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Abstract
X-ray and neutron optics both lack efficient ray focusing

capabilities. An x-ray source can be made small and powerful
enough to facilitate high-resolution imaging while providing ad-
equate flux. This is not yet possible for neutrons. One remedy is
to employ a computational imaging technique such as magnified
coded source imaging. The greatest challenge associated with
successful reconstruction of high-resolution images from such ra-
diographs is to precisely model the flux distribution for complex
non-uniform neutron sources. We have developed a framework
based on Monte Carlo simulation and iterative reconstruction
that facilitates high-resolution coded source neutron imaging. In
this paper, we define a methodology to empirically measure and
approximate the flux profile of a non-uniform neutron source, and
we show how to incorporate the result within the forward model
of an iterative reconstruction algorithm. We assess improvement
in image quality by comparing reconstructions based respectively
on the new empirical forward model and our previous analytic
models.

Introduction

Neutron imaging had been mostly employed in the scien-
tific community for Non-Destructive Evaluation (NDE) research.
As for X-ray radiography, neutron radiography follows Beer–
Lambert Law where the degree of attenuation of a material is pro-
portional to its thickness. However, in contrast to X-rays where
the photons interact with the atom electrons, neutron photons in-
teract with the atomic nuclei; making neutrons a complementary
imaging modality to X-ray. The strong interaction of neutron pho-
tons with molecules that involve hydrogen makes neutron imag-
ing the ideal NDE modality for the assessment and improvement
of fuel cell technology [1] and the characterization and modeling
of flow on porous and fractured media [2]. Moreover, neutron
photons are sensitive to isotope differences and the magnetic field
across the traveled path, which makes neutron imaging a valuable
interrogation technique for a wide number of applications and re-
search disciplines [1].

In general, neutron radiography is performed on research re-
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actor based facilities, which makes neutron sources virtually non-
portable. There are 269 neutron sources world-wide, from which
only 116 reactors produce a power greater than 1MW [3, 4],
which means most neutron sources are less powerfull than a
portable X-ray source. The lack of neutron photon flux makes
high resolution imaging at reasonable acquisition times a chal-
lenge. Multiple systems have been proposed to overcome this
challenge. Wolter optics, or axisymmetric gazing-incidence fo-
cusing mirrors, are used to slowly converge neutron rays into a
focus point. By employing Wolter optics, the resolution of a tra-
ditional setup was increased from 115µm to 70µm [5]. The au-
thors also observed a 50 fold increase in flux [6]. The Neutron
Microscope is another project aiming to increase spatial resolu-
tion beyond 10µm [7]. A gadolinium oxysulfide screen (Gadox)
was used as the scintillator. Although Gadox has greater neutron
absorption and resolution when compared to the typical 6LiF/ZnS
scintillator, the scintillator produces less light. This drawback is
overcome by placing the camera upstream where there is more
neutron flux.

Our approach is to employ computational imaging tech-
niques. In particular, we propose to employ coded aperture tech-
niques, where instead of placing a coded mask between object and
detector [8, 9, 10], we place the coded mask between source and
object–modulating the neutron source [11, 12, 13]. As shown in
Figure 1, we select a source-to-object distance much smaller than
the object-to-source distance in order to produce magnification
and overcome the resolution limitations of a 6LiF/ZnS scintilla-
tor, which is around 50µm [14]. Note that neutron flux and spatial
resolution are increased by the total size of the coded mask and
with smaller mask sub-apertures, respectively. We call this imag-
ing setup magnified Coded Source Imaging (mCSI).

Figure 1. Relative position of a magnified Coded Source Imaging system

in a conventional neutron beam line. Note that each aperture in the coded

mask produces a projection of the object at the detector plane.

In the next section, we provide background technical infor-
mation about conventional coded source imaging models and re-
construction methods. In the same section, we describe the math-
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ematical formulation of our model-based iterative reconstruction
method. In particular, we define the matrix system model and
provide a methodology to incorporate into the model the illumina-
tion fluctuations typically seen at the ORNL HFIR CG1D neutron
imaging beam line. The paper continues with documentation of
the synthetic experiments performed to test the proposed flux es-
timation methodology, and we provide reconstruction results for
different configurations. Finally, we close the paper with a sum-
mary of the performed work and future directions.

