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Abstract
Over the past 5 years several video-based heart rate (HR) es-

timation methods have been developed. These non-contact meth-

ods of HR estimation use video processing techniques to estimate

the HR of humans in the scene. This is known as videoplethys-

mography (VHR) and has applications to the medical and surveil-

lance fields. In this paper, we review two previous VHR tech-

niques and describe techniques to improve VHR accuracy. These

include: (1) targeted skin detection within the facial region, (2)

recursive temporal difference filtering and small variation ampli-

fication, (3) periodic signal detection within the expected human

HR range while considering background periodic signals, and (4)

reduction of signal range using a cutoff frequency search. These

improvements increased our HR estimate accuracy in two condi-

tions (no-motion, non-random motion) when compared to earlier

VHR methods but were not significantly better than those that em-

ploy an adaptive frequency analysis.

Introduction
Remote health monitoring is a growing field and non-contact

video-based heart rate (HR) estimates are now possible. Video-

based HR estimation, known as videoplethysmography (VHR), is

a technique that can detect blood volume changes in the microvas-

cular tissue [1] and allows HR to be estimated from a video of

person in the scene. Similar to the process used in medical grade

pulse oximeters, VHR assesses small blood volume changes in

cheek/face capillaries from the video sequence. Although pulse

oximeters are accurate and inexpensive, they are not well tolerated

by patients over long periods of monitoring or by patients with

tactile sensitivities. Therefore, a non-contact means of HR moni-

toring could be a valuable addition to the medical field. Addition-

ally, non-contact monitoring of HR could also inform surveillance

systems and provide an alert when someone’s heart rate is too high

or low.

Several VHR methods have been developed over the past 5

years with each based on two basic assumptions. First, small color

variations in the cheek/face region reflect blood volume changes

(i.e., heart-beats). This is sometimes known as “micro-blushing.”

Second, given the rhythmic nature of heart-beats, the color vari-

ations will also follow an oscillatory pattern. Beyond these as-

sumptions, each technique uses a slightly different approach in

detecting the HR signal from video. For example, in one of the

earliest VHR methods, Poh (and Picard) et al. [2], [3] obtained the

mean color pixel intensity for the facial region in each RGB frame

to form 1D signals and then used Independent Component Anal-

ysis (ICA) [4] to separate the HR signal from the other noise sig-

nals. Monkaresi et al. [5] improved this method by choosing the

ICA components using K-Nearest Neighbor classification. Mc-

Duff et al. [6] also extended Poh et al. [3] by using a five band

digital camera. Additionally, we [7] improved the Poh et al. [3]

method by computing the 1D signal from each RGB frame and

using an adaptive cutoff frequency for the bandpass filter (AFR)

to achieve a more stable HR estimate. For the remainder of this

paper, the Poh et al. [3] method will be referred to as the Picard

method (or just “Picard”) and the our previous approach [7] will

be referred to as the AFR method (or just “AFR”). Both of these

methods use ICA to estimate a HR signal (see Figure 1).

Apart from ICA, Kumar et al. [8] used only the green chan-

nel signal to estimate HR. They also combined signals from differ-

ent tracked facial regions using a weighted average. Yan et al. [9]

used Red, Green, Blue signal weight averages instead of ICA (and

weights for each signal were determined by maximizing the signal

noise ratio). Haan et al. [10], [11] proposed a chrominance-based

VHR method using the ratio of two normalized color signals.

Other approaches have proposed using more subtle changes to es-

timate HR. For example, Balakrishnan et al. [12] estimated HR by

detecting subtle head motions. Additionally, others have used spa-

tial decomposition and temporal filtering to magnify small video-

captured motions to estimate HR [13], [14]. Current challenges

facing VHR include diverse skin tones, a wide range of typical

human HR, and several noise-related factors (i.e., room lighting,

camera dependent noise, subject motion).

