
Adaptive Activation Functions for Deep Networks
Michael Dushkoff, Raymond Ptucha; Rochester Institute of Technology; Rochester, NY/USA

Abstract
Artificial neural networks loosely mimic the complex web of

nearly 100 trillion connections in the human brain. Deep neural
networks, and specifically convolutional neural networks, have
recently demonstrated breakthrough performances in the pattern
recognition community. Studies on the network depth, regulariza-
tion, filters, choice of activation function, and training parame-
ters are numerous. With regard to activation functions, the rec-
tified linear unit, is favored over the sigmoid and tanh function
because the differentiation of larger signals is maintained. This
paper introduces multiple activation functions per single neuron.
Libraries have been generated to allow individual neurons within
a neural network the ability to select between a multitude of ac-
tivation functions, where the selection of each function is done
on a node by node basis to minimize classification error. Each
node is able to use more than one activation function if the final
classification error can be reduced. The resulting networks have
been trained on several commonly used datasets, which show in-
creases in classification performance, and are compared to the
recent findings in neuroscience research.

Introduction
The human brain has a network of billions of computational

units, called neurons. The weighted sum of simultaneous inputs
to a neuron determines its output spiking frequency which is sub-
sequently passed on to other neurons. Each neuron is connected
with up 10,000 other neurons, creating a network of 100 trillion
synapses. Artificial neural networks (ANNs) loosely mimic a sim-
plified version of this biological network of connections digitally
and have been typically implemented in software, but recently in
hardware as well [15]. Hierarchical arrangements of neurons into
layers generally offer the most efficient ANNs [6]. The number
of nodes in each layer, regularization strategies, addition of recur-
rent and skip forward connections, and network topologies have
been studied in great detail [9]. To enable ANNs to learn com-
plex nonlinear behaviors, each node applies an activation func-
tion to its output before passing it on to the next neuron. This
traditionally monotonic function restricts the output range of the
neuron using a sigmoidal or tanh function[5]. Many other acti-
vation functions have been studied, but the rectified linear units
(ReLUs) [11], which clamp the negative outputs to zero and let
the positive outputs go unchecked, have been the most successful
as of late [4].

Recent neuroscience research indicates that biological neu-
rons modify their activation functions as part of the learning pro-
cess [13][14], some of which can be band pass oriented [3]. For
smaller networks, studies on activation functions have shown that
periodic activation functions allow ANNs to learn with fewer
epochs and with fewer neurons [16][18][17][12][8]. These non-
monotonic functions allow more complex behavior in each layer,
but can introduce chaotic tendencies during training if not reg-

ulated properly[7]. Prior studies have incorporated the activa-
tion function properties as parameters that are solved along with
weights during backpropagation [2][16][10][17]. These studies
have been done on small one to three layer networks which gener-
ally inflate the need for more complex activation functions which
compensate for the simple networks with fewer neurons.

This research analyses the benefits of complex activation
functions on larger deep networks. Each neuron in the deep net-
work is configured to allow any number of activation functions,
whereby the turning on and off of each activation function is
learned during the training process. A new deep learning library
built in the Torch7 framework incorporates the newly introduced
activation functions and learns the weight parameters automati-
cally during training. This new library allows nodes in a network
to use a family of activation functions simultaneously in an effort
to minimize classification error.

Background
Activation Functions

In models of the human brain, the activation functions within
each neuron transfer the sum of all incoming synapse to an ex-
pected firing rate [1]. These activation functions can be sym-
metric or antisymmetric as they exhibit excitatory or inhibitory
functions in the brain. Whenever a neuron becomes active, the
concentration of ions on the cell’s surface will change as well as
the concentration of ions within the cell [13].

When neural networks were first gaining presence in the sci-
entific community, Kurt Hornik proved mathematically that any
feed-forward network with a single hidden layer containing a fi-
nite number of neurons could approximate any continuous func-
tion [19]. This theorem showed that neural networks are inher-
ently universal approximators and that the activation itself does
not give it this property, but rather the inherent structures of a
feedforward network architecture. This theorem, however does
not take into account the number of hidden units that would be
required to approximate any function, nor does it take into ac-
count the feasibility of training such a network. From these im-
plications, it is certainly important to consider the impact that the
choice an activation function has on a specific network architec-
ture’s training time, and memory requirements on today’s hard-
ware.

