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Abstract
High-spectral resolution imaging provides critical insights

into important computer vision tasks such as classification, track-
ing, and remote sensing. Modern Snapshot Spectral Imaging
(SSI) systems directly acquire the entire 3D data-cube through the
intelligent combination of spectral filters and detector elements.
Partially because of the dramatic reduction in acquisition time,
SSI systems exhibit limited spectral resolution, for example, by as-
sociating each pixel with a single spectral band in Spectrally Re-
solvable Detector Arrays. In this paper, we propose a novel ma-
chine learning technique aiming to enhance the spectral resolu-
tion of imaging systems by exploiting the mathematical framework
of Sparse Representations (SR). Our formal approach proposes a
systematic way to estimate a high-spectral resolution pixel from a
measured low-spectral resolution version by appropriately identi-
fying a sparse representation that can directly generate the high-
spectral resolution output. We enforce the sparsity constraint by
learning a joint space coding dictionary from multiple low and
high spectral resolution training data and we demonstrate that
one can successfully reconstruct high-spectral resolution images
from limited spectral resolution measurements.

Introduction
Over the last decade, the demand for designing imaging sys-

tems able to reveal the physical properties of the objects in a scene
of interest, has grown tremendously. To that end, Hyperspectral
Imaging has emerged as a powerful technology, able to capture
and process a huge amount of data, including the spatial and spec-
tral variations of an input scene. This type of data is crucial for
multiple applications, such as remote sensing, precision agricul-
ture, food processing, medical and biological research, etc. De-
spite the important merits of hyperspectral imaging systems in
structure identification and remote sensing, HSI acquisition and
processing also comes with multiple functional constraints. Slow
acquisition time, limited spectral and spatial resolution, low dy-
namic range, and restricted field of view, are just a few of the
limitations that hyperspectral sensors exhibit, and which require
further investigation.

The rapid evolution of the spectrally resolvable detector ar-
ray systems that directly acquire the entire 3D data-cube through
a clever combination of spectral filters and detector elements,
has created an enormous excitement in the hyperspectral imag-
ing community [1–5]. Although these systems acquire the entire
spatial and spectral information directly from a single snapshot
image, they unfortunately cause a reduction in spectral resolu-
tion by associating each detector/pixel with a single spectral band.
The spectral resolution is a critical parameter for both visualiza-

tion and subsequent procedures such as unmixing [6, 7], classi-
fication [8–10], and understanding of the variations of an input
scene over time.

Traditional hyperspectral resolution enhancement ap-
proaches focus mostly on the spatial resolution of HSI systems.
In the remote sensing community, conventional techniques
generate the high-spatial resolution scene by fusing a low spatial
resolution hyperspectral image with a high spatial resolution
panchromatic image, a procedure known as pan-sharpening [11].
Another class of techniques utilizes spatio-spectral relations
to improve spatial resolution [12, 13]. Furthermore, over the
past decade multiple techniques have been proposed that seek
to enhance the spatial resolution of multispectral imagery by
exploiting the Sparse Representations framework [13, 14]. More
specifically, the authors in [14] propose a sparsity-based approach
based on the assumption that corresponding pairs of high and low
spatial resolution pixel curves share the same sparse codes with
respect to appropriate resolution dictionaries. In order to improve
the quality of their reconstruction, a maximum a priory algorithm
is utilized.

Contrary to the spatial resolution enhancement problem, in
the spectral domain only a handful of techniques have been re-
ported. The authors in [16] propose a spectral super-resolution
approach applied on a generalization of the Coded Aperture Snap-
shot Spectral Imaging (CASSI) instrument, increasing simultane-
ously both the spectral and the spatial dimensions of hyperspectral
scenes. Additionally, in [17] another spectral resolution enhance-
ment is demonstrated, where the authors consider geographically
co-located multispectral and hyperspectral oceanic water-color
images and they enhance the limited multispectral measurements
utilizing a sparsity based approach. First, they use a spectral mix-
ing formulation and they define the measured spectrum for each
pixel as the sum of the weighted material spectra. The desired
high-spectral resolution spectra is expressed as a linear combina-
tion between a blurring matrix and the measured spectra. This
problem is solved via a sparse-based technique.