To mitigate noise-related factors the present study employed

small variation amplification, described in detail later, instead of

ICA. Building on the strengths of previous approaches we will

only assess the green channel signal. Additionally, since HR is

reflected in small color changes in skin region, using small varia-

tion amplification allows us to amplify the small color variations

and attenuate large variations. To obtain a more stable estima-

tion of the HR, we use a new approach to estimate the cutoff fre-

quencies of the bandpass filters used before the Inter-Beat-Interval

(IBI) computation (see Figure 1). In this paper, we will (1) de-

scribe in detail two related methods Picard [3] and our AFR [7])

and compare them with our proposed approach, (2) present ex-

perimental data on how each method preformed in no-motion and

non-random motion conditions, (3) empirically test the improve-

ments generated from the proposed method (i.e., is the proposed

method significantly better than previous methods).
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The Picard and AFR Methods
Picard [3] used ICA to decompose 1D signals from the video

and then selected the signal component with the highest power to

estimate HR. We have previously extended the Picard method us-

ing an Adaptive Frequent Range (AFR) filter that uses ICA [7].

We will describe the Picard method [3] and our AFR technique [7]

in detail for future comparison. In Figure 1, the white blocks

depict Picard method [3] and the gray blocks illustrate exten-

sions/adaptations used in the our AFR method [7].

Figure 1: The block diagram of the Picard method [3] and our

previously published AFR method [7].

Picard begins with face detection. The average average of the

pixel intensity of the detected face region is obtained in each RGB

frame to form three 1D signals. The 1D signals are detrended us-

ing a high-pass like filter based on a smoothness priors [15]. The

parameter for the detrending filter sets the high pass cutoff fre-

quency. We denote this parameter as λ . We use λ = 100 which

corresponds to 0.021 fs where fs is the sampling rate (in our case,

fs = 30 Hz which is the frame rate of our video sequence). The

detrended signal is normalized with z-score normalization to form

a zero-mean and unit variance signal. ICA is used on the three 1D

normalized signals to separate the HR signal from the other noise

signals. The Power Spectrum Density (PSD) is obtained for the

three ICA components and used to choose the HR signal. The HR

signal is the ICA component which has the highest peak in PSD

within the resting HR range (0.7 to 2 Hz). After a 5 point moving

average filter (M = 5), the signal is bandpass filtered using a 128-

point Hamming window (filter order N f = 127) with fixed cutoff

frequency. The Low cutoff frequency ( fl) and high cutoff fre-

quency ( fh) are 0.7 and 2 Hz respectively. Next, the bandpass sig-

nal is interpolated to a higher sampling frequency fsnew
= 256 Hz

using cubic spline interpolation. In the last block of Figure 1, the

Inter-Beat-Interval (IBI), is the time interval between two peaks

in units of seconds, is determined to estimate the HR. The IBI

detects peaks and finds the interval between them to estimate the

HR. Finally, the IBI signal is filtered using the NC-T filter [16]

in the IBI block with fixed parameters un = 0.4 and um = 1.0 Hz.

This filter can remove the unstable HR estimation by filtering the

rapidly changing values.

Our previous method, AFR, used an adaptive cutoff fre-

quency range instead of a fixed cutoff frequency range for the

bandpass filter [7]. AFR selects frequencies by targeting those

within the typical range of human heart rate and by ignoring os-

cillatory signals that may be present in the background signal

(i.e., lighting, camera vibration). AFR begins with face and back-

ground region detection. Two sets of 1D RGB signals from both

regions are detrended and normalized. The ICA and PSD pro-

cesses are the same as the Picard method. Adaptive cutoff fre-

quencies are determined for the bandpass filter in two steps. First,

AFR forms frequency clusters in each PSD from both face and

background regions which are the candidates for the cutoff fre-

quencies for bandpass filter. A frequency cluster is a range of

neighboring frequencies that are determined by thresholding the

PSD (thresholds tr = 0.1, tn = 0.1 are determined empirically).

Second, background removal was done by comparing frequency

clusters from the face and background regions using the Sum of

Absolute Differences (SAD) in the clusters. If the SAD between

two clusters is less than a threshold (tm = 0.4), two clusters are

classified as a similar pair. The threshold was empirically deter-

mined [7]. Starting from the highest energy cluster, AFR selects

the face region cluster that does not match with the background

cluster. The new cutoff frequencies for the bandpass filter are

derived from the selected cluster’s range. Once the signal is band-

pass filtered, the IBI computation of Picard is done.

Proposed Method

Figure 2: The block diagram of the proposed method.

Figure 2 shows the block diagram of the proposed method.

Gray colored blocks are the extensions of the Picard [3] and

AFR [7] methods.

