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Abstract
Synchrotrons such as the Advanced Light Source (ALS) at

Lawrence Berkeley National Laboratory are user facilities - they
are sources of extremely bright X-ray beams, and scientists come
from all over the world to perform experiments that require these
beams. As the complexity of experiments has increased, and the
size and rates of data sets has exploded, managing, analyzing and
presenting the data collected at synchrotrons has been an increas-
ing challenge. The ALS has partnered with high performance
computing, fast networking, and applied mathematics groups to
create a“super-facility”, giving users simultaneous access to the
experimental, computational, and algorithmic resources to over-
come this challenge. This combination forms an efficient closed
loop, where data despite its high rate and volume is transferred
and processed, in many cases immediately and automatically, on
appropriate compute resources, and results are extracted, visual-
ized, and presented to users or to the experimental control system,
both to provide immediate insight and to guide decisions about
subsequent experiments during beam-time. In this paper, We will
present work done on advanced tomographic reconstruction al-
gorithms to support users of the 3D micron-scale imaging instru-
ment (Beamline 8.3.2, hard X-ray micro-tomography).

Introduction
User facilities like the Advanced Light Source (ALS) at

Lawrence Berkeley National Laboratory host scientists and re-
searchers from all over the world who come because of the ex-
tremely bright X-ray beams that enable unique science. The main
expertise of most of these users is not directly in computing and
data management but in their field of science. However, the size
and rate of data produced at synhcrotrons has exploded over the
last few years. This volume and velocity can easily overwhelm
many users–with their existing tools, they are not able to fully
analyze or take advantage of all of the data. The ALS has part-
nered with high performance computing (NERSC), fast network-
ing (LBLnet and Energy Sciences Network), computer scientists
(SPOT Suite), and applied mathematics groups (CAMERA), to
give users simultaneous access to the experimental, computa-
tional, and algorithmic resources to overcome the data challenge.

In this contribution, we will focus on new work at the X-ray
Tomography Beamline (8.3.2) of the ALS. We have previously
described SPOT Suite [1, 2], which detects and transfers data to
the NERSC high performance computing facility, where process-
ing jobs are automatically launched. Raw and processed data and
parameters are search-able by users through a web portal. One
of the processing steps is tomographic reconstruction by a filtered
back-projection method. This approach is fast and straightfor-
ward and is useful for giving users real-time feedback. But one
of the original goals in building an infrastructure that included the
NERSC high perfomance computing center was to make it possi-
ble to launch more computationally expensive algorithms on data
sets that merit it, yielding improved results.

While the co-location of data and compute resources is re-
quired, it is not sufficient to allow most ALS users of the tomog-
raphy instrument to take advantage of advanced tomographic re-
construction algorithms: in general they lack the required exper-
tise in navigating the command line and queue system of the high
performance computer, and also lack the required expertise in ad-
vanced tomographic reconstruction algorithms, which in general
require detailed adjustment of parameters.

In this manuscript, we describe the work we have done to
change this, making computationally intensive Model-Based Iter-
ative Reconstruction (MBIR) more readily available to all users
of the beamline. While this has involved some work on the SPOT
Suite interface to enable users to choose to launch MBIR recon-
structions on selected data sets, in this manuscript we focus on
describing the work done to improve the ability of MBIR to auto-
tune, and to minimize the number of parameters users must adjust.
We show that this has allowed MBIR to give excellent results over
a range of samples.

Advanced Algorithms for Tomography -
Model-Based Iterative Reconstruction

MBIR algorithms represent the state-of-the-art in attaining a
balance between resolution and noise for a variety of tomographic
applications [3–9]. These methods cast the reconstruction as a
maximum a posteriori estimation problem involving the formu-
lation of a probabilistic forward model for the data and a prior
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Figure 1. A screen-shot of the result of applying the MBIR algorithm to

a data set via the SPOT interface. Users can reconstruct the data using

multiple approaches and compare the results.

model for the 3D volume. The estimation is typically equivalent
to minimizing a cost-function of the form,

(x̂, φ̂) = argmin
x,φ
{− log p(y|x,φ)− log p(x)}

where x is a vector containing the unknown voxels, φ repre-
sents unknown calibration parameters associated with the mea-
surement, y is a vector containing all the measurements, p(y|x,φ)
is the likelihood and p(x) is the prior probability of x. The central
challenges in the MBIR approach are the formulation of the like-
lihood function, a suitable prior model and the subsequent design
of an optimization method to find the minimum of the resulting
cost function.

