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Abstract
We present an image recovery approach to improve ampli-

tude and phase reconstruction from single shot digital holograms,
using iterative reconstruction with alternating updates. This ap-
proach allows the flexibility to apply different priors to amplitude
and phase, improves phase reconstruction in image areas with
low amplitudes, and does not require phase unwrapping for regu-
larization. Phantom simulations and experimental measurements
of a grating sample both demonstrate that the proposed method
helps to reduce noise and resolve finer features. The improved
image reconstruction from this technique will benefit the many
applications of digital holography.

Introduction
Digital holography has many versatile applications, includ-

ing microscopy [1], phase contrast [2], 3D displays [3], tomog-
raphy [4], and terahertz imaging [5]. This technique enables the
measurement of both amplitude and phase, useful for quantify-
ing path lengths, measuring index contrast, or viewing biological
samples [6, 7]. Various experimental methods can extract ampli-
tude and phase from a measured interference pattern: for example,
phase-shifting interferometry involves incrementally stepping the
phase of the reference beam, from which the object phase can be
deduced [8]. However, this method requires multiple images to
be recorded on a vibration-free optical table, typically with ex-
pensive devices such as high frame rate cameras.

Off-axis interferometry, based on the interference of an ob-
ject and reference beam slightly offset in angle, can compute am-
plitude and phase with a single measurement. Conventional pro-
cessing spatially filters the Fourier transform of the hologram [9].
While simple, Fourier filtering suffers from some drawbacks: The
filter window size is subjective, and good reconstruction requires
the zero order and cross terms to be well-separated. A large sepa-
ration between object and reference beams results in a high carrier
frequency hologram, in which the zero-order and sidebands are
well-separated in the spectrum. Although a high carrier frequency
is ideal for Fourier filtering, other factors may prevent perfect re-
construction: The experimental configuration may not allow a
large angular separation of the object and reference beams, the
sampling requirements of the camera pixels may limit the angular
separation, or the object may contain high spatial frequencies.

To overcome these drawbacks, other approaches include sub-
tracting the zero order term from the hologram [10], iteratively
solving for the field in the spatial domain [11] and the frequency
domain [12], and applying a nonlinear filter [13]. Optimization-
based approaches include formulating holography as a nonlinear

least squares problem [14], as constrained optimization [15], as
penalized likelihood with simulated data [16], or as a nonlinear
inverse problem [17].

In this work, we propose a new image recovery approach
that calculates an object field from a single hologram, using it-
erative reconstruction with alternating updates of amplitude and
phase. To our knowledge, this work is the first application of the
alternating update strategy to single shot digital holography. This
approach offers multiple advantages:

1. It allows prior knowledge, such as object smoothness, to be
applied separately to amplitude and phase. For example,
although nearly transparent biological samples like cells are
smooth in amplitude, they exhibit sharp edges in phase.

2. Regularizing phase separately, rather than regularizing the
field Aeiφ , mitigates the effects of poor signal areas caused
by low amplitudes, aiding phase reconstruction.

3. Our algorithm regularizes phase without requiring phase un-
wrapping, as discussed in the Theory section.

This work is organized as follows. In the Theory section,
we present continuous and discrete mathematical models of holo-
graphic measurements, followed by an iterative reconstruction al-
gorithm that recovers amplitude and phase via alternating updates.
In the Experiment section, we discuss results from a phantom sim-
ulation and from experimentally measured holograms of a grating
sample. Finally we provide some concluding remarks.

Theory
Continuous Model

In digital holography, an object field, o(x) = A(x)eiφ(x), and
a reference field, r(x) = Ã(x)eiφ̃(x), combine to form an interfer-
ence pattern measured on a camera,

Iideal(x) = |o(x)+ r(x)|2

=
∣∣∣A(x)eiφ(x)+ Ã(x)eiφ̃(x)

∣∣∣2
= A2(x)+ Ã2(x)+2A(x)Ã(x)cos

[
φ(x)− φ̃(x)

]
,

(1)

where x ∈ R2 is the spatial coordinate in the camera plane, and
φ̃(x) typically represents linear phase. The measured hologram
is generally noisy, which we can model as Gaussian noise that
corrupts the interference pattern Iideal(x). Let I(x) denote the
measured hologram. It is also possible to model the measured
hologram using a Poisson distribution [18, 19]. We formulate the
problem as the minimization of a cost function with the general
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form
c(A,φ) = L(A,φ)+βAR(A)+βφ R(φ),

where L(A,φ) is the negative log-likelihood function correspond-
ing to our model of the noisy hologram as a Gaussian distribu-
tion, βA and βφ are scalar regularization parameters, and R(A) and
R(φ) are roughness penalty functions for amplitude and phase, re-
spectively. In the continuous formulation, the likelihood function
has the form

