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1 Abstract
In this paper, we first present a new programming frame-

work, Quasar, for high-level programming on heterogeneous CPU
and single/multi-GPU systems. Quasar consists of a high-level
language, a corresponding integrated development environment
(IDE), a compiler, and a run-time system. Its aim is to relieve the
programmer from hardware-related implementation issues that
commonly occur in CPU/GPU programming. Examples include
selecting memory types, memory management, concurrent ker-
nel/function execution, hardware texturing units, etc. In doing
so Quasar allows the programmer to focus on designing, testing
and improving the image/video processing algorithms themselves,
rather than their implementation. A practical application of this
programming framework is presented: a new real-time multi-
camera depth estimation algorithm and subsequent view interpo-
lation. Currently, for view interpolation, we obtain a processing
speed of 30 frames/sec for HD video based on two views with
Quasar on an NVIDIA Geforce GTX 770 GPU.

2 Introduction
Graphical processing units (GPUs) are increasingly being

used to complement CPUs for computationally intensive tasks
with large amounts of data, such as typically encountered in im-
age and video processing. The excellent performance of GPUs
for parallel processing operations often yields speed-up factors of
10x-50x for image and video operations compared to a single-
threaded CPU execution. Recently, there is also a trend towards
the use of GPUs in embedded devices such as the NVIDIA Tegra.

Combining GPU programming with different sensors and
platforms/devices is very challenging, because it requires special-
ized programming expertise. Furthermore, the resulting programs
are not well amenable to algorithmic changes, which often require
rewriting a large part of the code. For many developers, a typical
programming workflow therefore consists of first implementing
and testing the algorithm in a rapid-prototyping language (such
as Octave/Matlab) and only later, when the algorithm is finalized,
porting the algorithm to a native environment such as C++ with
CUDA/OpenCL, which is generally time-consuming.

To improve the ease of programming on GPUs recently sev-
eral efforts have been made. Modular programming techniques
include existing software libraries such as Intel Array Building
Blocks, NVIDIA Thrust, GPU-accelerated functions in OpenCV,
Blitz++, Eigen, Armadillo, ...). Alternatively some domain-
specific languages have been designed (e.g. Halide [1]). Other so-
lutions include parallel extensions integrated in C/C++ OpenACC
[2], Microsoft C++ AMP [3], and/or programming languages with
integrated GPU support (e.g. Mozilla Rust [4]).

Despite these efforts, the corresponding development tools

are not well suited for rapid prototyping. Particularly for re-
searchers, GPU programming has several disadvantages: 1) there
is a steep learning curve, 2) the implementation and optimization
time can take several weeks to months even for a simple algo-
rithm, 3) often different code paths must be written for different
target platforms, or even different generations of the same plat-
form (e.g. different GPU generations), 4) the testing and debug-
ging of the code is not always trivial and 5) the programming code
may not be future-proof: it is not guaranteed to work optimally on
future CPU/GPU devices. A major cause of these disadvantages
is that the algorithmic specification and its implementation are not
separated: a programmer spends a lot of time on device-specific
optimization of the implementation rather than algorithmic im-
provement. The Quasar programming framework is aimed at al-
lowing abstraction of the algorithmic specification from imple-
mentation. It achieves this through automatic optimization both
at compile-time and at run-time, thereby alleviating many of the
aforementioned disadvantages.

The purpose of this paper is to demonstrate how a com-
plex video-processing algorithm can be designed, implemented
and tested with a heterogeneous computing architecture in mind,
so that processing can be done in real-time. We start with an
overview of the Quasar framework in Section 3. We then present
and evaluate a Quasar implementation of a demanding image pro-
cessing application to showcase the real-world advantage of using
the Quasar framework in Section 4. Results and a discussion are
given in Section 5. Finally, Section 6 concludes this paper.

The chosen application is stereo depth estimation and view
interpolation. Here, stereo images are captured using two cam-
eras arranged close to each other. The cameras are calibrated off-
line, using a 2D pattern (e.g., a checkerboard). During on-line op-
eration, left and right depth maps are estimated from the captured
images. Next, intermediate views of non-existing camera views
are calculated. With traditional methods (e.g., CUDA/OpenCL),
the stereo-vision and view interpolation is particularly challeng-
ing to implement on a GPU due to the size and complexity of the
algorithms (stereovision with hierarchical refinement, view syn-
thesis, ...). A substantial effort from the programmer is required,
especially when the algorithms need to be hybridly optimized for
the specific CPU/GPU architecture. Some processing steps are
best suited for the GPU, while other processing steps tend to be
more efficient on the CPU. In our approach, program analysis and
target-specific optimization is performed by the Quasar front-end
compiler, and heterogeneous execution is obtained by dynamic
run-time decisions, all performed transparently by the execution
run-time; therefore the programmer can completely focus on the
algorithms independently of the target device and the correspond-
ing implementation.
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3 A brief overview of the Quasar program-
ming framework
The Quasar language is a high-level programming language