Rectified linear units have been gaining popularity especially
in deep convolutional neural network architectures. This non-
saturating nonlinear function trains faster than saturating nonlin-
ear functions [11][20]. By allowing the positive values of the
output of a neuron to grow unbounded, the resulting output of
each convolutional layer is allowed to exhibit intensity equivari-
ance [11] such that scaling intensities within regions of the image
will not change the overall decision capabilities of the network.
These qualities are important in classification problems that de-
pend on inputs being invariant

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-149

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-149.1



Adaptive Methods
There have been many attempts at creating adaptive activa-

tion functions in the past including adaptive cubic spline activa-
tion functions [16] as well as single function per layer optimiza-
tion of rectified linear units [23]. Neither of these methods include
more complex non-linear functions such as the sigmoid or hyper-
bolic tangent functions nor have either of these methods shown
their effectiveness on modern datasets and neural network archi-
tectures. These pre-existing versions of adaptive functions have
shown that there are clear advantages to providing adaptive ca-
pabilities for such functions such as reduced training times and
increased accuracies. For these reasons, an adaptive model that
can be easily integrated with existing techniques to improve over-
all accuracies of artificial neural networks has been explored to
improve upon these concepts.

Adaptive Activation Functions
Optimization for each activation function was achieved by

defining a convex cost function for the linear weighted combina-
tion of each activation function applied to an input. In order to
better understand the operation that is being applied, this process
can be visualized as a single entity in a neural network referred
to as an ”adaptive activation function layer” as shown in Figure
1. The individual activation functions are defined as fi, where
i ∈ 1 . . .N. The function l refers to a continuous differentiable
function which is applied to each gate matrix gi. This gate matrix
represents a matrix of parameters to be optimized to find the best
activation function by gating certain activation functions, while
allowing others to express themselves. In the case of a convolu-
tional neural network, a node would be representative of a single
pixel from one layer to the next which essentially allows for each
pixel to have a separate activation function which is dynamically
optimized.

Figure 1: Block diagram of a single adaptive activation function
layer.

Ideally, the values of l(gi) should fall within 0 to 1 which
corresponds to having each activation function as either on or off
respectively. These gate parameters are treated as optimization
parameters in the gradient descent algorithm in order to allow for
their optimal values to be solved for. The output v is calculated
by passing the input u through this layer as defined by (1).

v =
N

∑
i=1

fi(u)l(gi) (1)

This adaptive layer essentially allows certain activation func-
tions to express themselves more prominently, or less prominently
based on their attribution to the overall computed cost of the layer.
Ideally, the activation functions will either be fully blocked which
corresponds to a 0 or fully expressed which corresponds to a 1.
This would allow a more restricted, but more easily optimized
subset of linear combinations of activation functions. In order to
achieve this behavior, as well as to allow the gate parameters to be
optimized, the gate limiting function, l, is defined as the sigmoid
function in (2). This function was chosen due to its relatively sim-
ple to compute derivative as well as its nonlinear behavior which
constrains the activation functions to be fully suppressed or fully
excited. This also prevents the gate values from growing uncon-
trollably.

l(x) =
1

1+ e−x (2)

Given the definition of a multiple activation function gate
layer, its corresponding gradient update equations were derived in
(3) and (4). The parameters are as follows: δgi represents the gra-
dient update to the gate values, while δu represents the gradient
update to the input to the adaptive function layer.

δgi = δv
∂ l
∂gi

(gi) fi(u) (3)

δu =
N

∑
i=1

∂ fi
∂u

(u)l(gi)δv (4)

An additional cost term can be added to constrain the per-
centage of activation functions that are used in the network. This
could allow for more restricted behavior to be modeled that pre-
vents the activation functions from becoming unstable or growing
out of control.

The gradient update can also be scaled in order to prevent
the adaptive functions from taking over the optimization problem.
This issue essentially is due to the fact that there are many more
variables added to the overall cost of the network which must be
optimized. In CNN’s where there may be more activation param-
eters than filter or fully connected weight parameters, the latter
two parameters can easily fall into the local minima due to the
emphasis of the adaptive function parameters. In order to avoid
this, a scaling factor S f can be introduced which scales the entire
gradient update. Additionally, a momentum term is recommended
to avoid local minima.