In the first block we track the facial region of the subject

(to allow for HR estimates in both motion and no-motion condi-

tions). This step is distinct and is not used in the Picard and AFR

methods. Once the facial region is identified, then skin pixels are

detected within the facial region. Next, only the green channel

signal is used (Picard and AFR used 3 1D RGB signals). The rea-

son why we use only the green channel image is that it has the

most information relevant to HR. Kumar et al. [8] discussed that

hemoglobin (Hb), which is related to blood volume change and

eventually to HR, has a high absorption coefficient in the green

wavelength. The average green pixel intensity signal is obtained

in each frame for the skin region to form a 1D signal. As in AFR,

we use the background (non-skin) signal but compare the highest

peaks of the background and skin signals instead of clustering.

Detrending and normalization is the same as Picard and AFR.

Next temporal differencing filter and small variation amplification

(SVA) is used instead of ICA. The idea here is the amplification

of the small color variations and the attenuation of the large vari-

ations in the skin regions to estimate HR. PSDs are obtained next

for the amplified green signal from the skin and background re-

gions. The highest peak is determined by comparing the the high-

est peak frequencies from skin and background regions. Equation

for similarity is provided in the following subsection. The highest

peak is then used in the Cutoff Frequency Search (CFS) to find the
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cutoff frequencies for the bandpass filter. After a M-point mov-

ing average filter (M = 5), the signal is bandpass filtered with the

cutoff frequencies from CFS. Our method’s IBI is almost same as

the IBI of Picard and AFR. The only difference is the use of IBI

windowing (boldface in Figure 2). IBI windowing uses a M point

moving average filter (M = 5) on the NC-T filter output in order to

remove the outliers. We will describe in detail Tracking/Skin De-

tection, Temporal Filter/Amplification and Peak Selection/CFS in

the following sections.

Face Tracking and Skin Detection
The initial bounding box for tracking is obtained by face de-

tection using a Haar Cascade Classifier [17]. For tracking, we de-

rived a reference color model from the initial bounding box of the

face region. For the color model, each RGB color space is quan-

tized from the original 256 bins to 16 bins and is mapped into 1D

163-bin histogram. The sum of this histogram is then normalized

to one. Particle filter tracking is used to find the corresponding

face region in each frame [18]. Denoting the hidden state and the

data at time t by xt and yt respectively, the probabilistic model we

use for tracking is

p(xt+1|y0:t+1) ∝ p(yt+1|xt+1)
∫

xt

p(xt+1|xt)p(xt |y0:t)dxt (1)

where p(yt+1|xt+1) is the likelihood model of the data, and

p(xt+1|xt) is the transition model of the second-order auto-

regressive dynamics [18]. We define the state at time t as the

location in the 2D image represented as pixel coordinates. For

obtaining the likelihood p(yt |xt), we use the distance metric

d(y) =
√

1−ρ (y) where ρ (y) is the sample estimate of the Bhat-

tacharyya coefficient between the reference color model and the

candidate color model of each particle at position y [19].

Given that our target signal includes only small color varia-

tions, even small levels of noise may significantly impact our HR

estimates. Therefore, in an attempt to minimize noise, skin detec-

tion is use to remove hair and eye regions (which do not contain

HR information). A bayesian classifier using non-parametric den-

sity estimation is used for skin detection [20].

Recursive Temporal Differencing Filter and Small
Variation Amplification (SVA)

The basic idea is that we only amplify the small changes in

time and suppress the large changes, because the HR signal is the

small color changes in the skin region caused by cardiac activity.

To achieve, a first order temporal recursive differencing filter is

used on the detrended green channel signal:

g[n] = g[n+1]−g[n] (2)

where g[n] is the detrended green signal from skin pixels and n is

the frame index.

Small variation amplification (SVA) is then used (Equa-

tions 3 and 4):

gamp[n] = αg[n] (3)

α = |g[n]|γ (4)

where α is the amplification factor based on the difference value

of green signal. We choose γ = −0.1 empirically. From these

blocks, we can suppress the large temporal variations in the signal

and amplify the HR signal reflected in small temporal changes.

Peak Selection and Color Frequency Search (CFS)
Peak Selection begins with finding the highest peak in the

PSD for the skin and background regions. If the highest peak from

the skin region is similar to the highest peak from the background

region, then this is a strong periodic noise signal from factors such

as lighting. The similarity between highest peaks is determined

by:

d f = | f1 − f2| (5)

where f1 is the highest peak frequency from the skin region and

f2 is the highest peak frequency from the background region. If

d f < T (we empirically choose threshold T = 0.1), we then find

the next highest peak in the skin PSD. The selected highest peak is

used as the starting point for the CFS which eventually determines

tighter cutoff frequencies for the Bandpass Filter (BPF).

