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Abstract 

Deep networks have revolutionized the image, speech, and 
pattern recognition communities. Despite recent evidence showing 
deep networks can rival the human brain for visual object 
recognition, the expansion of such architectures to general-
purpose intelligent reasoning is intractable due to the number of 
training parameters. Hierarchical representations have been 
introduced, but either have been applied to small problems, or 
have been ad hoc in nature.  This paper introduces a framework 
that automatically analyzes and configures a family of smaller 
deep networks as a replacement to a singular, larger network.  By 
analyzing the linkage coefficients from confusion matrices and 
class boundaries from spectral clustering, class clusters and sub-
clusters are automatically detected, enabling the framework to 
divide and conquer large classification problems.  The resulting 
smaller networks are not only highly scalable, parallel and more 
practical to train, but also achieve higher classification accuracy.  
Numerous experiments on network classes, layers, and 
architecture configurations validate our results. 

Introduction  
Deep architectures [1] with hierarchical frameworks enable 

the representation of complex concepts with fewer nodes than 
shallow architectures.  With regard to object classification, these 
networks have recently been shown to equal the performance of 
neurons in the primate inferior temporal cortex [2], even under 
difficult conditions such as pose, scale, and occlusions.  It has been 
shown that network depth generally is more important than the 
number of nodes in each layer [3], with modern architectures 
containing more than 20 layers [4], requiring the solution of over 
100M parameters.  As the classification task becomes more 
difficult, the number of parameters increases exponentially. 

This paper introduces a multi-layer hierarchical framework to 
reduce the overall number of solvable parameters by subdividing 
the classification task into smaller intrinsic problems. Abstract 
higher level networks initially determine which subnetwork a 
sample should be directed to, and lower level networks take on the 
task of finding discriminating features amongst similar classes.  
The proposed method is a hierarchy of scalable hierarchical 
networks.  Each sub-network is called a mini-deep network, and 
mini-deep networks can recursively be split into subsequently 
smaller mini-deep networks. Outputs from these mini-deep 
networks feed a probabilistic classifier to predict a test sample’s 
final class. 

Confusion matrices infer class-wise linkage statistics by 
converting from similarity to dissimilarity matrices.  Similarly, k-
means and spectral clustering on low dimensional representations 
of the data offer clues to natural cluster boundaries at a coarser 
level. These statistics, form clusters and sub-clusters where each 
grouping contains classes with similar features.  By viewing the 
resulting graph tree, such as a dendrogram graph, logical cluster 
boundaries can often be determined by manual inspection.  This 
paper introduces data driven heuristics along with an iterative 
search algorithm to automatically detect these cluster boundaries. 

To ensure robustness and improved generalization, classes which 
are similar to multiple subgroups are encouraged to occur in 
multiple networks.  Semantic outputs from the activated networks 
include softmax probabilities. The outputs of the networks, feed a 
final classification engine, which makes the final class decision. 

The rest of the paper is organized as follows. The Background 
section overviews related work, followed by the Methods section 
which introduces the hierarchical deep network framework. The 
Results section presents experimental results and concluding 
remarks. 

Background 
The pioneering work of Hubel and Wiesel [5] laid the 

foundation for the modern hierarchical understanding of the ventral 
stream of the primate visual cortex.  Simple receptive fields in the 
eye form complex cells in V1, then more abstract representations 
in V2 through V4, and finally into the inferior temporal (IT) 
cortex.  The object representation in the IT cortex is amazingly 
robust to position, scale, occlusions, and background- the exact 
understanding of which still remains a mystery and marvel of the 
human brain [6]. 

Traditional computer vision techniques pair hand crafted low 
level features such as SIFT [7], SURF [8], or HOG [9] along with 
complimentary classifiers such as support vector machines (SVM) 
or neural networks.  LeCun et al. [10] introduced convolutional 
neural networks (CNNs), computer vision oriented deep feed 
forward networks based upon a hierarchy of abstract layers.  CNNs 
are end-to-end, learning the low level features and classifier 
simultaneously in a supervised fashion, giving substantial 
advantage over methods using independently solved vision 
features and classifiers. 