Our proposed algorithm aims to enhance the spectral dimen-
sion, i.e., the number of acquired spectral bands, providing richer
and more thorough descriptions of a scene of interest. Instead of
introducing hardware solutions for spectral-resolution enhance-
ment, such as modifying the optics or the hyperspectral sensor
characteristics, the proposed scheme adheres to a signal learning
paradigm, offering convenient post-acquisition processing, able
to extract a richer spectral information from a limited number of
spectral bands. The proposed spectral super-resolution method is
formulated as an inverse imaging algorithm that recovers high-
spectral information from low-spectral resolution data acquired
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Figure 1: Block diagram of the proposed scheme: Our algorithm takes as input a hypercube acquired with a limited number of spectral
bands and constructs an estimate of the full spectrum of the scene.

by the spectral detectors, by capitalizing on the Sparse Represen-
tations (SR) and the joint dictionary learning frameworks [18,19],
effectively encoding the relationships between high and low spec-
tral resolution “hyper-pixels”.

Spectral Super-Resolution Using Sparsity
This work proposes a novel scheme for synthesizing a high-

spectral resolution hypercube from a limited number of acquired
spectral bands. More specifically, given a low-spectral resolution
hyperspectral scene acquired with M spectral bands, our goal is
to estimate the extended spectrum composed of N spectral bands,
where N > M. In order to achieve this, we employ the Sparse
Representations framework [18], which states that linear combi-
nations between high-frequency signals can be accurately recov-
ered from their corresponding low-frequency linear representa-
tions. The notion of sparsity has revolutionized modern signal
processing and machine learning, and has lead to very impres-
sive results in a variety of imaging problems, including super-
resolution, de-nighting etc. [20, 21].

Instead of observing directly the high-spectral resolution
components, we work with double over-complete dictionaries,
Dh for the high-spectral, and D` for the low-spectral resolution
scenes. The sparse code of the low-spectral resolution part in
terms of D`, will be combined with the high spectral resolution
dictionary to generate the desired high-spectral resolution com-
ponent. Formally, given a low-spectral resolution input hypercube
S`, ”hyper-pixels” s` ∈ RM are extracted and mapped to the low-
spectral resolution dictionary matrix D` ∈RM×P containing P ex-
amples. Subsequently, we seek to identify the sparse code vector
w∈RP, with respect to the corresponding low-spectral resolution
dictionary matrix. Recovery of the sparse code w is achieved by
solving the following minimization problem:

min
w
||w||0 subject to ||s`−D`w||22 < ε, (1)

where ε stands for the acceptable approximation error which is
related to the added noise. This problem can be solved by a greedy
strategy such as the Orthogonal Matching Pursuit algorithm [22].
Alternatively, one can replace the non-zero counting `0 pseudo-
norm by its convex surrogate `1-norm: ||w||1 = ∑i |wi|, and solve

the corresponding problem given by:
min

w
||s`−D`w||22 +λ ||w||1, (2)

where λ is a regularization parameter, a formulation known as
the LASSO problem [23]. By considering the joint training of
the low and high spectral resolution dictionaries, the objective is
to identify the sparse code vector that can produce both the low
and the high spectral resolution representations. Consequently,
assuming that such an optimal sparse code w? is found by solving
Eq. 2, we recover the high spectral resolution ”hyper-pixel” sh,
by projecting w? to the high-spectral resolution dictionary, Dh,
according to:

sh = Dhw? (3)
The two main challenges for the proposed spectral resolution en-
hancement scheme is the sufficient sparsity measure for the sparse
vector w, and the proper construction of the dictionary matri-
ces D`, and Dh which will allow the sparsification of both low
and higher spectral resolution data. In the following, an efficient
scheme for multiple feature space dictionary learning is provided.

Coupled Dictionary Construction

Consider a set composed of high and low spectral resolu-
tion hypercubes. We assume that these scenes are realized by the
same statistical process under different spectral resolution condi-
tions, and as such, they share approximately the same sparse code
with respect to their corresponding dictionaries, Dh and D`. A
straightforward strategy to create these dictionaries is to randomly
sample multiple correspondent “hyper-pixels” extracted from cor-
responding high and low spectral resolution training sets and use
this random selection as the sparsifying dictionary. However, such
a strategy is not able to guarantee that the same sparse code can
be utilized among the two different representations. To overcome
this limitation, we propose learning a compact dictionary from
such pairs of high and low-spectral resolution data-cubes.

Given a large set of training “hyper-pixels” extracted from
multiple pairs of high and low spectral resolution hyperspectral
scenes Sh and S`, our goal is to learn a joint dictionary D j, taking
into account both representations. Consequently, the joint dictio-
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nary learning problem is formulated as:
min
D j ,X
||P−D jX||22 +λ ||X||1, s.t ||D j(:, i)||22 ≤ 1 (4)

where D j =

[
Dh
D`

]
∈ R(M+N)×P, M+N denotes the concatenated

number of spectral bands for both high and low-spectrum sce-

narios, P is the number of dictionary atoms, and P =

[
Sh
S`

]
cor-

responds to the set of ”hyper-pixels” extracted from the training
pairs of high and low-spectral resolution hyperspectral images.