An alternative method to avoid this problem is to vary the
scale term per epoch such that certain epochs only train the net-
work’s original parameters, while other epochs will include the
adaptive activation function parameters. This can be done by set-
ting the scale factor to 0 for a certain number of epochs and then
to any positive value for a specific number of epochs. Alternating
in this fashion allows the adaptive activation functions to try to
settle into the learned parameters of the network more naturally,
however this needs to be explored further.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-149

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-149.2



Results
Experiments are performed on the CIFAR100 and Cal-

Tech256 datasets. The CIFAR100 dataset has 100 classes with
500 images for training and 100 images for testing respectively
per class and has an image size of 32x32x3 pixels. The Cal-
Tech256 dataset has 257 classes, with 80 to 827 images per class
with image size of 300x200x3 pixels.

Deep convolutional neural networks are used to contrast us-
ing traditional activation functions (baseline) as compared to the
adaptive activation functions introduced in this paper. In order
to obtain a fair comparison between baseline results and adaptive
function results, the same training parameters were used for both
methods without scaling the learning rates while training. To de-
termine the best way of training the adaptive function networks,
two separate trials were conducted: 1) replacing baseline activa-
tion functions with adaptive activation function layers after the
first few layers of a deep CNN, and 2) replacing baseline activa-
tion function layers with adaptive activation function layers at the
last few layers of a deep CNN. The results from each experiment
support recent findings in neuroscience as well as related deep
learning research.

Experiments show that although the ReLU activation func-
tion works best when used in isolation, the traditional sigmoid and
tanh occur more frequently when multiple activation functions are
allowed to become active at each node. Networks which support
multiple activation functions per node are shown to significantly
outperform networks with one activation function per node and
also train significantly faster.

CIFAR100
Baseline accuracies were obtained through the use of a

VGG-like architecture [21] as shown in Figure 2 using batch nor-
malization [22] to speed up the training process. The maximum
testing accuracy obtained without random translations or flips was
57.5% after 300 training epochs as shown in Figure 3.

In order to determine the best place in the network to ap-
ply adaptive functions to, two separate experiments were run with
adaptive activation functions using the sigmoid, tanh, and recti-
fied linear units to adapt to the network. In the first network, the
adaptive activation functions were applied to the first six layers
where previously rectified linear units were used. In this case,
the overall training time of the network suffered and the testing
accuracy dramatically dropped down to 51.3% at the end of 300
epochs. This is most likely due to the fact that the network was
not able to generalize to the testing set with so many parameters
to optimize in the first layers and therefore ended up doing poorly.

Next, the adaptive functions were applied to the last seven
layers where previously rectified linear units were used. This con-
figuration did much better than the previous and in fact produced
a gain in accuracy of 2% when compared to the baseline case.
Furthermore, the amount of epochs to reach the same accuracy
for this adaptive case versus the baseline was much less. These
results can be seen in Figure 3 which compares the baseline train-
ing and testing accuracies to the adaptive case.

From this comparison between the two methods, the adap-
tive functions seem to positively enhance the discriminative accu-
racy of a convolutional network when applied to the final layers
of the network. It can be postulated that the early layers of the
network are crucial in determining the overall accuracy of the net-

Figure 3: Accuracy comparison between baseline and adaptive
functions for CIFAR 100 dataset.

work and therefore if too many extra parameters are included, the
overall number of epochs for the network to converge increases.
The overall accuracy is also impacted by this since there are un-
doubtedly many local minima introduced by the adaptive activa-
tion functions which can halt the progress of the overall network
if techniques to avoid them are not used properly.

The usage statistics of the adaptive networks are of impor-
tance to analyze since their layer-by-layer properties ultimately
determine the success of the overall network. The total usage
percentage of the final seven adaptive activation functions of the
network are shown in Figure 4.

As shown by the layerwise usage statistics in Figure 4, the
sigmoid activation function is used less than the other two func-
tions in every case except for the third in which it ends up being
used just as often as the hyperbolic tangent function. Surprisingly,
the rectified linear unit function is only dominantly used in the fi-
nal activation function layer between the two fully connected lay-
ers of the network. From these statistics, one can determine that
the tanh function when paired with the rectified linear unit func-
tion will be used most often in most layers, however the sigmoid
function can also become useful in order to clamp the output of
the overall activation function.