L(A,φ) =
1
2

∫
R2

{
A2(x)+ Ã2(x)

+2A(x)Ã(x)cos
[
φ(x)− φ̃(x)

]
− I(x)

}2 dx.
(2)

To reduce noise and impose prior knowledge such as edge-
preserving smoothness on the object, we also minimize the total
variation of the amplitude and phase with the regularizer terms

R(A) =
∫
R2

√
|∇A(x)|2 + ε dx (3)

and

R(φ) =
∫
R2

√
|∇eiφ(x)|2 + ε dx, (4)

where ε is a small constant to ensure differentiability. Other prior
models can also be used [20, 21]. Now the cost function becomes

c(A,φ) = L(A,φ)+βAR(A)+βφ R(φ)

=
1
2

∫
R2

{
A2(x)+ Ã2(x)

+2A(x)Ã(x)cos
[
φ(x)− φ̃(x)

]
− I(x)

}2 dx

+βA

∫
R2

√
|∇A(x)|2 + ε dx

+βφ

∫
R2

√
|∇eiφ(x)|2 + ε dx.

(5)

Our goal is to solve for amplitude and phase by minimizing this
cost function:(

Â, φ̂
)
= argmin

A,φ
c(A,φ). (6)

Discrete Model
We discretize the amplitude A ∈ RN , phase φ ∈ RN , and in-

tensity I ∈ RN using vector notation:

A =
[

A1 . . . Ai . . . AN
]T

, (7)

φ =
[

φ1 . . . φi . . . φN
]T

, (8)

and

I =
[

I1 . . . Ii . . . IN
]T

, (9)

where N is the total number of pixels. We use similar vector nota-
tions for the reference amplitude and phase Ã and φ̃ . According
to the pixel pitch ∆x of the camera, we specify the sampled likeli-
hood function as

L(A,φ) =
1
2 ∑

m∈Z2

{
A2(x)+ Ã2(x)

+2A(x)Ã(x)cos
[
φ(x)− φ̃(x)

]
− I(x)

}2
∣∣∣
x=m∆x

=
1
2 ∑

i

[
A2

i + Ã2
i +2AiÃicos

(
φi− φ̃i

)
− Ii

]2
.

(10)

Reconstruction Simulation Experimental
Techniques Results Results

Fourier Filtering Figure 2(b) Figure 4(b)
Iterative Reconstruction Figure 2(c) Figure 4(c)

Table 1. Comparison of reconstruction techniques.

We regularize the unknowns by minimizing the total variation,
with

R(A) = ∑
i

√
(CA)2

i + ε (11)

and

R(φ) = ∑
i

√∣∣[Ceiφ
]

i

∣∣2 + ε. (12)

Here we use the shorthand vector notation

eiφ =
[

eiφ1 . . . eiφi . . . eiφN
]T

. (13)

C is a convolution matrix implementing the discretized first
derivatives of the nearest neighbors. For example, for

C =

[
Ch
Cv

]
, (14)

C ∈ R2N×N is a concatenation of Ch and Cv, which implements
first derivatives in the horizontal and vertical directions. Since we
are examining derivatives of eiφ , no phase unwrapping is required
for regularization. The cost function becomes

c(A,φ) = L(A,φ)+βAR(A)+βφ R(φ)

=
1
2 ∑

i

[
A2

i + Ã2
i +2AiÃicos

(
φi− φ̃i

)
− Ii

]2

+βA ∑
i

√
(CA)2

i + ε +βφ ∑
i

√∣∣[Ceiφ
]

i

∣∣2 + ε.

