pyramid.

The Gaussian image pyramid has been widely used in image
registration problems, especially in linear registration using rigid
or affine transformation models. The reduction of image size in
the pyramid is particular helpful for registration involving large
transformations. It is also straightforward to propagate estima-
tions obtained from a coarse level to a finer level in the parameter
field for linear registration.

The Gaussian image pyramid has been used in nonlinear reg-
istration [2, 3] where it is often applied to 3-D registration prob-
lems to reduce the amount of processing at coarse stages. How-
ever, a problem of using the Gaussian image pyramid for non-
linear image registration is the propagation of estimations from a
coarse level to a finer level. Deformation estimation at a coarse
level have to be upsampled to form the initial deformation for the
larger images at the next finer level. Such upsampling step can
be problematic because artifacts can emerge during the interpola-
tion process. An even more complicated process happens if such
upsampled deformation field has to be transformed back into co-
efficients, such as in basis function based deformation models.
Therefore, an alternative of the traditional Gaussian image pyra-
mid is the image scale space where images are only smoothed but
not downsampled. In this manner parameters obtained at a coarse
level can be directly used as the initial value for parameters at a
finer level.

While image complexity is reduced by using the Gaussian
image pyramid, the sensitivity to the image gradient is also weak-
ened. Image components such as edges are supposed to provide
strong guidance to the registration process. Since all image pixels
are uniformly smoothed in the Gaussian smoothing process, gra-
dient at such image components is greatly reduced. Such reduc-
tion have more impact for the coarser levels where the smoothing
amount is large. The consequence is that registration at coarse
levels may fail to provide a good initial estimation which is often
difficult to rectify in finer levels.

In this paper, we apply two edge preserving filters, a bilat-
eral filter and a guided filter, to generate two alternative image
pyramids to the Gaussian pyramid. he produced image pyramids
preserve strong edges better than those at the same level of the
Gaussian image pyramid. In addition, we propose a bilateral frac-
tional differential filter to enhance strong edges in the image. The
enhanced image is used as a guide image in a guided filter to pro-
duce a new image pyramid where the strong edges are enhanced.
It should be pointed out that the word pyramid is kept to refer to
images at different level, even though they are of the same size
but at different smoothing level.
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To evaluate the performance of registrations using different
image pyramids, we generated three types of synthetic deforma-
tions: a radial deformation, a sinusoidal deformation and a ran-
dom deformation. The synthetic deformations were applied to a
pool of images including brain, chest and lung images with vari-
ous contrast levels. The synthetic deformation field was used as
the ground truth and compared to the estimated deformation field.
We also computed two other metrics to measure the similarity be-
tween the registered image and the target image, and the regularity
of the estimated deformation field. Experimental results show that
using gradient enhanced image pyramid improves the registration
by having a smaller mean deformation field error.

Methods
In this section we first present two edge preserving filters: the

bilateral smoothing filter and the guided smoothing filter. Then
a fractional differential based enhancement filter is introduced
where its output is applied in the guided filter as the guide im-
age.

Image Pyramid using Bilateral Filter
The bilateral filter is a nonlinear filter originally proposed by

Tomasi and Manduchi in [4]. It has strong connection with the
Gaussian filter. The Gaussian filter is defined as:

Î (x) =
1

W1
∑

xi∈Ω

gs (‖x− xi‖) I (xi) (1)

where I (x) and Î (x) are the input image and the filtered image, Ω

is a spatial neighborhood centered at x, and W1 is a normalization
factor such that:

W1 = ∑
xi∈Ω

gs (‖x− xi‖) (2)

where gs (‖x− xi‖) is a Gaussian function such that:

gs (‖x− xi‖) = e
−(x−xi)

2

2s2 (3)

The smoothing weight of each pixels xi within Ω is determined
by its distance from x and the Gaussian standard deviation s. This
Gaussian function is commonly referred to as the spatial filter.

The bilateral filter is defined as:

Î (x) =
1

W2
∑

xi∈Ω

gs (‖x− xi‖)hr (‖I (x)− I (xi)‖) I (xi) (4)

where an additional weight function hr (‖I (x)− I (xi)‖) is in-
cluded which is also a Gaussian function such that:

hr (‖I (x)− I (xi)‖) = e
−(I(x)−I(xi))

2

2r2 (5)

where r is the standard deviation of the Gaussian function that
controls the fall off of the weight in the intensity domain. It is
commonly referred to as the range filter.