Model-Based Iterative Reconstruction Algo-
rithm

In previous work, we have documented the advantages of a
model-based least squares algorithm over direct convolution as
well as blind deconvolution wrapped in a maximum-likelihood
framework for the reconstruction of coded source radiographs
[14]. Using simulated data experiments, we showed that the least
squares method outperformed the other methods with respect to
image quality and reconstruction precision as a result of the mod-
eling of the system components, such as the neutron source, the
distribution of flux through the detector pixels, the system field
of view, imperfections of the coded mask, etc. [14] However,
these experiments were limited to uniform and Gaussian neutron
sources which, as shown in Figure 2, do not represent real life
neutron sources. We argue that the greatest challenge associated
with successful reconstruction of real data from a complex source
such as the HFIR CG-1D is to precisely model the neutron rays
flux distribution at each coded mask hole.

System Model
Under a far field assumption, encoded radiograph P can be

modeled as the convolution of object O, coded aperture A and the
addition of random noise η :

P = O∗A+η . (1)

Coded aperture imaging techniques apply to mCSI, con-
sequently, coded aperture patterns such as Modified Uniformly
Redundant Array (MURA) and deconvolution reconstruction ap-
proaches [15, 16] can be seamlessly employed in CSI. Deconvo-
lution by a properly defined kernel G can be used to determine O
given A and P [14]. When P is corrupted by additive noise η , as is
typically the case, the object must be imaged a second time using
a complementary aperture mask Ā, where the apertures in A are
closed in the complementary mask and vice-versa, with the ex-
ception being that the central aperture remains closed or zero for
both Ā and A [17]. Using “mask-antimask” imaging, the object
can be reconstructed as

Ô =
1
2
(PA−PĀ)∗G

=
1
2
(O∗A+η− (O∗ Ā+η))∗G

=
1
2
(O∗ (A∗G)+O∗ (Ā∗−G))

= O.

(2)

However, this model holds only if the neutron illumination
source uniformly emits rays parallel to the imaging axis, A and

Ā are perfectly aligned and free of manufacturing imperfections,
and that the system point spread function A∗G = δ [14]. These
requirements are not met in a magnification modality, where near-
field imaging and divergent rays are needed. In addition, the flux
distribution of an actual neutron source is far from ideal.

When taking a model-based approach to solving the inverse
problem of reconstructing O, the beam and its interaction with
first the coded aperture A and then the object O must be captured
by the so-called system model. Consider the following discretiza-
tion. Let An denote the aperture state at the nth point of the coded
aperture; assign a one to An if the mask has an opening and a
value of zero if the mask blocks the beam. Let Pm denote the mth

point of the detector, and let Oq denote the transmission through
the qth point of the object (which we treat as a uniform slab). The
ray that connects An and Pm intersects the object somewhere in
the vicinity of Oq. We have previously reported on using bi-linear
interpolation coefficients cn,m,q to weight the transmission contri-
bution of this point and its neighbors [18]. Then, we can define
the neutron flux for the ray < m,q > as

wm,q =
N

∑
n=1

Ancn,m,qΦn,m,q, m ∈ [1,M], q ∈ [1,Q]

where Φn,m,q is the probability of a neutron particle passing
through mask hole An, detector pixel m and object pixel q. Note
that for a uniform neutron source the flux term is constant Φn,i, j =
Φ. For non-uniform sources where all coded aperture mask
holes have an equivalent flux angular distribution (e.g., Gaussian
source), the flux term is redefined as Φn,i, j = Φi, j , where the tuple
i, j index the angular flux variation. Shortly, we will discuss how
we estimate Φn,i, j for the HFIR CG1-D neutron source. This al-
lowed the relationship between the source, the aperture mask, the
object and the detected data to be modeled by the linear system

WO = P (3)

where

W =

w1,1 · · · w1,Q
...

. . .
...

wM,1 · · · wM,Q

 , O =

O1
...

OQ

 , P =

 p1
...

pM


A simpler system model could be based on using the nearest

neighbor instead of carrying out the bi-linear interpolation. How-
ever, as the computational savings are negligible and the resulting
images are of lower quality, we do not consider this as a viable
option. In this paper, we instead use a computationally costlier
system model which we have found to produce images of higher
quality. This model is based on the area intersection of the beam
with the pixels. The four corners of the pixelated source are con-
nected to the four corners of the detector pixels. This defines a
bounding box in the image plane. The above c-coefficients are in
turn redefined as intersection probabilities computed as the ratio
of the area of the pixel covered by the bounding box and the area
of the bounding box itself.