Figure 3: An example of CFS in PSD.

As shown in Figure 3, a gradient search is done on the skin

region PSD signal (starting from the highest peak). The points

that have a sign change are determined as the new cutoff fre-

quencies ( flnew
and fhnew

) for BPF. Tighter cutoff frequencies were

achieved using CFS for BPF and this supports more stable esti-

mations in the IBI computation.

Experimental Results
In our experiments, we acquired two different datasets. Both

were collected in the same room which had windows with semi-

transparent blinds and lighting on the ceiling as shown in Figure

4. Camera 1 in Figure 4 was used to record the subject and camera

2 was used to record the pulse oximeter for the ground truth HR.

All videos had a spatial resolution of 1920×1080, 30 fps and 60

seconds length.

Figure 4: The room and camera setting.

The ground truth HR was measured using a Pulse Oxime-

ter attached to the finger of the subject. A Nonin GO2 Achieve

Finger Pulse Oximeter was used in Dataset 1 and CE & FDA

Approved Handheld Pulse Oximeter was used in Dataset 2. The

pulse oximeter HRs were manually recorded from the video once

per second in both datasets. Dataset 1 included 22 subjects (12

females and 10 males) and Dataset 2 included 18 subjects (9 fe-

males and 9 males).
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The distance between the subject and the camera was ap-

proximately 1.8 m in both datasets, the zoom was manually ad-

justed to focus only on the upper torso and face in Dataset 1. In

Dataset 2, the zoom was manually adjusted to show entire upper

body of the subject. Examples of videos from Dataset 1 and 2 are

provided in Figure 5.

(a) Dataset1 Video Setting. (b) Dataset2 Video Setting.

Figure 5: Video Setting Examples.

Dataset 1 included no-motion videos and Dataset 2 included

both non-random motion and no-motion videos. In the no-motion

videos, the subjects were seated and were asked to look toward

the camera. In the non-random motion videos, the subjects were

asked to move their head from left to right repeatedly while keep-

ing their faces toward the camera.

In our experiments, we set the parameters for Picard [3] and

AFR [7] as described in the Picard and AFR Methods Section. A

summary of the parameters used in the three methods are provided

in Table 1. All the parameters are chosen empirically except the

video frame rate fs.

Parameter Picard [3] AFR [7] Proposed

λ 100

fs 30

( fl , fh) (0.7,2)

fsnew
256

M 5

N f 127

(un,um) (0.4,1)

tr - 0.1 -

tn - 0.1 -

tm - 0.4 -

γ - - -0.1

T - - 0.1

Table 1: A summary of parameters used in the three VHR

methods.

The initial facial region was detected in the first frame of the

video [17]. 80% of the detected face region’s width and height

were used with all three methods. Skin detection was trained from

the SFA image database [21]. The background region is selected

on the wall behind the subject (with the size of 80% of face re-

gion).

The proposed method shows better overall performance,

compared to the Picard [3] and AFR [7]. For example, Figure 6

shows one of the final HR estimation from all three methods for

the motion video of Subject 9 in Dataset 2. The red line shows

manually annotated ground truth HR from the pulse oximeter.

The estimated HR from Picard, AFR and the proposed method

are labeled as black, green, and blue respectively. Our proposed

method shows the closest estimation to true HR in this case.

To evaluate the overall performance, we defined the error

metrics as:
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Figure 6: A comparison of the three VHR methods - Subject 9

motion in Dataset2 : Estimated HR [bpm] vs Time [sec].
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N
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∑
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|
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HRtrue[n]
| ∗100 [%]

1

N

N

∑
n=1

|HRest [n]−HRtrue[n]| [bpm]

(6)

where HRest [n] is the estimated HR in units of beat per minute

(bpm), HRtrue[n] is the manually recorded HR in units of bpm

from the pulse oximeter and n is the time domain index when

the HR estimations exist. Comparison results for the three VHR

methods in terms of Error Rate e1 in both units [bpm and % ] are

shown in Table 2, 3.