Similarly, W2 is a normalization factor such that:

W2 = ∑
xi∈Ω

gs (‖x− xi‖)hr (‖I (x)− I (xi)‖) (6)

The smoothing weight of a pixel xi is now decided by both
the spatial distance from x and and its intensity difference from x.
As can be observed, higher weight is given to pixels that are both
spatially close to x and similar to x in intensity. By combining the
spatial filter and the range filter, strong smoothing is performed in
low variance regions while less strong smoothing is performed in
high variance regions thus preserving edges. The bilateral filter
has been widely used in image denoising [5], edge detection [6],
and image enhancement [7]. The limitation of the bilateral filter
is that it is slow when the kernel size is large. In addition, the filter
can produce stair-case effect [8] which may be undesired in some
applications. Moreover, it has been shown in [9] that the gradient
at edge pixels in the filter image can be reversed.

We use the bilateral smoothing kernel to replace the Gaus-
sian smoothing kernel in producing the image pyramid. The size
of the kernel window is increased for coarse levels. Strong im-
age features such as edges are expected to be less smoothed thus
enhancing the gradient at those pixels. Such enhanced gradient is
expected to better guide the registration process.

Image Pyramid using Guided Filter
As another edge preserving filter, the guided smoothing filter

was proposed in [10]. The guided filter uses an additional guid-
ance image and its output is a locally linear transformation of the
guidance image and the input image. It is defined as:

Îi = akGi +bk,∀i ∈Ωk (7)

where G is the guidance image and Î is the filtered image. Ωk is
a square window centered at pixel k, and ak and bk are the linear
coefficients that are constants in Ωk. Since ∇Î = a∇G, the linear
model ensures that Î has an edge only if G has an edge. The
local constant ak and bk are solved by minimizing a cost function
in window Ωk between the filtered image and the input image I,
such that:

E
(
ak,,bk

)
= ∑

i∈Ωk

((
Îi− Ii

)2
+ εa2

k

)
= ∑

i∈Ωk

(
(akGi +bk− Ii)

2 + εa2
k

)
(8)

where ε is a regularization factor to prevent large ak. By using
linear ridge regression, the solution is given by:

ak =

1
|Ωk | ∑i∈Ωk

(GiIi−µk Īk)

σ2
k + ε

(9)

bk = Īk−akµk (10)

where µk and σ2
k are the mean and variance of G in window Ωk,

|Ωk| is the number of pixels in window Ωk, and Īk =
1
|Ωk | ∑i∈Ωk

Ii

is the mean of I in window Ωk.
Since windows can be placed at all pixels, we will have the

same number of windows as pixels in the image. Accordingly,
the filtered value of each pixel is also affected by |Ωk| windows.
In [10] the computed ak and bk values in all windows affecting a
pixel are averaged such that:

Îi =
1
|Ωi| ∑

k:i∈Ωk

(akGi +bk)

=āiGi + b̄i (11)
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where āi =
1
|Ωi| ∑k∈Ωi

(ak) and b̄i =
1
|Ωi| ∑k∈Ωi

(bk), and |Ωi| =
|Ωk| are the number of windows affecting a pixel i.

The guide image G can be the same as the input image I. If

they are the same (9) and (10) are converted to ak =
σ 2

k
σ 2

k +ε
and

bk = (1−ak)µk. It can be seen that ak approaches 1 and bk ap-
proaches 0 when the variance is high in a window. In such a case
the filtered image takes more of the input image thus reducing
the smoothing effect and preserving high variance features. On
the other hand, ak approaches 0 and bk approaches 1 when the
variance in the window is smaller than a threshold ε . This indi-
cates that the filtered image takes more of the image mean for low
variance regions thus achieving smoothing.

Box kernel was used in the original guided filter [10] to com-
pute the image mean, as well as to average the values of ak and
bk in all windows. Since we use the guided filter to replace the
Gaussian filter to produce the image pyramid for registration, we
replace the box kernel with a Gaussian kernel in the guided filter
so that the filtered image demonstrates similar properties to the
Gaussian smoothed image at low variance regions. At high vari-
ance regions strong image features are preserved thus enhancing
the gradient of strong image features. We use the same input im-
age as the guidance image when performing the guided filtering.

Image Pyramid based on enhanced Guided Filter
In order to further enhance the gradient at strong image fea-

tures, we apply image enhancement through the use of a fractional
differential based filtering. The enhanced image is then used as
the guidance image in the guided filter.

Integral differential operators such as Sobel and Laplacian
of Gaussian have been widely used for enhancing high frequency
features. Such operators have also been extended to non integer
cases to form the fractional differential operators. Fractional dif-
ferential operators have the advantage of being able to enhance
image details at low frequency regions. Such operators have been
used for edge detection [11], texture enhancement [12], and faint
object detection [13].