The typical system matrix W is not square or invertible.
Therefore, we instead solve Equation (3) indirectly using the so-
called SIRT (Simultaneous Iterative Reconstruction Technique)
algorithm [19] which implements a gradient decent for the
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weighted least-squares problem ‖WO−P‖2
R preconditioned by C

where R and C are diagonal matrices of inverse row and column
sums of system matrix W , respectively. The update equation is
given by:

Ôk+1 = Ôk +α CW T R
(

W Ôk−P
)
. (4)

Relaxation parameter α controls the convergence rate; α =1.99
has been shown to be a near-optimal choice. The experimental
results reported below are based on Ô0=0 but other initializations
are possible. Tikhonov based regularization is easily added to
ensure uniqueness and/or produce a smooth solution. SIRT was
recently shown to be comparable to SQS (Separable Quadratic
Surrogates) when using such quadratic regularization [20].

Shortly, we discuss the methodology for the empirical esti-
mation of neutron source flux Φn,m,q. In order to quantitatively
compare the resulting source model approximation with ground
truth, we have added the ability to import Monte Carlo generated
list-mode data. This allows us to construct the system model us-
ing simulated data in the form of a vast number of source rays
given by mask and detector coordinates which are converted to
bi-linear interpolation coefficients that can be applied to image
and detector pixel indices. The reconstruction results from the
approximated system matrix are assessed against this ideal sys-
tem matrix computed directly from Monte Carlo neutron traces.

Empirical estimation of Φn,m,q
Conventional coded aperture algorithms assume the source is

parallel and uniform. Although methodologies to compensate for
angular non-uniformities exist, these techniques cannot be applied
to the HFIR CG1-D beam where the source also varies spatially.
As shown in Figure 2(a), the neutron hits at the detector produce
significant variations in intensity and these high frequency fea-
tures change with the viewpoint due to the curved construction of
the neutron guide that allow neutrons generated at source reach
the imaging station.

Figure 2. Illustration of real and simulated neutron sources imaged with a

2mm pinhole: at the left is the HFIR CG1D neutron source and at the right is

our simulation of the HFIR source with McStas.

We account for the corresponding variations in flux by us-
ing a collection of source images obtained using a grid of small
apertures, named characterization apertures. By choosing an odd
number of grid points, such as 3×3 or 9×9, we ensure that a cen-
tral view is included corresponding to what was used previously
for the single view source model. The multi-view source con-
tribution to the system model is calculated by applying bi-linear

Figure 3. Side view illustration of source flux estimation from empirical

samples. The flux for aperture n is approximated by computing the weighted

average of the intensity of the neighbor characterization sources open beam

projections. The open beam radiographs for characterization apertures A

and B are at the same detector plane, they are shown at different depths for

illustration purposes.

interpolation to the four nearest source views for a given ray, as
illustrated in Figure 3. The flux distribution is given by

Φn,m,q = Φn,θ = ∑
k∈{CUL,CUR,CBL,CBR}

ωn,k×φk,θ ,

where θ is the direction of the ray passing through detector and
object pixels m and q, respectively. The weights ωk sum to 1
and ωk is inversely proportional to the distance between the mask
aperture An and characterization apertures k ∈ CUL,CUR, CBL,
CBR. Then, φk,θ is the intensity of the pixel that correspond to
the direction θ for the open beam projection of the characteriza-
tion source k. Note that the same source characterization images
can be used for different mask and objects as long as the mask
position remains unchanged and the mask size fit inside the outer
characterization apertures.

The choice size and placement of the characterization aper-
tures will determine the accuracy of the estimation of the flux
function Φn,m,q. For example, small aperture sizes, such as
254µm will resolve small variations in flux, but may require a
larger set of characterization apertures across the coded aperture
plane. On the other hand, larger aperture sizes, such as the 1mm
aperture, may reduce the number of characterization apertures
needed across the coded mask plane, but will smooth the actual
flux values. The experiments below aims to define which char-
acterization configuration provides the optimal estimate of Φn,m,q
by number and size of the characterization apertures.