with a syntax similar to Octave/MATLAB, making it easy to learn.
The framework also contains a compiler and a run-time system.
A schematic overview is given in Figure 1. The compiler con-
sists of a front-end and several back-end compilers. The front-end
compiler extracts certain code regions (e.g., loops via automatic
parallelization, kernel functions, ...), and automatically generates
target-dependent code that is then compiled using one of the back-
end compilers. The front-end compiler also performs several
high-level code optimizations, to aid the back-end code genera-
tion. Several existing commercial or open source back-end C/C++
compilers are currently supported: GCC, Clang, the Microsoft Vi-
sual C++ compiler, the Intel C++ compiler, the NVIDIA NVCC
compiler (for CUDA) and the OpenCL compilers. Alternatively,
an LLVM back-end allows to directly emit target-dependent bi-
nary code via the LLVM intermediate representation.

The generated binary code as well as the Quasar intermedi-
ate code is passed to the run-time system, which consists of four
major components:

1. a memory manager that performs automatic memory man-
agement (allocation and deallocation, but notably the mem-
ory transfers between devices as well).

2. a scheduler that decides which device is used to perform a
certain calculation (on a kernel function level).

3. a load-balancer will make sure each CPU/GPU thread is
assigned is assigned sufficient work.

4. a device manager communicating with the underlying hard-
ware through CUDA or OpenCL.

Typically, the compiler will generate code fragments for each dis-
tinct target device type (CPU/GPU) available, such that the run-
time system is able to switch between devices as required for opti-
mal execution speed. The run-time system makes these decisions
by taking into account the current load of each device, the com-
plexity of the task at hand and the cost to transfer the relevant
memory blocks between devices. All of this is done in a fully au-
tomated fashion. The back-end compiler currently supports both
CUDA and OpenCL devices, and may even be configured to use
multiple devices simultaneously. This approach relieves the pro-
grammer from complex implementation issues (such as memory
allocation and transfers, structure alignment and packing, use of
texture memory, device selection, scheduling, etc), as this is han-
dled transparently by the compiler and run-time system.

Additionally the Quasar runtime will select optimal execu-
tion parameters on the various devices. As an example, executing
a kernel on the GPU typically requires the programmer to spec-
ify the block size, the number of threads, the amount of shared
memory used by the kernel, and so on. The ideal values for these
parameters not only differ from algorithm to algorithm, but also
between devices. For GPU kernels this is dictated by the number
of registers a kernel function requires, as well as the data dimen-
sions. The Quasar run-time heuristically sets the parameters to
good values [5].
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Figure 1. Overview of the Quasar architecture: the compiler and the run-

time back-ends.

4 Real-time Depth Estimation and View In-
terpolation
As an application example, we design a new algorithm for

real-time depth estimation and view interpolation from a stereo
camera setup. The algorithm performs the following operations
in sequence (see Fig. 2): Based on calibration matrices that are
calculated off-line, imagery from both cameras is rectified in real-
time. Next, a hierarchical disparity estimation method with opti-
cal flow-based total variation is used to estimate the depth images
for the different views [6]. Finally, a view interpolation algorithm
estimates intermediate views from the available RGB images and
the previously estimated depth images. The rectification, depth
estimation and view interpolation algorithms are all developed in
Quasar and their implementation only requires a modest number
of lines of code (based on experience with direct code porting
between Quasar and C++/CUDA, about 3-10x less than equiva-
lent C++ or CUDA code). This application is a well suited use-
case for the design of more complex real-time video processing
algorithms on heterogeneous computing architectures. In particu-
lar, we will show that for high number of scales, the hierarchical
disparity estimation even requires hybrid processing on CPU and
GPU in order to offer the best performance.
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Figure 2. Overview of the depth estimation and view interpolation algorithm.

4.1 Implementation details
In this section, we describe the method and its implementa-

tion details in more detail.

Rectification The first required step is the calculation of recti-
fying homographies. These are transformations that project the
left and right image onto a common image plane, in order to sim-
plify stereo-vision. In order to perform depth estimation through
stereo-matching, we need to find pixel correspondences between
the left and the right view. To simplify the stereo-matching, we
use the epipolar rectification, which ensures that pixel correspon-
dences are on the same scan-line in both images. The rectification
process is illustrated in Figure 3.
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Figure 3. Illustration of stereo rectification: the images are warped with

an affine transformation such that pixel correspondences are on the same

scan-line in both images.