We use the Grunwald Letnikov fractional differential defini-
tion such that:

Dα f (x) = lim
h→0

1
hα

x−a
h

∑
m=0

(−1)m
Γ(α +1)

m!Γ(α−m+1)
f (x−mh) (12)

where α is the fractional order, h is the differential step, Γ(·)
is the Gamma function such that Γ(α + 1) = αΓ(α) = α!. The
first few terms of this fractional operator are computed as 1, −α ,
−α(−α+1)

2 , −α(−α+1)(−α+1)
2 , · · · .

In this paper we give an image kernel by mapping the ex-
panded terms of (12) to coefficients starting from the center. For
example, a 5×5 fractional enhancement kernel is constructed as
follows:

K =
1

W3


b1 b2 b3 b4 b5
b16 a1 a2 a3 b6
b15 a8 1 a4 b7
b14 a7 a6 a5 b8
b13 b12 b11 b10 b9

 (13)

where ∑ai = −α , ∑bi =
−α(−α+1)

2 and W3 is a normalization
factor to ensure the sum of the kernel is equal to 1. In addition, we

Figure 1. Image enhancement using the fractional differential filter with

and without the range filter. Top: original image; bottow left: enhancement

without range filter; bottow right: enhancement with range filter, range filter

standard deviation u = 10.

normalize each coefficient that is not at the kernel center by ∑di
di

,
where di is the Euclidean distance between the coefficient and the
kernel center, and ∑di is the sum of the Euclidean distance of all
the coefficients on the same layer deviated from the kernel center.

We follow the concept of the bilateral smoothing filter and
add an additional Gaussian based range filter to the enhancement
kernel to produce a bilateral fractional enhancement filter. The
range filter is defined by:

su (‖I (x)− I (xi)‖) = 1− e
−(I(x)−I(xi))

2

2u2 (14)

where u is the standard deviation of the Gaussian function. The
combined bilateral enhancement kernel performs strong fractional
differential operation on pixels that are largely different from the
center pixel in intensity. Since we use the filtered image as the
guidance image in the guided filter, we only want to enhance the
most important features but not the details in low variance regions.
Figure 1 shows an example of enhancing a 2-D brain image using
the fractional differential kernel without and with the range filter.
The fractional differential order is α = 0.5 and the range filter
standard deviation is u = 10. It can be seen that by including
the range filter, the produced bilateral enhancement filter avoids
enhancing image details at low variance regions.

When applying the enhanced image to the guided filter for
generating an image pyramid, we vary the standard deviation u of
the range filter. A large u is used for smoothing an image for the
coarse level so that only the most important image components
get enhanced. u is reduced for finer levels where more details can
be enhanced.

Implementation Details
In the following section we refer the source image as f and

the target image as g.
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Nonlinear Deformation Model
We use the DCT basis functions to model the displacement

field in the nonlinear registration [14]. DCT has been widely used
in image processing due to its near optimal performance in coding
for compression. When used in image registration, a displacement
field can be represented by a linear combination of the DCT basis
functions. A small number of basis functions at low frequencies
are sufficient to achieve a satisfactory approximation of the defor-
mation field.

Using inverse mapping, the displacement from a pixel x =
(x,y) in g to a corresponding pixel x′ = (x′,y′) in f can be repre-
sented by:x′ = x−∑

J
j=1

(
tx

j B j(x)
)

y′ = y−∑
J
j=1

(
ty

j B j(x)
) (15)

where J is the total number of DCT coefficients in 2-D, and B j(x)
is the j-th 2-D DCT basis function at pixel x. The superscript of
t j denotes the corresponding dimension.

The 2-D DCT basis function can be computed from the sepa-
rable 1-D DCT basis functions: bx

jx(x) in the x direction and by
jy(y)

in the y direction, such that:

B j(x)≡ bx
jx(x)b

y
jy(y) (16)

where the subscript j = jyJx + jx with Jx and Jy being the number
of coefficients of the preserved 1-D DCT basis functions in the x
and y directions respectively.