Datasets such as Mnist [10], CalTech [11], and Pascal [12] 
have become more challenging over the years.  The ImageNet [13]  
dataset has over 20,000 classes and 14M samples.  In 2012, 
Krizhevsky and Hinton [14]  beat the nearest competitor by 10% in 
the ImageNet Large-Scale Visual Recognition Challenge 
(ILSVRC) [15] competition with a seven layer CNN, taking 
advantage of a powerful regularization scheme called dropout [16].  

Zeiler & Fergus [17] improved classification results by 
introducing random crops on training samples and improved 
parameter tuning methodologies.  Simonyan and Zisserman [4] 
investigated the usage of network depth and C. Szegedy, et al. used 
banks of smaller convolutional filters [18] to simultaneously 
improve accuracy and lesson the number of parameters.   

There are numerous works describing hierarchical 
decomposition of classification problems [19].  One of the earliest 
attempts of a CNN hierarchical approach [20] used transfer 
learning from sub-groups with many samples to sub-groups with 
few.  Deng et al. [21] used a hierarchy of label relations, and 
further improvements were made by [22] and [23] using two and 
many categories respectively.   

Confusion matrices can be used to determine hierarchical 
clusters [24, 25]. Podalak [26] increased robustness by allowing 
classes to fork in more than one hierarchal branch.  Slakhutdinov et 
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al. [27] combined structured hierarchical Bayesian models with 
deep learning to generate a framework that can learn new concepts 
with a minimal number of training samples.   

CNN hierarchical improvements were demonstrated by [18, 
28], and category hierarchy CNN based classifier was 
demonstrated in [23] that builds a two stage classifier to separate 
easy and difficult classes but the memory footprint and time 
constraints were a major challenge. 

Methods 
We propose a novel method to alleviate the computational 

complexity involved in training larger networks for datasets with 
higher number of discrete classes or concepts. Our approach uses a 
high-level classifier to initially determine which sub-class a sample 
belongs to, then passes that sample into the corresponding sub-
class network to make a final class assignment.  Our method 
automatically determines the optimal number of sub-classes, then 
trains each sub-class in an independent fashion. The first stage of 
determining the number of sub-classes is called Hierarchy 
Clustering. In this stage we exploit the rich information from the 
class to class confusion matrix (generated using a simplified 
conventional neural network mapping to all classes or concepts) to 
extract hidden correlations amongst classes. During training, a 
Hierarchy Classifier predicts which sub-network a sample belongs. 
This sample is then passed into one of C smaller Class Assignment 
Classifiers, each which is only concerned with a subset of classes 
to make a final classification estimate. The approach consists of 
three phases: 1.Hierarchical clustering, 2. Hierarchy classifier, and 
3. Class assignment classifiers, which will be described next.  

 

 
Figure 1. Flow of classification using hierarchal deep networks. 

 

Hierarchy Clustering 
To tackle problems with a large number of classes, we 

propose a hierarchical approach for clustering similar classes into 
sub-groups. This requires the training of a handful of much simpler 
neural networks where the number of overall parameters has been 
reduced. The intuition behind using a hierarchical clustering is the 
presence of coarse category or super classes which contain a higher 
number of finer classes. To categorize the given set of classes into 
super classes we have used spectral clustering of confusion matrix 
to generate a given number of clusters. The main challenge with a 
hierarchical clustering scheme is the selection of an optimum 
merge or split breakpoints, which if done improperly, can lead to 

low quality clusters. To address this challenge, we formulate a 
multi-phase technique that is based on the analysis of the confusion 
matrix of the classifier in the parent stage.  

We use linkage statistics for getting the correlation indicators 
among classes in a hierarchical configuration. We define the 
distance matrix D, which is estimated from the confusion matrix C, 
and measures the dissimilarity among different classes. If a stage p 
has Kp clusters of classes, D has dimensions Kp × Kp, where an 
element Dp (Ci, Cj) represents the dissimilarity between cluster Ci 
and cluster Cj. An unweighted pair group method based on the 
arithmetic mean is used for determining the linkages between 
individual clusters. Dp (Ci, Ci) = 0 ∀ i ∈ K, represents the 
dissimilarity of a cluster with itself. We use a top-down divisive 
strategy to find non-overlapping classes that starts by including all 
classes in a single cluster. The parent cluster is subdivided into 
smaller class clusters until a termination criteria is met. The 
dissimilarity between clusters helps in dynamically determining 
the split points with an upper limit on the number of sub-clusters. 
As a result, this technique automatically adapts to the internal 
characteristics of the data. 