(15)

Our goal is to solve for A and φ by minimizing this cost function:(
Â, φ̂

)
= argmin

A,φ∈RN
c(A,φ). (16)

We estimate A and φ by alternatively updating them in each iter-
ation as

A(n+1) = argmin
A∈RN

c(A,φ (n)) (17)

and

φ
(n+1) = argmin

φ∈RN
c(A(n+1),φ). (18)

Iterative Reconstruction Algorithm
To solve the reconstruction problem in Eq. (16), we em-

ploy the alternating update strategy in Eqs. (17) - (18), detailed in
Algorithm 1. First fixing φ , we update A through a gradient de-
scent approach [22], until the cost function reduces to a specified
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Algorithm 1 Iterative Reconstruction with Alternating Updates
of Amplitude and Phase

Input: Measured hologram
Outputs: Amplitude A and phase φ

1: n← 0
2: Initialize A(0) and φ (0) by Fourier filtering.
3: while c(A(n),φ (n))> ε1 do

4: i← 0
5: A(n, 0)← A(n)

6: while c(A(n, i),φ (n))> ε2 do
7: d←−∇Ac(A,φ (n))

∣∣∣
A=A(n, i)

= −∇AL(A,φ (n))
∣∣∣
A=A(n, i)

−βA∇AR(A)
∣∣∣
A=A(n, i)

8: α∗← argminα∈R c
(

A(n, i)+αd,φ (n)
)

9: A(n, i+1)← A(n, i)+α∗d
10: i← i+1
11: end while

12: A(n+1)← A(n, i)

13: i← 0
14: φ (n, 0)← φ (n)

15: while c(A(n+1),φ (n, i))> ε3 do
16: d←−∇φ c(A(n+1),φ)

∣∣∣
φ=φ (n, i)

= −∇φ L(A(n+1),φ)
∣∣∣
φ=φ (n, i)

−βφ ∇φ R(φ)
∣∣∣∣
φ=φ (n, i)

17: α∗← argminα∈R c
(

A(n+1),φ (n, i)+αd
)

18: φ (n, i+1)← φ (n, i)+α∗d
19: i← i+1
20: end while

21: φ (n+1)← φ (n, i)

22: n← n+1
23: end while

24: A← A(n)

25: φ ← φ (n)

26: return A, φ

Experimental Data Corresponding Figure
Hologram with a Figure 3(a)

low carrier frequency
Hologram with a Figure 3(d)

high carrier frequency

Table 2. Experiment data and corresponding figures.

threshold ε2; updates for φ proceed similarly, using the new value
of A. The alternating updates repeat, enclosed in an outer loop,
terminating when cost reduces to a threshold ε1.

The update steps require various derivatives to be computed.
For reference, we list the gradients of the likelihood functions,

[∇AL(A,φ)]i =
[
A2

i + Ã2
i +2AiÃi cos

(
φi− φ̃i

)
− Ii

]
·
[
2Ai +2Ãi cos

(
φi− φ̃i

)] (19)

and [
∇φ L(A,φ)

]
i =−

[
A2

i + Ã2
i +2AiÃi cos

(
φi− φ̃i

)
− Ii

]
·
[
2AiÃi sin

(
φi− φ̃i

)]
,

(20)

and the Laplacians of the likelihood functions, diagonal matrices
with entries[

∇
2
AL(A,φ)

]
ii
=
[
2Ai +2Ãicos(φi− φ̃i)

]2
+2
[
A2

i + Ã2
i +2AiÃicos(φi− φ̃i)− Ii

] (21)

and[
∇

2
φ L(A,φ)

]
ii
=
[
2AiÃisin(φ − φ̃)

]2
+
{

Ii−
[
A2

i + Ã2
i +2AiÃicos

(
φi− φ̃i

)]}
·2AiÃicos(φi− φ̃i).

(22)

Experiment
Simulation Results

For simulation, we create a test object consisting of uniform
amplitude A(x), equal to 1 everywhere. We set the phase φ(x)
to have the form of the Shepp-Logan phantom, shown in Fig.
1(a). The resulting object field, o(x) = eiφ(x), may simulate a
nearly transparent biological sample like a cell. In an off-axis
configuration, the reference beam is r(x) = ei2πf·x. We set the
spatial frequency f = (0.16,0), with units of (pixel)−1. Figure
1(b) shows the interference pattern I(x) produced by o(x) and
r(x). The Fourier filtering technique applies a filter to the Fourier
transform of I(x) to reconstruct the object. Figure 1(c) highlights
the filter, indicated by the black circle, superimposed on the power
spectrum of I(x).