The k-th 1-D DCT basis function at position l is defined as:

bk(l) =

√
2
L

w(l)cos
(
(2l +1)πk

2L

)
(17)

w(l) =

{√
1
2 if l ≡ 0

1 otherwise
(18)

where l ∈ [0,L), and L is the function length in 1-D.
The parameter of the nonlinear deformation model is thus

defined as a 2J×1 vector t with tx and ty being the column vec-
tors containing the coefficients of the stacked rows of 2-D basis
functions in the x and y directions respectively:

t≡
[
(tx)T ,(ty)T

]T
(19)

Optimization Solution
By using the Sum of Squared Difference (SSD) as the simi-

larity metric, the error function is defined as:

E (t) = ∑e(x)2 = ∑( f (T (x))−g(x))2 (20)

where T (x) is the estimated deformation at x.
In order to enforce smoothness of the estimated deformation

field, we add a regularization term that is based on the bending
energy of the deformation field, which is defined by:

R(t) =∑
x

((
∂ 2T (x)

∂x2

)2

+

(
∂ 2T (x)

∂y2

)2

+2
(

∂ 2T (x)
∂x∂y

)2)

(21)

Given the basis function based representation in (15), the
bending energy term can be efficiently computed by:

R(t) = tT Ht (22)

where H has the format of:[
H̄ 0
0 H̄

]
for the 2-D case. Matrix H̄ can be pre-computed by:

H̄ =
(

B′′T2 B′′2
)
⊗
(

BT
1 B1

)
+
(

BT
2 B2

)
⊗
(

B′′T1 B′′1
)

+2
(

B′T2 B′2
)
⊗
(

B′T1 B′1
)

(23)

where B1 and B2 are the transformation matrices whose compo-
nents can be pre-computed based on (16). And B′1, B′′1 , B′2 and B′′2
are the transformation matrices involving the first and the second
order derivatives of B1 and B2, they can also be computed based
on (16).

Combine (20) and (22), we can derive a Gauss-Newton based
iterative solution such that:

4t =−
(

AT A+λH
)−1(

AT e+λHt
)

(24)

where e is the stacked image error vector at all pixels, A is the
Jacobian matrix of image error e with respect to parameter vector,
and λ is a factor to control the the regularization weight.

Multi-stage Registration
In order to improve the registration performance, we perform

a two-stage image registration process. First, f is translated to
match the center of mass to that of the target image g. Then a
global affine registration is performed within a multi-resolution
framework. The Gaussian image pyramid is used at this stage to
account for possible large deformations. Affine parameters are
propagated between pyramid levels by scaling up the translation
components.

Figure 2. Two stage image registration framework.

Second, a global nonlinear registration using the DCT basis
function model is used to perform the multi-level nonlinear im-
age registration. Different image pyramids are constructed and
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evaluated at this stage. Figure 2 shows the adopted registration
framework. Specifically, we construct a 5 level image pyramid.
It can be seen that images in the image pyramid at the nonlinear
registration stage are not downsampled. The model parameter is
increased along the image pyramid so that simpler model is first
used for registration at the coarse levels, the number of parameters
is increased for the model at the finer levels.

Evaluation
Evaluation Design

We compared 4 image pyramids: the Gaussian image pyra-
mid, the bilateral image pyramid, the guided image pyramid using
the original image as the guidance image, and the guided image
pyramid where the fractional differential enhanced image is used
as the guidance image.

To evaluate the performance of each registration, we gen-
erate three types of synthetic deformations. The first synthetic
deformation used a sinusoidal function, which is defined as:x′ = x− τxsin

(
yπ

ϕx

)
y′ = y− τysin

(
xπ

ϕy

) (25)

where (x,y) is the coordinate of the source pixel and (x′,y′) is
that of deformed pixel, τx and τy control the magnitude of the
deformation, ϕx and ϕy are the phases of the sinusoidal function
in the x and y directions respectively.

The second synthetic deformation used a forward radial de-
formation function, which is defined as:x′ = x+ τx (x− rx)e−

(x−rx)2+(y−ry)
2

2σ2

y′ = y+ τy
(
y− ry

)
e−

(x−rx)2+(y−ry)
2

2σ2

(26)

where τx and τy define the magnitude of the deformation,
(
rx,ry

)
is the center of the radial deformation, σ controls the expansion of
the Gaussian function. Using forward radial deformation can lead
to a hole in an area around the radial center. Therefore, instead of
computing a forward deformation for every pixels in the image,
only a number of control points on a regular grid were selected.
These corresponding control point pairs were used to interpolate
a full deformation field using the thin plate spline [15] .

For the third synthetic deformation we generated random
displacement for a number of control points on a regular grid.
Deformations for all pixels were then interpolated using the thin
plate spline. The random displacements were generated using dif-
ferent normal distributions.