After computing the epipolar geometry, two affine transfor-
mations are obtained (i.e., one for each camera) which are used
to warp the input views. For more details on the actual calibra-
tion, see for example Kumar et al. [7]. This warping is performed
on a per-pixel basis, which is easily parallelized over the im-
age domain: each pixel requires one matrix-vector multiplication
((3×4)× (4×1)) and one indexing into the original image. The
code fragment from Figure 4 illustrates the implementation. Here,
the kernel function invwarp kernel is applied in parallel to ev-
ery pixel in the image, using the parallel do function. In our
example, we use warping with linear interpolation. Quasar allows
to use GPU hardware textures for images with a width that is a
multiple of 32, by the simple access modifier hwtex linear(4).
Here, the parameter value 4 indicates that four color components
are being used for the texture addressing (from which in this case
only 3 components, R,G and B are used).

Hierarchical disparity estimation Using the rectified views,
we estimate disparity (which is the inverse of scene depth) hierar-
chically, using a two-step approach at each hierarchical level: in-
put views are downsampled to a lower resolution where disparity
is first estimated, after which it is upscaled to higher resolutions
in order to refine the estimate.

In the first phase, input views are down-sampled linearly (in
the implementation a factor 4 is used). A coarse estimate of dis-
parity is obtained from these images. This estimation involves
an adapted version of the optical flow estimation technique from
Drulea and Nedevschi [8]. Our adaptation is that we restrict the
technique, which searches for correspondences in the entire im-
age plane, to only allow matches on the same scanline. This low-
resolution disparity estimation algorithm works on a per-pixel ba-
sis, which allows for much parallelism in each iteration of the
optimization problem.

function [] = warp_image(input:cube ’hwtex_linear(4),

H:mat ,bounding_box:mat ,output:cube)

[Mo,No] = size(output,0..1)

function [] = __kernel__ invwarp_kernel(pos:ivec2)

y_new = pos[0] + bounding_box[0,0]

x_new = pos[1] + bounding_box[0,1]

y_old = H[0,0]*y_new + H[0,1]*x_new + H[0,2]

x_old = H[1,0]*y_new + H[1,1]*x_new + H[1,2]

z_old = H[2,0]*y_new + H[2,1]*x_new + H[2,2]

y_old /= z_old

x_old /= z_old

output[pos[0],pos[1] ,0..2] =

input[y_old,x_old,0..2]

end

parallel_do ([Mo,No],invwarp_kernel)

end

Figure 4. Example Quasar code - image rectification.

The second phase completes the coarse-to-fine approach: the
coarse disparity estimates are upsampled to a higher resolution
and refined. The upsample technique uses the dual-cross bilateral
grid method based from Chen et al. [9]. It is a guided upsampling
technique, which can be described as an approximated joint bi-
lateral upsampling that is computationally more efficient. These
cross-bilateral methods use a so-called guide image, to regular-
ize the upsampling of a target image. In our case, the color input
left and right views are used as guide images for the disparity es-
timates. In this way, only real edges, i.e., image edges that are
present in the color input images, are preserved in the disparity
upsampling, resulting in a realistic and desirable upsampling re-
sult. This upsampled result is then refined at the higher resolution.

Depending on the hierarchical depth of this process, it may
occur that the dimensions of the coarsest (i.e., most downsam-
pled) images are too small to yield efficient execution on a GPU,
due to the fact that the resulting occupancy of the GPU may be-
come too low. This implementation aspect is automatically han-
dled by the Quasar run-time system, which will detect this case
and perform the calculations for the coarsest scale on the CPU
(possibly using OpenMP for exploiting the parallelism). This
way, the overall algorithm efficiently exploits the heterogeneous
nature of the CPU/GPU combination.

View interpolation Using disparity estimates for both images,
views positioned on the line segment between both cameras are
reconstructed. As we obtained the disparity fields uL and uR, we
can state that these (ideally) relate each left image IL(x,y) with
each right image IR(x,y) via:

IL (x,y) = IR (x−uL (x,y) ,y) , and

IR (x,y) = IL (x+uR (x,y) ,y) .
(1)

We wish to reconstruct an intermediate view Iθ at location θ

(defining the left image as I0 = IL and the right image as I1 = IR).
Thanks to epipolar geometry, we have the following relationships:

IL (x,y) = Iθ (x−θuL (x,y) ,y) , and

IR (x,y) = Iθ (x+(1−θ)uR (x,y) ,y) .
(2)
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These relationships are used to warp both input images, using the
estimated per-pixel disparity the required location θ of the inter-
polated view. The warping needs to be performed in such a way
that each pixel in the interpolated view is filled in by at least one
pixel value from the input views. Three situations can occur: 1)
there is exactly one input pixel warping to the pixel location in the
interpolated view, 2) there is a collision (i.e. multiple input pixels
warping to the same pixel location in the interpolated view) or 3)
there is a hole (i.e. no input pixels warp to a given pixel location
in the interpolated view).