We have used a specific version of this algorithm [10–12]
that is designed to automatically account for the presence of mis-
calibrations that account for rings and the presence of streaks due
to outliers; artifacts that are common in synchrotron X-ray to-
mography. In particular, our implementation optimizes the cost-
function [10]

c(x,d,σ) =
1
2

N

∑
n=1

M

∑
i=1

βT,δ

(
(yn,i−An,i,∗x−di)

√
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σ

)
+

MN log(σ)+ ∑
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w jkρ(x j− xk) (1)

where, βT,δ is the generalized Huber function [9] with parameters
T and δ , N is the total number of views, M is the number of
detector pixels, yn,i is the log normalized measurement at view n
and pixel location i, An is the forward projection matrix at view n,

di is a offset calibration parameter associated with detector pixel i
(that models the presence of rings), Λn is a diagonal weight matrix
with entries set to be proportional to the inverse variance of the
noise at each measurement [3, 13], and σ is a scaling parameter
for the noise associated with the measurements. The function ρ(.)
is set to a q-Generalized Markov Random Field [14] be of the
form

ρ(∆) =
∆3

s

∣∣∣ ∆
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∣∣∣2
cs +
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where cs is typically set to a small number (in the range of 1/100),
∆s is the length of each side of a voxel, σs and p are model param-
eters. Notice that since cs is small, this term is approximately cor-
responds to a generalized Markov Random field [15]. One advan-
tage of this model is that when p = 1 we obtain a total-variation
like prior that corresponds to sharp edges and when p = 2 we ob-
tain smooth reconstructions corresponding to a Gaussian prior. In
our experience with several data sets, values of p = 1.2 provide a
good balance between preserving texture and edges in the recon-
structions.

One of the challenges in making MBIR accessible to exper-
imental scientists, some of whom may not be performing quanti-
tative imaging (i.e. do not have an estimate for the values of their
reconstruction in units of inverse distance), is to be be able to au-
tomatically set the parameters to obtain a reasonable reconstruc-
tion. Furthermore, we need to factor the cost function so there
are “knobs” that can be adjusted in a intuitive manner so the users
can obtain the desired image quality. In particular, we re-write
the prior so that σs =

σs,0
κ

. Here κ is a dimensionless quantity
while σs,0 is a value having units of inverse distance. In the code,
we automatically initialize σs,0 using the following heuristic rea-
soning. For a GGMRF, the maximum likelihood estimate of this
quantity is equal to be the “standard-deviation” like analogue for
the GMRF [16]. However, we do not have the reconstruction to
be able to estimate this value. Instead, we obtain an estimate of
this quantity by finding the standard deviation in each projection
image yn and dividing this quantity by the projected thickness of
the sample (units of distance). We average the estimate from all
the views n to set the value of σs,0 after adjusting it for the vari-
ance computation of the noise. Given this setting, the user only
has to pick the value of κ which is a dimensionless smoothness
value. Typically, κ on values in the range of 0− 1, with a value
of 0.5 producing a significantly more noisy reconstruction than a
value of 1. The parameter T is set so that if the fitting error is
greater than T times the noise standard deviation then that mea-
surement is classified as an outlier [9]. Hence, values in the range
of as 3 to 5 are usually sufficient to reject outliers in typical data
sets. The value of δ (in the range [0,1] with a typical value of 0.1)
is set to reject the bad measurements. In summary, the principal
parameter the user is left to adjust to perform the reconstruction
is the dimensionless smoothness value - κ . However, all the other
parameters (p, T and δ ) can also be adjusted via the input inter-
face.

The MBIR algorithm uses a multi-CPU version of NHICD
[12, 17] algorithm to optimize the cost function (1). The division
of the 3-D volume across cores follows the scheme in [12] i.e. the
volume is divided into chunks of slices along the axial direction,
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a fraction of the voxels in each chunk are updated by a single
compute node in parallel, and each chunk communicates its “end”
voxels to the adjacent chunks after every iteration to ensure we
lower the value of the overall cost function with each update. The
chunk sizes are optimized to ensure we fully utilize the processing
power of each node in the National Energy Research Scientific
Computing clusters.

Finally, in order to make the MBIR code more accessible to
users, we have built a simple GUI based tool that is integrated into
the existing infrastructure for the collection, processing and anal-
ysis of tomography data sets at the ALS, termed SPOT suite [1,2].
Using this interface, the user can set the basic MBIR parame-
ters, reconstruct the data and compare the output of multiple al-
gorithms (see Fig. 1).

Results
In this section, we present results using the MBIR method

to process several data sets acquired at the ALS and demonstrate
how the algorithm can help drive new scientific experiments at
the synchrotron. In each case, we compare the MBIR method
(p= 1.2, δ = 0.1) to an analytic reconstruction algorithm (gridrec
[18] or filtered back projection - FBP) that incorporates pre/post-
processing to remove ring artifacts. For each result, we present a
single slice from the 3D reconstructions to compare the different
methods. All the reconstructions are performed using the NERSC
HPC compute clusters.