The generated synthetic deformations were applied to a pool
of images to generate corresponding warped images. Then, the
input and warped image pairs were used as source and target im-
ages, respectively. The image pool was composed of 2-D slices
extracted from 3-D brain images, and chest and lung images. We
selected 40 3-D brain images randomly from a public database
[16] including 10 T1 images, 10 T2 images, 10 proton density
(PD) weighted images and 10 magnetic resonance angiography
(MRA) images. In addition, we selected 40 chest images and 40
lung images from a lung image database [17] with variations in il-
luminations. Such variation in image sources allowed the testing
images to have variable geometric structure and illumination. All

images were resized to 256×256 and the spacing between pixels
were set to be 1 pixel. Each of the three types synthetic deforma-
tions was applied to each of the images. This gave us a total of
360 image pairs for the experimental evaluation.

Using the synthetic deformation, we computed the rooted
mean squared deformation field error (RMDE) between the recov-
ered deformation field and the known one. In addition, we mea-
sured the similarity between the resulting warped image and the
target image in terms of rooted mean squared image error (RMIE).
Lastly, the smoothness of the estimated deformation field was also
compared by measuring the ratio of pixels with non-positive Ja-
cobian determinant (RNJD). We gave preference to smoothed de-
formation field in solutions.

Note that the brain and the chest images in the image pool
contain large portions of background region where deformation
estimation can be unconstrained. We used a simple segmentation
approach to generate masks for all the images in the image pool
where an intensity threshold was determined to be 25% of the
mean image intensity. Evaluation metrics were computed only in
the masked regions.

Results
Table 1 shows the mean and standard deviation of the three

evaluation metrics for registrations using the selected 4 image
pyramids. As can be observed registration using the bilateral im-
age pyramid produced the smallest mean deformation field error.
Further, registration using gradient enhanced image pyramids pro-
duced smaller deformation field error than registration using the
Gaussian pyramid. When using the original image as the guid-
ance image, registration with image pyramid generated from such
guided filter produced the smallest mean image difference. While
the fractional enhanced guided image pyramid had the largest
mean image error, the deformation field produced by it had the
fewest pixels with non-positive Jacobian determinant. It can be
seen that registration using the gradient enhanced image pyramid
showed improved performance over the commonly used Gaussian
image pyramid.

Figure 3 shows the images generated at all pyramid levels
for one synthetic deformation case using different image pyra-
mids. Figure 4 shows the corresponding deformation field error
(encoded in RGB color) between the estimated deformation field
and the known one after registration at each pyramid level. From
figure 3 it can be seen that strong image features such as the con-
tours of the brain were better preserved for pyramids other than
the Gaussian image pyramid. Such difference is especially clear
at the coarsest level (level 5). As a result, the known deforma-
tion was more closely recovered by registration using the gradient
enhanced image pyramid at that level. For the Gaussian image
pyramid, the large estimation error happened at the coarsest level
can not be rectified at finer levels.

Conclusion
In this paper we investigate alternative image pyramids to

the traditional Gaussian pyramid for hierarchical nonlinear im-
age registration context. By taking advantages of edge preserv-
ing filters image pyramid can be produced to better preserve the
strong gradient information so that image registration can be bet-
ter guided. Three types of gradient enhanced image pyramids are
compared to the Gaussian pyramid using synthetic deformations.
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Mean and standard deviation of 3 evaluation metrics for registrations using 4 image pyramids. (a) registration using the Gaussian
pyramid, (b) registration using the bilateral pyramid, (c) registration using the guided pyramid where the original image is the
guidance image, (d) registration using the guided pyramid where the fractional differential enhanced image is the guidance image.

RMDE 7.18±7.99 6.89±7.64 6.93±7.72 6.95±7.61
RMIE 9.81±9.97 9.8±9.84 9.67±9.7 9.84±9.82
RNJD 0.67±1.82 0.59±1.73 0.58±1.72 0.56±1.63

(a) (b) (c) (d)

Experimental results demonstrate that registration using the gra-
dient enhanced image pyramids produce improved performance
over registration using the Gaussian pyramid.
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Figure 3. Image pyramids of the target image in a synthetic deformation case using 4 different image pyramids. (a) the Gaussian pyramid, (b) registration using

the bilateral pyramid, (c) the guided pyramid where the original image is the guidance image, (d) the guided pyramid where the fractional differential enhanced

image is the guidance image.
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Figure 4. Deformation field error (encoded by RGB color) at each pyramid level of registrations using 4 different image pyramids on a random synthetic

deformation case. (a) registration using the Gaussian pyramid, (b) registration using the bilateral pyramid, (c) registration using the guided pyramid where the

original image is the guidance image, (d) registration using the guided pyramid where the fractional differential enhanced image is the guidance image.
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