In Dataset 1, the proposed method has the lowest average

error rate across all 22 subjects (3.67 % and 4.71 bpm) as shown

in Table 2a. The proposed method outperforms Picard and AFR

in most of the videos except three cases. The overall error rate in

Dataset 1 is lower than the one in Dataset 2 because Dataset 1 has

more pixels in the face region due to the manual zoom focus on

the upper torso and face (compared to the whole upper body in

Dataset 2).

In Dataset 2, the proposed method has the lowest average

error rate across all 18 no-motion videos (7.09 % and 9.48 bpm)

as shown in Table 3a. The proposed method outperforms Picard

and AFR in most of the videos except four cases. Even though the

proposed method outperforms the previous methods in Dataset

2, the overall error is still higher than Dataset 1 due to the less

number of pixels in face region.

In non-random motion videos, all three methods still have

a large error rate compared to the no-motion scenario. The pro-

posed method has the lowest average error rate as measured by

percent across all 18 subjects (16.89 %), while the Picard method

has the lowest average error rate as measured by bpm across all 18

subjects (13.36 bpm) as shown in Table 3b. The proposed method

outperforms Picard and AFR in most of the videos except five

cases. However, when the highest peak is not matched with the

true HR, the proposed method has the tendency to propagate the

error because of CFS.

Statistical Analyses
We used a series of the paired samples t-tests [22] to com-

pare the proposed method to the other two methods. The outcome

variable was the percentage error rate e1[%] for no motion and

non-random motion videos. Two-tailed tests were used with an
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ID Picard [3] AFR [7] Proposed

[ bpm ] [ % ] [ bpm ] [ % ] [ bpm ] [ % ]

1 5.53 8.00 1.49 2.16 1.58 2.29

2 3.58 6.32 2.97 5.27 1.81 3.21

3 5.50 10.44 1.89 3.59 1.19 2.27

4 6.47 7.23 2.75 3.08 2.44 2.73

5 11.29 21.21 2.69 5.03 2.26 4.21

6 12.37 13.67 4.47 4.92 3.15 3.46

7 8.36 10.66 2.89 3.69 2.36 3.01

8 7.12 10.00 2.95 4.12 1.93 2.69

9 5.95 7.91 2.39 3.17 2.10 2.78

10 6.57 6.99 2.85 3.03 15.15 16.05

11 5.03 6.37 1.43 1.82 1.91 2.44

12 5.34 9.82 4.28 7.82 2.47 4.49

13 16.49 22.11 16.25 21.16 14.02 18.17

14 5.77 7.26 2.88 3.63 1.84 2.32

15 9.29 12.96 5.05 6.88 4.15 5.65

16 8.56 12.25 6.58 9.35 3.03 4.33

17 4.38 6.55 2.76 4.12 2.29 3.44

18 4.79 6.32 1.73 2.29 1.23 1.62

19 8.00 8.80 2.94 3.21 1.54 1.68

20 6.24 7.52 2.58 3.11 1.96 2.37

21 9.87 11.24 6.19 7.04 8.84 9.74

22 7.98 10.33 4.00 5.17 3.57 4.63

Avg. 7.48 10.18 3.82 5.17 3.67 4.71

(a) No-motion videos.

Table 2: A comparison of three VHR methods in Dataset 1 :

Error Rate e1 [ bpm , % ]

alpha level of 0.05. Descriptive statistics, including mean error

rate (M) and standard deviation (SD) are presented in Table 4.

For the no-motion videos (N = 40, Table 4a), the proposed

method had a lower mean error rate (M) than both other meth-

ods, but was only significantly lower than the Picard method

(p < 0.05), not AFR (p = 0.37). The AFR error was also sig-

nificantly lower than Picard (p < 0.05). Thus both the proposed

and AFR methods outperformed the Picard method. For the non-

random motion videos (N = 18, 4b), the same pattern of results

emerged; however, method differences were not statistically sig-

nificantly different.

Conclusion
We presented a new VHR method, which includes advances

such as small amplification variation instead of ICA and a new

cutoff frequency search method for BPF. We conducted empirical

testing to evaluate the difference between our proposed method

and two prior methods, the Picard method and our previous AFR

method. Our proposed method had the lowest average error rate

and the Picard method had the highest average error rate. All three

methods were less accurate in the motion conditions, compared to

no-motion conditions, highlighting the need for further advances

in motion-sensitive VHR. Future work includes developing meth-

ods to correct for the motion artifacts.
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