Figure 2 shows the phase reconstruction results, where we
compare Fourier filtering and our iterative reconstruction ap-
proach as described in Table 1. The phantom in Fig. 2(a), the
ground truth, has a high phase value of 2 rad at the outer edge,
which contributes to the high frequency content in the power spec-
trum in Fig. 1(c). Since the filter cuts off high frequencies, ringing
occurs in the retrieved phase in Fig. 2(b). Our iterative recon-
struction algorithm overcomes the limitations of filtering while
reducing noise, as demonstrated in the reconstruction in Fig. 2(c).
As a more quantitative comparison, we plot line-outs across the
dashed white line in Fig. 2(a) and across the same points in Figs.
2(b) and 2(c). The line-out in Fig. 2(d) displays the ringing in
the phase computed by Fourier filtering, contrasting with the pro-
posed method, which exhibits greater fidelity to the true phase and
a better ability to resolve finer features.
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Figure 1. Reconstruction by Fourier filtering on simulated data. (a) Simulated phase image (rad). (b) Simulated hologram using (a). (c) Power spectrum of (b).

Figure 2. Phase reconstruction of the simulated phantom. (a) Ground truth phase (rad). (b) Reconstructed phase using Fourier filtering. (c) Reconstructed

phase using iterative reconstruction, the proposed method. (d) Line-outs across the dashed white line in (a) with comparison to (b) and (c).
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Figure 3. Reconstruction by Fourier filtering on experimental data. (a) Hologram with a low carrier frequency. (b) Power spectrum of (a). (c) Reconstructed

phase using Fourier filtering on the low carrier frequency hologram. (d) Hologram with a high carrier frequency. (e) Power spectrum of (d). (f) Reconstructed

phase using Fourier filtering on the high carrier frequency hologram. The scale bar lengths are 10 µm.

Figure 4. Phase reconstruction of a grating sample. (a) Ground truth phase (rad). (b) Reconstructed phase using Fourier filtering on the low carrier frequency

hologram. (c) Reconstructed phase using iterative reconstruction, the proposed method, on the low carrier frequency hologram. (d), (e) Line-outs across the

middle and rightmost gratings in (a)-(c). The scale bar lengths are 10 µm.
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Experimental Results
We test our proposed algorithm on experimentally measured

data, which consists of holograms with low and high carrier fre-
quencies as described in Table 2. Our sample consists of gratings
patterned on PMMA film (n = 1.49) with a height contrast of about
1.5 µm. The camera measures an interference pattern, captured
in Fig. 3, with the reference beam at a slight angular offset from
the object beam, under coherent illumination at 632.8 nm. Exper-
imentally, we are able to vary the angular offset of the beams; a
small offset leads to the hologram with a low carrier frequency in
Fig. 3(a), while a larger offset produces the hologram with a high
carrier frequency in Fig. 3(d). A higher carrier frequency enables
larger sideband separation in the power spectra, evident in a com-
parison of Figs. 3(b) and 3(e), where the frequency content of the
gratings appear aligned along the grating vectors.

In the Fourier filtering technique, a filter isolates one of the
sidebands, depicted as black circles in Figs. 3(b) and 3(e), for
object reconstruction. The filter may not be able to capture the
entire frequency content of the object, as in Fig. 3(b), resulting in
the blurrier reconstruction in Fig. 3(c) compared to Fig. 3(f).

Figure 4 compares reconstruction results. For ground truth,
we measure a hologram with a high carrier frequency, from which
we reconstruct the high resolution phase image in Fig. 4(a), us-
ing Fourier filtering. We measure a hologram with a low carrier
frequency, our test data, with the goal of reconstructing a high
quality image. Fourier filtering fails to capture high frequency
details, as shown in Fig. 3(b), resulting in the blurry reconstruc-
tion in Fig. 4(b). In contrast, our proposed method recovers the
high frequency details, displayed in Fig. 4(c), that are lost with
conventional Fourier filtering. Line-outs across the middle and
rightmost gratings, plotted in Figs. 4(d) and 4(e), quantitatively
demonstrate that our algorithm can reconstruct images in close
agreement with the ground truth.

Conclusion
We have developed an image recovery approach to improve

amplitude and phase reconstruction from single shot digital holo-
grams, using iterative reconstruction with alternating updates.
This approach allows the flexibility to apply different priors to
amplitude and phase, improves phase reconstruction in image ar-
eas with low amplitudes, and does not require phase unwrapping
for regularization. Phantom simulations and experimental mea-
surements of a grating sample both demonstrate that the proposed
method helps to reduce noise and resolve finer features. The im-
proved image reconstruction from this technique will benefit the
many applications of digital holography.
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