The problem in Eq. 4 can be efficiently solved via the K-
SVD dictionary learning algorithm [24, 25], alternating between
two stages, namely, the sparse coding and the dictionary update.
During the sparse coding stage, the coefficients matrix X is esti-
mated using any pursuit algorithm, restricting the number of non-
zero elements of each sparse vector to be small. During the dictio-
nary update step, the dictionary elements are sequentially updated
via a singular value decomposition process. Fig. 1 presents the
proposed system’s block diagram, where we summarize the indi-
vidual steps for our scheme in recovering the full spectrum from
a limited number of spectral bands.

Experimental Results
This section presents quantitative performance results of

our spectral resolution enhancement scheme. The synthesized
spectral bands are compared against the ground truth hypercube
bands and against the results obtained through cubic interpola-
tion among the available spectral bands. Regarding the dictionary
training phase, two dictionaries were prepared: (i) one sampled
from NASA’s Hyperion remote sensing data [26], which is ap-
plied to hyperspectral scenes with a relative structure; and (ii) one
sampled from scenes acquired using IMEC’s Snapshot Mosaic
hyperspectral instrument [27, 28]. For each high spectral reso-
lution training scene, we generate the corresponding low spectral
resolution scene by subsampling along the spectral dimension.

In order to validate the quality of the reconstructed hyper-
cubes, we employ the Peak Signal to Noise Ratio (PSNR) [29]
metric formulated as: PSNR = 10log10[L

2
max/MSE(x,y,λ )],

where L is the maximum pixel value of the scene, MSE stands for
the mean square error, and λ denotes the spectral dimension. Ad-
ditionally, each estimated spectral band is compared against the
corresponding ground truth spectral band in terms of the Struc-
tural Similarity Index Metric [30], a psychophysically modeled
error metric defined as:

SSIM(x,y) =
(2µxµy + c1) · (2σxy + c2)

(µ2
x +µ2

y + c1) · (σ2
x +σ2

y + c2)
, (5)

where µ and σ stand for the mean value and the standard devia-
tion, respectively.

Data Acquisition Scenarios
The proposed spectral resolution enhancement scheme is

validated on both satellite and terrestrial remote sensing data. Re-
garding the satellite case, we conducted experiments on data ac-
quired by NASA’s Hyperion hyperspectral instrument. Due to
its high spectral coverage, Hyperion scenes have been widely
utilized in the remote sensing community for classification and
spectral unmixing purposes. Concerning the terrestrial case, we
utilized hyperspectral data acquired by IMEC’s snapshot mosaic
sensors. These flexible sensors multiplex optically the 3D spatio-

spectral information on a two-dimensional CMOS detector array,
where a layer of Faby-Perot spectral filters is deposited on top
of the detector array. The hyperspectral data is initially acquired
in the form of 2D mosaic images. In order to generate the 3D
hypercubes, the spectral components are properly rearranged into
separate spectral bands. In our experiments, we utilize the 5× 5
snapshot mosaic hyperspectral sensor with 25 bands in the VNIR
spectrum range (600−875 nm). Fig. 2 presents an example of the
rose test scene acquired using the 5×5 sensor.

Figure 2: (Left) Rose test scene acquired by the 5× 5 snapshot
mosaic sensor. (Right) Individual spectral bands.

Satellite data recovery
In this scenario, we utilize hyperspectral data acquired by the

Hyperion sensor. The Hyperion instrument resolves 220 spectral
bands covering the range from 0.4 to 2.5 µm. In our simula-
tions we consider only 39 spectral bands from the VNIR region
with wavelengths between 437− 833 nm (bands 9-48). During
the dictionary training phase, we utilized multiple hyperspectral
scenes acquired by the Hyperion sensor. For the high spectral
resolution dictionary, the number of bands is set to 39, while for
the low spectral resolution dictionary, the down-sampling factor
was set equal to 2, resulting in 20 spectral bands. Consequently,
we learned two dictionaries composed of 512 atoms, from 100K
randomly sampled ”hyper-pixels”. Fig. 3 demonstrates several re-
covered bands from the Hyperion sensor, along with their ground
truth results. The PSNR error for the full 3D hypercube is 42.61
dB, indicating a high quality recovery.