 
 

 
 

 
 
Hierarchy class clustering: 
Hierarchy relationships between classes are derived using the 
confusion matrix Cp that measures linkage distances d between 
classes. To form clusters with overlapping classes, we threshold 
class posterior probabilities DCN for classes originally not in 
cluster. 
Input: Confusion matrix Cp at classification stage p 
Output: Overlapping class labels Q 
Initialize: Upper limit on non-overlapping cluster size θ and 
overlapping factor γ 
1) Compute distance matrix D from Cp 
2) Compute linkage statistics: 
���, �� 	  �

�
��
∑ ∑ �������� , ������

���
�

��� ,  

Where xri and xsj are dissimilar groups with nr and ns elements, 
respectively 
3) Compute cumulative linkage values Cum(d)  
4) for descending values k in Cum(d) 
  α = no. of classes with d < k 
 if α > θ then 
  group classes α as new cluster Q 
 repeat until all classes are assigned clusters 
   end 
5) Compute column normalized confusion matrix (DCN) 
6) for each cluster Qi 
 if ������� ,  ��� � ��. !�"��

"�
 ∀ �� ∉ $� ,  �� ∈ $�  then 

   append class j to cluster Qi 
   end 
Figure 2. Hierarchy class clustering algorithm. 
 

Small non-overlapping class groups are obtained by grouping 
similar classes together. However, in a non-overlapping setting, a 
sample that is misclassified at a parent level, has no chance of 
getting predicted correctly at the lower levels. Therefore, the small 
clusters are overlapped using the posterior probabilities to achieve 
higher generalization accuracy. The confusion matrix of the parent 

Hierarchy 
Clustering

•Identifies the similarity between different
samples to group them together and train
with independent neural networks

Hierarchy 
Classifier

•Train a classifier that identifies the neural
network in which a sample is trained and
direct an unforeseen test sample to the
correct neural network

Class 
Assignment

• Independent neural networks training the
groups formed in Hierarchical clustering,
finds the final class of the unforeseen test
sample
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cluster are column normalized (DCNp) to obtain the class posterior 
probabilities. An element DCNp (Ci, Cj) represents the likelihood 
that a sample is of true class Ci given that it was predicted as class 
Cj. Let Qi be the collection of classes in cluster i, then the 
condition that certain classes are similar to this cluster can be given 
as,  

     ������� , ��� � ��. !�"��
"�

 ∀ �� ∉ $� , �� ∈ $�                        (1)       
          

We use a parametric threshold of (γ.Kp-1)-1, where γ is an 
overlapping hyper-parameter that determines the probability for 
including a class in cluster Qi. The value of γ depends on the 
number of classes in the original problem and the number of 
clusters in the parent stage. The overlapping in the classifier allows 
a test sample to follow multiple paths of sub-classifiers. Figure 2 
describes the pseudo code of the class clustering algorithm.  
 

 
               (a)   

 
         (b) 

 
   (c) 

Figure 3. Illustration of Hierarchy clustering on Toy data having 11 classes. (a) 
Shows a dendrogram with dissimilarity among the classes. (b) Shows the 3 
non-overlapping clusters formed with similar classes grouped together and (c) 
Shows the overlapping clusters. 

 

Hierarchy Classifier 
 Let % be the training set with � classes, where � clusters are 
formed after Hierarchical clustering such that � clusters have 
&�, &' … &) number of classes ∀  &� * &' * ⋯ * &) 	 �. The 
classes associated with &� are labelled with class 1 and &' as class 

2 and similarly &, … &) as class 3 … class c. In this way, the 
training set % is classified into � outputs instead of � classes. An 
unforeseen test sample when passed through the network shown in 
Figure 4 enters the hierarchy classifier. The hierarchy classifier 
directs the test sample in to one of the C networks. Once the test 
sample passes through a network in a class assignment classifier, 
the final class prediction is obtained. 

 
Figure 4: Illustration of Hierarchical deep network framework.  
 