To avoid collisions, the implementation of the warping uses
a z-buffer (built using atomic max-operations) to ensure that the
write collisions in the reconstructed view image are resolved in
favor of the closest object.

Such situations are typically caused by (de)occlusions,
which are also the main reason for holes. Such holes, which tend
to be small, are inpainted using a simple directional search: each
missing pixel looks into the 8 cardinal directions until it finds a
pixel that has valid data, and weighs these 8 ”neighbors” accord-
ing to their distance from its location. To a certain extent this
is even possible for reconstructing view positions past either end
point of the line segment (view extrapolation), but this requires
the occasional inpainting of large areas and quickly breaks down
as the distance from the line segment increases. Note that it is
also possible to warp the disparity estimates of both views onto
the sought-after location, resulting in a disparity estimation of the
reconstructed view.

The warping code is illustrated in Fig. 5. The code uses two
2D parallel for loops. In the first loop, the z-buffers for the left
and right frames are calculated. In the second loop, the images
are warped according to the z-buffers. During compilation, the
Quasar compiler converts the parallel loop to a kernel function,
that is then further compiled using a back-end compiler (such as
the NVIDIA NVCC compiler).

The hole inpainting code (which is too long to include in this
paper), works on similar principles. The code performs another
7 passes over the image, while inpainting the disparity. Disparity
values that need to be inpainted are nearly always the result of
de-occlusions: they are hence filled in with a weighted sum of the
lower half of the disparities in their neighbourhood.

5 Results and discussion
To demonstrate the effectiveness of Quasar in the efficient

and time-effective implementation of algorithms, we will now
compare timing results of different Quasar implementations. The
view synthesis algorithm’s Quasar implementation is run on dif-
ferent hardware platforms, where the Quasar compiler and run-
time system are responsible for automatic code optimization. The
timing results as shown in Table 1 are averaged over 100 iterations
of the algorithm. These timing results showcase the vast acceler-
ation potentional that can be expected from the hardware capabil-
ities of a GPU device. The benefit from Quasar comes from the
fact that this potential is unlocked from a source code complexity
that is similar to what a matlab or python implementation would
be, without the need for manual hardware-specific code optimiza-
tion. Achieving such speedup with dedicated CUDA code would
have result in far higher code complexity and loss of generality
due to the necessity of platform-specific optimization by the pro-
grammer.

Timing breakdown Rect. Disp. View synth.
CPU (i7-3930K) 67ms 24s 1000ms
CPU (i7-3930K) - openMP 45ms 11s 620ms
Quasar (GTX 770) 2ms 1.7s 8ms
Quasar (GT 440) 3ms 6.5s 45ms

Here, GTX 770 and GT 440 corresponds to respectively a
Kepler-architecture level NVIDIA Geforce GTX 770 GPU and a
Fermi-architecture level NVIDIA Geforce GT 440.

Using Quasar requires no development efforts when switch-
ing to different platforms. Because of this, obtaining realistic
comparisons of performance across different platforms becomes
trivially easy. This ease of use was exploited to create Table 1.

Finally, visual results of the resulting method can be seen in
Figure 6. Despite a few minor distortions (see for example the
anaglyph glasses in the middle of the picture), the overall visual
depth and view interpolation quality is good.

It is also worth noting that the Quasar run-time decides on-
the-fly whether to execute any given function on the CPU or on
the GPU. The trade-off is made between the GPU’s superior pro-
cessing speed for massively parallel execution and the overhead
involved with kernel launching and possible memory transfers to
the GPU and back.

6 Conclusion
In the domain of image/video/multi-camera processing,

Quasar allows researchers to focus on design aspects of the al-
gorithms rather than implementational details. Our approach
enables 1) fast hybrid execution on CPU/GPU, 2) fast rapid-
prototyping with simplified debugging in a specialized IDE and 3)
a future-proof methodology (multiple GPU technologies are sup-
ported). In particular, we demonstrated the capabilities through
a real-time depth estimation and view interpolation application.
More information about Quasar is available at http://quasar.
ugent.be.
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