Terrestrial data recovery
In this experiment, we apply our spectral super-resolution

scheme on multiple test scenes acquired by IMEC’S 5× 5 snap-
shot mosaic hyperspectral sensor, with a spatial resolution of
1000× 2000 pixels. In the spectral domain, the acquired 3D hy-
percubes were subsampled by a factor of 2 and 4. The result-
ing dictionaries are trained from 50K randomly sampled ”hyper-
pixels”, while the number of selected dictionary atoms was set
to 512 through a validation process seeking the optimal tradeoff
between quality of approximation and computational complexity.
Figs. 4, 5 illustrate several reconstructed spectral bands from the
window and the rose test scenes, respectively. In both experiments
the sub-sampling factor was set to 2. The quantity of our recon-
structions is compared against the accurate spectral bands with
respect to the SSIM index. The results demonstrate that the pro-
posed reconstructed spectral bands preserve the spectral content
and exhibit high similarity with the ground truth spectral bands.
Fig. 6 examines the recovery performance of the proposed syn-
thesized rose hypercube against the interpolation reconstruction,
where we illustrate the recovered 18th spectral band, along with
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(a) (x2) SSR 20th Band (b) (x2) SSR 28th Band (c) (x2) SSR 34th Band (d) (x2) SSR 46th Band

(e) Ground Truth 20th Band (f) Ground Truth 28th Band (g) Ground Truth 34th Band (h) Ground Truth 46th Band

Figure 3: Hyperion data recovery: This experiment illustrates the capability of the proposed SSR scheme in satellite hyperspectral
imagery. The full spectrum is composed of 39 bands in the VNIR region, while the sub-sampling factor is set equal to 2.

(a) (x2) 2nd Band, SSIM: 0.56 (b) (x2) 7th Band, SSIM: 0.73 (c) (x2) 19th Band, SSIM: 0.42 (d) (x2) 24th Band, SSIM: 0.66

(e) Ground Truth 2nd Band (f) Ground Truth 7th Band (g) Ground Truth 19th Band (h) Ground Truth 24th Band

Figure 4: Window reconstructed spectral bands: In this illustration the full spectrum is composed of 25 spectral bands, while the sub-
sampling factor for the low-spectral resolution data-cube is 2. The proposed SSR reconstructions present high accuracy with the ground
truth 3D data-cube.

the spectral signatures located at (151,268) spatial position. The
results indicate that the proposed approach outperforms both vi-
sually and quantitatively the cubic interpolation procedure. Table
1 provides the PSNR reconstruction error of the proposed system,
compared with the results from the cubic interpolation.

Conclusions and Future Work
In this work, we proposed a novel post-acquisition spec-

tral super-resolution architecture, employing the state-of-the-art
mathematical modeling of Sparse Representations for encoding
and synthesizing the relationship between high and low-spectral
resolution scenes. Experimental results demonstrate the high
quality of our reconstructions on both satellite and terrestrial re-

Table 1: Quantitative performance evaluation in terms of PSNR
error (dB) for spectral super-resolution with magnification factor
4 and the associated ground truth frames.
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Cubic Interpolation 26.32 24.45 26.05 22.88 22.59
Proposed 34.47 32.3 33.27 26.31 25.92

mote sensing data. The proposed scheme can be extended to han-
dle arbitrary low-to-high resolution enhancements by a modifica-
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(a) (x2) 2nd Band, SSIM: 0.41 (b) (x2) 8th Band, SSIM: 0.60 (c) (x2) 18th Band, SSIM: 0.38 (d) (x2) 24th Band, SSIM: 0.52

(e) Ground Truth 2nd Band (f) Ground Truth 8th Band (g) Ground Truth 18th Band (h) Ground Truth 24th Band

Figure 5: Rose reconstructed spectral bands: In this experiment we observe the high similarity of the proposed spectral band recoveries
with respect to to their original 3D full spectrum. The sub-sampling for this experiment is also set to 2.

(a) (x2)18th Band-Cubic Interpolation (b) (x2)18th Band-SSR (c) Spectral Signatures

(d) (x4)18th Band-Cubic Interpolation (e) (x4) 18th Band-SSR (f) Spectral Signatures

Figure 6: Rose test scene: This experiment depicts the reconstruction performance of the proposed SSR scheme compared with the
straightforward cubic interpolation procedure and the corresponding spectral signatures of each method. (Top): The sub-sampling factor
is 2, and we recover the 25 full spectra from 13 input bands. (Bottom): The sub-sampling factor is 4, and the reconstructed data cube is
recovered from 7 spectral bands.

tion of the joint dictionary learning process, as well as offering
the capability of addressing additional sources of hyperspectral
image degradation such as blurring and noise.
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