Class Assignment Classifier 
 The class assignment classifier consists of several simple 
neural networks (C neural networks in Figure 4) predicting smaller 
number of classes at each neural network. The class assignment 
classifier outputs N classes, i.e., all classes of the dataset are 
classified at this stage of hierarchical deep network. In order to 
address misclassification at hierarchy classifier, overlapping 
clusters allow a test sample to be passed to more than one 
assignment classifiers. Let -�, -', … , -) be the predictions of the 
hierarchy classifier for the corresponding C outputs and 
.�, .', … , .�/

 be the predictions of Network 1 for the 
corresponding  &� outputs. When overlapped clusters are used, the 
top k predictions are used, each of which is a product of 
predictions from the hierarchy classifier and class assignment 
classifier. This product, referred to as confidence (0), is the 
predicted final classification output:  
 

            �1&2��3&43�0�� 	 -� ∗ .6    
                                    ∀  7 ∈ 8 …  9, : ∈ 8 … ;, < ∈ 8 …  =:      (2) 

Results 
Experiments are performed on CalTech101, CalTech256, and 

CIFAR100 datasets.  This CalTech101dataset has 102 classes, with 
40 to 800 images per class with image size of 300×200×3 pixels.  
The CalTech256 dataset has 257 classes,  with 80 to 827 images 
per class with image size of 300×200×3 pixels.  The CIFAR100 
dataset has 100 classes with 500 images for training and 100 
images for testing respectively per class and has an image size of 
32×32×3 pixels.   

Datasets were processed through multi-layer perceptron 
(MLP) as well as convolutional neural networks (CNNs).  MLP 
processing used HOG input features. CNN processing used mean 
subtracted images resized to 64×64×3  for CalTech101 and  
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CalTech256. The training and test splits are obtained using a 6-fold 
cross validation for all the datasets. The automatic clustering of 
large classification problems into a hierarchy of smaller 
classification networks offers a solution whereby the smaller 
networks have less parameters and are faster to train while offering 
increased classification accuracy. Current increase in accuracy is 
dependent on the number of mini-deep networks allowed, but can 
be upwards of 20%. 

Table 1 demonstrates MLP processing on the CalTech101 
dataset increases the final accuracy by approximately 16% using a 
non-overlapping hierarchical architecture. Similar observations 
were found with overlapping hierarchical architecture, but 
performance decreases with increasing overlap factor.  This was 
attributed to the increase in confusion in the hierarchical stage. It 
should also be noted that the memory requirements increase as the 
overlap factor increases due to larger mini-networks. 

  
Table 1.  CalTech101 dataset- Top line indicates performance of a single 
large MLP neural network with two hidden layer of size [200 150]. MLP neural 
network used with two hidden layers of size [25 10] used in each mini-network 
for the rest of the lines. Hierarchical Clustering is controlled by varying the 
parameter Gamma (>). HC indicates Hierarchy Classifier accuracy and FC 
indicates Final Classification accuracy. 

C Clustering 
Method 

Gamma 
�>) HC (%) FC (%) 

1 NA NA NA 45.6 
44 Non-overlap NA 69.43 61.39 
44 Overlap 3 69.05 61.56 
44 Overlap 5 62.73 60.13 
44 Overlap 8 52.05 58.61 

 
In Table 2, when convolutional neural networks are used to 

evaluate the CalTech101 dataset, the final accuracy decreased by 
4% using a non-overlapping hierarchical architecture. It is 
hypothesized the reason for this decline is due to 1) the identical 
architecture of all the mini-networks, and 2) when a cluster has 
fewer classes, the number of training samples for that network are 
also less, making them insufficient for CNNs. Both the CalTech 
datasets have significant variation in number of samples per class, 
but the results presented in this study were obtained on the entire 
dataset. The accuracies would be improved if the number of 
samples were identical across all classes. 

 
Table 2.  Caltech101 dataset- Top line indicates performance of a single large 
Convolutional neural network. Similarly, Convolutional neural networks are 
used in each mini-network. 