HFIR CG1D Simulations and System Config-
uration

Neutron imaging beam lines user facilities are in high de-
mand and the allocated beam time is limited to a couple to three
days at a time. Therefore, we needed to find an alternate route
to test the performance of the reconstruction method. In partic-
ular, we wanted to determine what is the ideal configuration for

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-172

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-172.3



the characterization sources in order to estimate the flux distribu-
tion of the HFIR CG1D source. Consequently, we implemented
a ray tracing model of the beam line in McStas [21]. The right
image in Figure 2 shows the Monte Carlo ray tracing result of our
synthetic model and imaging with a 2mm pinhole. The difference
between the left and right images in Figure 2 is due to different
magnification setup. What is relevant to our experiment is that we
were able to generate a texture and discontinuities similar to those
found in the real sources. Similarly to the actual neutron source,
moving the position of the pinhole change the texture pattern on
the projection.

The configuration of CSI system is shown in Figure 4. We
use a MURA coded pattern with 57× 57 100µm apertures. For
a test object, we employed a 1024× 1024 29µm pixels Sheep-
Logan Phantom typically used for testing of X-ray Computed To-
mography reconstruction algorithms. The size of the phantom
pixels was selected such that the main phantom features appear
inside the 2mm field-of-view aperture. The detectors has an area
of 701× 701 50µm pixels. The distance from coded aperture to
object is 1 meter and the distance from object to detector is 4 me-
ters. This produces an effective object magnification of 5x. The
left image in Figure 5 shows an actual projection of the phantom
when imaged with the 100µm MURA coded mask. Note that the
phantom is not perceivable in the projection.

Figure 4. Illustration of coded source imaging configuration.

(a) (b)

Figure 5. (a) Low contrast Sheep-Logan phantom used in Monte Carlo

simulations. (b) Coded source projection of phantom object.

For the characterization sources, we tested seven different
source characterization grid patterns, 1× 1, 3× 3, 5× 5, 9× 9,
13×13, 23×23, 45×45. For each grid pattern, the characteriza-
tion sources are distributed uniformly in a 5.7mm× 5.7mm area,
with the center characterization source align with the z-axis of
the beam line, as it is the case for the coded aperture, phantom,
and detector. Three characterization aperture sizes were tested
254µm, 500µm, and 1mm. Projection images without the phan-

tom in place were simulated for each characterization aperture
position and size. These images were later utilized by the re-
construction algorithm to estimate the flux of the neutron sources
using the methodology described above.

Reconstruction Results
As shown in Figure 6(a), direct deconvolution reconstruc-

tion with a single mask is negatively impacted by the nonuniform
illumination of the CG1-D source. The reconstructed image suf-
fers from illumination fluctuations and low contrast. Figure 6(b)
shows convolution-based reconstruction results when the object
is imaged with both the mask and the anti-mask. Although this
reconstruction has better quality than the reconstruction in Fig-
ure 6(a), this reconstruction falls short from the desired image
quality and the intensity values do not match the actual attenua-
tion values in the phantom. Also, recall that the mask/anti-mask
convolution-based method requires an additional image capture
with an accurately registered anti-mask. This becomes a chal-
lenge when trying to image with mask apertures smaller than
10µm. Therefore, it is preferred to image the object with a single
mask in order to remove artifacts introduced by miss-registration
of high resolution coded apertures. Moving towards that goal,
the model-based reconstruction algorithm should provide superior
quality by integrating in the model non-idealities, such as source
non-uniform illumination, mask manufacturing defects and trans-
parency, and mask, object, and detector misalignments. Fig-
ure 6(c) shows model-based reconstruction result with a single
mask and with the system matrix computed from actual Monte
Carlo neutron traces. Consequently, the utilized system matrix is
a perfect model for the imaging system. The reconstruction shows
sharp edges and the appropriate attenuation values for the imaged
phantom. The reconstruction is our baseline to assess the image
quality of reconstructions with an approximated system model us-
ing the flux estimation method above.

(a) (b) (c)

Figure 6. (a) Convolution-based reconstruction when object imaged with

the aperture mask alone. (b) Convolution-based reconstruction when object

imaged with both aperture and anti-aperture. (c) Model-Based reconstruc-

tion using the aperture mask and the ideal system matrix.