A random sampling of activation functions from a single
layer are shown in Figure 5 wherein each adaptive function is in-
dependently optimized for a single node.

Caltech256
Similar methods were used to obtain accuracies for the Cal-

tech256 dataset. Images were resized to a size of 64x64 which
necessitated a change in the number of layers in Figure 2. Two
convolution layers and a max pooling were inserted before the
fully connected layers in order to reduce the dimensions of the im-
age down to a single pixel by the end of the network. The decision
to reduce the size of each image so drastically from their original
sizes ultimately cost the network significant accuracy, however
for the purposes of comparison with the adaptive case, this is not
that important. The baseline accuracy of the model utilizing only
rectified linear unit activation functions was 31.1% as shown in
Figure 6. The placement of these adaptive functions ultimately
decided the overall general improvement or degradation of accu-
racies in the overall model.

Two separate model strategies were adapted from the the
CIFAR 100 experimental findings. The first strategy substitutes

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-149

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-149.3



Figure 2: General convolutional network architecture for CIFAR 100 dataset.

Figure 4: Activation function statistics per layer for the CIFAR
100 datset.

adaptive activation functions for the first four convolution layers,
while the second strategy substitutes adaptive activation functions
for the last five layers of the network. In the first case, both the
training and testing accuracies were negatively impacted and af-
ter the same 300 training epochs, the final testing accuracy ended
up at 28.3%. This mirrors the behavior of the CIFAR 100 ex-
periments. This problem could most likely be avoided by scaling
the gradient update to the adaptive functions, however this would
result in comparatively longer training times.

The second experiment shows a minor boost in both training
and testing accuracies over the same number of epochs, however
the overall testing accuracy was around the same as the baseline
by the end of 300 epochs as shown in Figure 6. Both of the adap-

Figure 5: Random sampling of activation functions for CIFAR
100 dataset.

tive case curves are bowed outwards and to the left of the baseline
case clearly indicating an advantage in training time reduction.
Although the overall accuracies are the same after 300 epochs,
this most likely is a limitation of the amount of data that is be-
ing processed in the network itself rather than a limitation of the
adaptive functions. If the images passed into the network were
considerably larger and the network architecture itself was deeper,
the accuracies may improve further for the adaptive case for the
same amount of time. This is due to the fact that the the network
would generalize more readily to the test set if less information
was thrown away from the original images. Larger images would
mean that the testing accuracies would take longer to saturate and
the boost in accuracies seen in the current model would be able
to increase over a longer duration of time. It takes roughly 150
epochs for the current model’s testing accuracies to saturate in
both the baseline and adaptive case.

Figure 6: Accuracy comparison between baseline and adaptive
functions for Caltech 256 dataset.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-149

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-149.4



Conclusion
This paper has shown that adaptive activation functions can

shorten training time and increase classification accuracies when
utilized in the later layers of a deep convolutional neural network.
However further research must be done to determine strategies
for reducing the negative impact that adaptive activation func-
tions have on early layers of convolutional neural networks. There
are also a large variety of activation functions that have yet to be
tested using this adaptive method including non-monotonic func-
tions which may be of interest to determine if they provide any
advantage.

Acknowledgments
We greatly appreciate the NVIDIA corporation for their do-

nation of the GPUs used in this research.

References
[1] Dayan, Peter, and Laurence F. Abbott. Theoretical neuroscience. Vol.

806. Cambridge, MA: MIT Press, 2001.
[2] Dawson, Michael RW, and DON P. SCHOPFLOCHER. ”Modifying

the generalized delta rule to train networks of non-monotonic proces-
sors for pattern classification.” Connection Science 4.1 (1992): 19-31.

[3] Garabedian, Catherine E., et al. ”Band-pass response properties of rat
SI neurons.” Journal of neurophysiology 90.3 (2003): 1379-1391.

[4] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. ”Deep sparse
rectifier neural networks.” International Conference on Artificial In-
telligence and Statistics. 2011.