C Clustering 
Method 

Gamma 
�>) HC (%) FC (%) 

1 NA NA NA 55.84 
48 Non-overlap NA 62.42 51.57 
48 Overlap 3 50.33 50.72 

 
In Table 3 & Table 5, it was observed that the performance is 

increased by 3% in case of both CalTech256 and CIFAR100 
datasets when MLP neural network was used to evaluate the 
performance of the non-overlapping and overlapping hierarchical 
architectures. In Table 4, when convolutional neural networks are 
used to evaluate the performance of CIFAR100 dataset, final 
accuracy decreased due to the same reason as we have mentioned 
earlier for the CalTech101 dataset.  

The dendrograms in Figures 5-7, represent the class grouping 
formed using the linkage statistics for different data sets. The 
colors in the graph depict groups of classes as determined by the 
algorithm described in Figure 2. While analyzing the groups, we 

observed that similar classes were grouped together which proves 
the efficacy of the hierarchical clustering. 

 
Figure 5. Example of a Dendrogram with 102 Classes of CalTech101 dataset 
generated using confusion matrix obtained from a single CNN (Better viewed 
in color). 
 
Table 3.  Caltech256 dataset- Top line indicates performance of a single large 
MLP neural network with two hidden layer of size [200 150]. MLP neural 
network used with two hidden layers of size [25 10] used in each mini-
network. 

C Clustering 
Method 

Gamma 
�>) HC (%) FC (%) 

1 NA NA NA 18.61 
104 Non-overlap NA 23.07 21.56 
104 Overlap 3 24.49 21.96 
104 Overlap 5 22.55 20.61 

 

Figure 6. Example of a Dendrogram with 257 Classes of CalTech 256 dataset 
generated using confusion matrix obtained from a single MLP. 

Table 4.  CIFAR-100 dataset- Top line indicates performance of a single large 
Convolutional neural network. Similarly, Convolutional neural networks are 
used in each mini-network.  

C Clustering 
Method 

Gamma 
�>) HC (%) FC (%) 

1 NA NA NA 29.45 
39 Non-overlap NA 46.91 23.09 
39 Overlap 3 46.48 22.74 
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Table 5.  CIFAR100 dataset- Top line indicates performance of a single large 
MLP neural network with two hidden layer of size [200 150]. MLP neural 
network used with two hidden layers of size [25 10] used in each mini-
network.  

C Clustering 
Method 

Gamma 
�>) HC (%) FC (%) 

1 NA NA NA 22.83 
36 Non-overlap NA 28.37 24.96 
36 Overlap 3 27.89 24.82 
36 Overlap 5 26.34 23.25 

 
Figure 7. Example of a dendrogram with 100 Classes of CIFAR100 dataset 

generated using confusion matrix obtained from a single CNN. 
 

In Table 6, it is observed that while using spectral density 
clustering the number of networks affect the final accuracy. An 
inappropriate choice of networks will lead to low quality clusters. 
It is observed that lower number networks improve hierarchy 
classifier accuracy but fail to improve final classifier accuracy. 
Choosing an optimal number of networks using dendrograms have 
already demonstrated the significant improvement in the 
performance. 

Table 6:  Spectral clustering on Caltech101 dataset- Top line indicates 
performance of a single large MLP neural network with two hidden layer of 
size [200 150]. MLP neural network used with two hidden layers of size [25 
10] used in each mini-network for the rest of the lines. HC indicates Hierarchy 
Classifier accuracy and FC indicates Final Classification accuracy.  

C HC (%) FC (%) 

1 NA 45.6 
5 80.3 35.2 

10 70.1 50.2 
15 65.2 51.0 
17 63.2 53.7 
20 62.9 49.0 
25 59.9 50.8 

 

Conclusion 
An automatic hierarchical clustering method is introduced 

which reduces parameters while simultaneously increasing 
classification accuracy.  This new approach borrows concepts from 

traditional divisive clustering techniques as well as confusion 
matrix dissimilarity linkage tree decomposition, to create an 
iterative method which methodically identifies cluster boundaries 
in a natural fashion. Hierarchical cluster boundary formation was 
tested on both MLP and CNN classifier frameworks, and shows 
significant benefit to the former, but not the latter. It is 
hypothesized that other classification frameworks such as SVM 
and Bayes classifiers can benefit from the hierarchical framework.  
Future work includes testing the hierarchy framework with larger 
data sets. What is most intriguing is that the proposed strategy 
allows for virtually unlimited number of classes in any particular 
classification problem. 
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