Figure 7 shows the best reconstructions obtained using the
flux approximation method. The reconstruction are not as sharp
and detailed as the with the reconstructions with the ideal sys-
tem matrix (Figure 6(c)). However, reconstructions with the ap-
proximated system matrix compares to reconstructions with the
mask-anti-mask convolution-based method (Figure 6(b)). Al-
though, the contrast for the convolution-based and model-based
methods is comparable, the model-based method outperform the
other method by producing attenuation values that closely resem-
ble those found in the phantom. Some of the artifacts found in
the best model-based reconstruction may be attributable to low
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statistics at the projection image.

(a) (b) (c)

Figure 7. Reconstructions for the 254µ, 500µm, and 1000µm characteriza-

tion aperture for grid sizes (a) 45×45, (b) 23×23, and (c) 13×13, respectively

One of the goals of this investigation was to define an ade-
quate grid size and spacing for the characterization sources. Fig-
ure 8 shows the Root Mean Square Error (RMSE) curves for the
difference between the ideal and approximate system matrices as
a function of grid size. Each plot lines corresponds to a char-
acterization source aperture size. The horizontal axis relates to
the grid size used to sample the coded mask plane in order to es-
timate flux. Source flux estimation with grid sizes smaller than
5× 5 produced poor reconstruction results. We only show worst
case reconstructions for the 1mm pinhole (See Figure 9(a)). Sim-
ilar results were obtained for the smaller characterization source
apertures. Note that for the 1mm characterization aperture, the re-
constructions start to resemble the phantom for grid sizes larger
than five (Figure 9(b)). For smaller apertures, a larger grid size
was required in order to achieve a reconstruction that partially
showed the phantom. Also, when comparing Figure 7(c) to Fig-
ure 9(c), we observed that after the spatial sampling of the coded
mask area reaches a certain density, improvement of reconstruc-
tion quality is minimal.

Figure 8. RMSE curves between the ideal reconstruction in Figure 6(c) and

the reconstructions using the characterization sources to estimate Φn,m,q

Our synthetic experiments confirms the high frequency tex-
tures introduced by the neutron guide. These textures change
quickly with slight modifications to the point of view. Figure 10
shows the same error measurements from Figure 8, but this time
the horizontal axis relates to the ratio between source character-

(a) (b) (c)

Figure 9. Reconstructions for 1mm characterization aperture for grid sizes

(a) 3×3, (b) 5×5, and (c) 9×9

ization spacing and size. As the ratio reaches infinity, i.e., less
spatial sampling, the reconstruction algorithm is unable to recover
the object. For a 1mm characterization source and a grid size of
13× 13, the center-to-center spacing is 0.457mm. This is half
the size of the characterization source, therefore, there is a slight
overlapping between the characterization sources. The same ob-
servation is repeated for the 254µm and the 500µm characteri-
zation apertures for grid sizes 23× 23 and 45× 45, respectively.
Consequently, the best reconstruction quality is obtained when
the aperture spacing/size ratio is around 50%. Note that image
quality did not increase for smaller apertures at the same char-
acterization source spacing/size ration. This may be due to the
higher frequency details resolved by the smaller apertures that are
more difficult to approximate by interpolation. A larger charac-
terization source, trades a more accurate sample of the source flux
for a smoother flux function to interpolate.

Figure 10. Same RMSE analysis from Figure 8 as a function of characteri-

zation source spacing and size.

Conclusion
The ORNL’s HFIR CG1D neutron imaging beam line pro-

duces high frequency textures that are introduced by the structure
of the neutron guide. Both spatial and angular flux intensities
change rapidly with point of view. When developing a model-
based iterative reconstruction technique, this fluctuations in flux
becomes a modeling challenge, because the flux is difficult to es-
timate. We had documented a methodology to estimate the flux
profile of a neutron imaging beam line, such as the HFIR CG1D.
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We image the neutron source with pinholes, which we call char-
acterization source apertures, at different locations in order to ob-
tain a set of flux samples that we can integrate into the recon-
struction system model. The preliminary, synthetic results show
an improvement over convolution-based method. In particular,
we show that the model-based iterative method yields equivalent
reconstruction results without the need of a second image cap-
ture with a complementary mask as is needed for the convolution-
based mask-anti-mask method. The low contrast and artifacts on
current reconstructions can be due to the low statistics at the de-
tector. We plan to extend this study to additional coded mask
aperture sizes in order to investigate the relationship between re-
construction quality, coded mask hole size, and the characteriza-
tion sources size and sampling pattern.
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