[5] Hara, Kazuyuki, and K. Nakayamma. ”Comparison of activation
functions in multilayer neural network for pattern classification.”
Neural Networks, 1994. IEEE World Congress on Computational In-
telligence., 1994 IEEE International Conference on. Vol. 5. IEEE,
1994.

[6] G. E. Hinton, S. Osindero, and T. Yee-Whye, ”A fast learning algo-
rithm for deep belief nets,” Neural Computation, vol. 18, pp. 1527-54,
07/ 2006.

[7] Liao, Xiaofeng, et al. ”Hopf bifurcation and chaos in a single delayed
neuron equation with non-monotonic activation function.” Chaos,
Solitons & Fractals 12.8 (2001): 1535-1547.

[8] Merkel, Cory, Dhireesha Kudithipudi, and Nick Sereni. ”Periodic ac-
tivation functions in memristor-based analog neural networks.” Neu-
ral Networks (IJCNN), The 2013 International Joint Conference on.
IEEE, 2013.

[9] A.-R. Mohamed, G. E. Dahl, and G. Hinton, ”Acoustic modeling us-
ing deep belief networks,” IEEE Transactions on Audio, Speech and
Language Processing, Vol. 20, pp. 14-22, 2012.

[10] Nakayama, Kenji, and Moritomo Ohsugi. ”A simultaneous learn-
ing method for both activation functions and connection weights of
multilayer neural networks.” Proc. IJCNN. Vol. 98. 1998.

[11] Nair, Vinod, and Geoffrey E. Hinton. ”Rectified linear units improve
restricted boltzmann machines.” Proceedings of the 27th International
Conference on Machine Learning (ICML-10). 2010.

[12] Kang, Miao, and Dominic Palmer-Brown. ”An adaptive function
neural network (ADFUNN) for phrase recognition.” Neural Net-
works, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint
Conference on. Vol. 1. IEEE, 2005.

[13] Scheler, Gabriele. ”Memorization in a neural network with ad-
justable transfer function and conditional gating.” arXiv preprint q-
bio/0403011 (2004).

[14] Scheler, Gabriele. ”Regulation of neuromodulator receptor effica-

cyimplications for whole-neuron and synaptic plasticity.” Progress in
Neurobiology 72.6 (2004): 399-415.

[15] Soltiz, Michael, et al. ”Memristor-based neural logic blocks for non-
linearly separable functions.” Computers, IEEE Transactions on 62.8
(2013): 1597-1606.

[16] Vecci, Lorenzo, Francesco Piazza, and Aurelio Uncini. ”Learning
and approximation capabilities of adaptive spline activation function
neural networks.” Neural Networks 11.2 (1998): 259-270.

[17] Wong, K. W., C. S. Leung, and S-J. Chang. ”Use of periodic and
monotonic activation functions in multilayer feedforward neural net-
works trained by extended Kalman filter algorithm.” Vision, Image
and Signal Processing, IEEE Proceedings-. Vol. 149. No. 4. IET,
2002.

[18] Xu, Shuxiang, and Ming Zhang. ”Justification of a neuron-adaptive
activation function.” ijcnn. IEEE, 2000.

[19] Hornik, Kurt and Stinchcombe, Maxwell and White, Halbert. ”Mul-
tilayer feedforward networks are universal approximators.” Neural
Networks, Vol. 2, pp. 359-366, 1989.

[20] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E. ”Im-
agenet classification with deep convolutional neural networks.” Ad-
vances in neural information processing systems, pp. 1097-1105,
2012.

[21] Karen Simonyan and Andrew Zisserman. ”Very Deep Convo-
lutional Networks for Large-Scale Image Recognition.” CoRR,
abs/1409.1556, 2014.

[22] Sergey Ioffe and Christian Szegedy. ”Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift.”
CoRR, abs/1502.03167, 2015.

[23] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian.
”Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification.” arXiv:1502.01852, 2015.

Author Biography
Michael Dushkoff is a BS/MS Computer Enginerring student from

the Rochester Institute of Technology. He has worked as a researcher in
the field of machine learning in the RIT Machine Intelligence Lab since
2014. His research is focused on brain-inspired computational systems
and taking inspiration from biological systems to improve current gener-
ation technologies.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-149

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-149.5