Sparse View Sampling
One of the strengths of the MBIR method, is the ability of the

algorithm to reconstruct a sample from a sparse set of views [10].
Fig. 2 demonstrates three such examples where the MBIR recon-
struction has a higher quality than the the analytic approach, albeit
using only a fraction of the total number of views compared to the
analytic techniques (Data Set (c) courtesy - Andrew McElrone;
Data Set (e) courtesy- TE Connectivity). While the amount of
sub-sampling that can be used without a significant loss of detail
depends on the sample, in general we have observed it is possible
to obtain a factor of 2 to 4 compared to analytic approaches across
a wide range of scientific data sets.

Limited View Sampling
As a part of novel scientific experiments at a synchrotron

based beamline, there are cases when the sample holders used for
the tomography experiment are such that they block (or highly
attenuate) a collection of views. Fig. 3 (a) shows one such case,
where a diamond anvil cell blocks the measurements for about 60◦

out of the 180◦ rotation resulting in a limited view data set. As
a result, the analytic reconstruction approach produces a recon-
struction with significant streak artifacts as well as loss of detail
(Fig. 3 (c)). In contrast, the MBIR approach produces a recon-
struction that suppresses the streak artifacts and preserves edge
detail better. This example illustrate how using advanced algo-
rithmic approaches can help reconstruct data from non-traditional
sampling geometries.

Robustness to noise
In general, MBIR style approaches have been shown to be

very useful to handle low-dose and noisy data sets for a vari-
ety of applications [17, 19, 20]. Fig. 4 shows the reconstruction

from the two algorithms for a noisy data set containing 512 views
over a 180 degree rotation (data courtesy : Dilworth Y. Parkin-
son). Notice that for the same data set the MBIR method pro-
duces a lower noise reconstruction compared to the analytic ap-
proach while preserving the edges in the reconstruction. MBIR
algorithms are set to play a crucial role in high speed synchrotron
tomography [12, 21] as well as cases when the samples are sensi-
tive to beam damage.

Other modalities - Two-step in-line phase contrast
tomography

The MBIR algorithm can also be adapted to other paral-
lel beam tomography applications. Fig. 5 (a) and (b) shows the
reconstruction of phase-contrast tomography data (carbon/resin
sample) in which the phase is first retrieved using a Bronikov al-
gorithm [22]. The MBIR approach produces a sharp reconstruc-
tion compared to the FBP method while preserving the details in
the edges. We note that a more principled approach to the phase
contrast tomography problem would involve a single unified cost-
function that directly operates on the raw measurements [23].

Conclusion
In this paper, we have introduced the ALS “super-facility”

and the implementation of an advanced tomographic reconstruc-
tion algorithm - MBIR into this framework - demonstrating how
the algorithm can be used for reconstructions in several challeng-
ing scenarios. We foresee such advanced algorithms being a key
driver for new scientific experiments which are not possible us-
ing current approaches. In addition to better modeling, acceler-
ating MBIR methods by developing new mathematical optimiza-
tion techniques that best utilize modern parallel computing plat-
forms [24–26] will play a vital role in driving the next generation
of scientific experiments.
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(a) Gridrec with 1024 views (b) MBIR with 256 views

(c) Gridrec with 1024 views (d) MBIR with 512 views

(e) Gridrec with 2048 views (f) MBIR with 1024 views

Figure 2. Illustration of how the MBIR algorithm (a,d,f) can provide superior quality reconstructions than the conventional approach (a,c,e) with a fraction of the

typically measured views. (a) and (b) are from a soil data set. (c) and (d) are reconstructions of a plant stem data set (courtesy Andrew McElrone, UC Davis).

(e) and (f) are from a conductive composite sample (courtesy TE Connectivity). The use of MBIR algorithms can drive new scientific experiments by reducing

the amount of data required for a given application.
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Sample 
Diamond 
Anvil 
Holder 

(a) Schematic of the diamond anvil cell. (b) Sinogram from a single slice.

(c) FBP (d) MBIR

Figure 3. Illustration of how the MBIR algorithm is robust to limited angular sampling. In this case, a diamond anvil cell (a) blocks the measurements (very

high attenuation) of an obsidian sample for about 60◦, resulting in a sinogram pattern of the type seen in (b) (Data : courtesy Alastair McDowell and Martin

Kunz). Hence, there are streaks in the FBP reconstruction due to the limited angular sampling (c). In contrast, the MBIR method (d) reduces streak artifacts and

preserves detail, thereby enabling experiments using sample holders that may block a fraction of the views during acquisition.
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(a) Gridrec with 512 views (b) MBIR with 512 views

Figure 4. Illustration of how the MBIR algorithm can produce a lower noise reconstruction while preserving edge detail compared to the typically used algorithm

(Gridrec) while operating on the same data set. The above reconstruction is from a single slice of a bead data set.

(a) FBP with 512 views (b) MBIR with 512 views

Figure 5. The MBIR algorithm adapted for in-line phase contrast tomography data of a carbon/resin sample. The reconstructions are performed after retrieving

the phase using the Bronikov algorithm [22]. The MBIR method produces a sharper reconstruction while preserving the edges.
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