
Sparse Data 3-D X-ray reconstructions on GPU processors
Fernando Quivira, Simon Bedford, Richard Moore, John Beaty and David Castañón

Abstract
The problem of obtaining 3-D tomographic images from ge-

ometries involving sparse sets of illuminators and detectors arises
in applications like digital breast tomosynthesis, security inspec-
tion, non-destructive evaluation and other similar applications.
In these applications, the acquired projection data is highly in-
complete, so traditional reconstruction approaches such as fil-
tered backprojection (FBP) lead to significant distortion and ar-
tifacts in the reconstruction. In this work, we describe an iter-
ative reconstruction algorithm that exploits regularization to ob-
tain well-posed inverse problems. However, the computations as-
sociated with these iterative algorithms are significantly greater
than the FBP algorithms. We describe how we structure those
computations to exploit GPU architectures to reduce the compu-
tation time of the iterative reconstruction algorithm. We illustrate
the results on data computed from an experimental 3-D imaging
system.

Introduction
The problem of obtaining 3-D tomographic images from ge-

ometries involving sparse sets of illuminators and detectors arises
in many applications. In digital breast tomosynthesis [1], the de-
sire to limit radiation exposure to levels comparable to mammog-
raphy limits the collection geometry to a few angles. For non-
destructive testing using x-ray imaging systems, these methods
can potentially lead to more cost-effective hardware architectures
and screening.

Since the acquired projection data is highly incomplete, tra-
ditional reconstruction approaches such as filtered backprojection
[2] lead to significant distortion and artifacts in reconstruction.
Instead, applications such as digital breast tomosynthesis [1] use
model-based iterative reconstruction techniques ([3, 4] that con-
trol the occurrence of artifacts through combinations of accurate
physics models and the use of suitable regularization techniques.
However, these techniques have significantly higher computation
requirements than transform-based techniques such as filtered-
backprojection, which introduce significant delays in generating
3-D reconstructions for diagnosis or further exploitation. These
delays introduce major limitations in the applicability of these
systems for use in real-time systems that must maintain rapid
imaging for timely inspection.

The need for acceleration of model-based iterative recon-
struction methods was recognized early in tomosynthesis, and
algorithms were designed for implementation in large processor
clusters [6]. With the development of powerful graphics hardware
such as Graphics Processing Units (GPUs), it became feasible
to implement these iterative reconstruction algorithms in single
computers [7, 8], leading to reported reductions in computation
time comparable to those achieved in large clusters of processors.

In this paper, we describe a model-based iterative reconstruc-
tion algorithm that exploits regularization to reduce artifacts in

sparse data CT based on the separable paraboloidal surrogates
(SPS) algorithm [4]. This algorithm uses a physics-based model
for transmission x-ray measurements based on Poisson statistics,
which is useful in representing measurements at lower dosages.
We describe how to structure the computations of this algorithm
to map onto GPU architectures, and describe our implementation
on an NVIDIA GPU system using CUDA. We demonstrate the ef-
ficiency of this mapping using data obtained from an experimental
3-D CT imaging system.

The rest of this paper is organized as follows: we describe
the computations of the model-based iterative reconstruction al-
gorithm in the next section. Subsequently, we overview the map-
ping of the algorithm computations onto GPU architectures. We
describe experiments with reconstructions from projection data
using an experimental sparse data CT tomography setup, com-
paring the GPU computation times with sequential reconstruction
times. The last section discusses our conclusions and directions
for future work.

Model-based Iterative Reconstruction
Figure 1 illustrates the typical processing flow of iterative

reconstruction algorithms. Starting from an initial guess of the
reconstruction field, an iterative algorithm predicts the measure-
ments using a physics-based model, computes the difference be-
tween the predicted measurements and the observed measure-
ments, and uses these differences to compute updates to the esti-
mated reconstruction field. These iterations are repeated until the
algorithm stops. What changes among iterative reconstruction al-
gorithms is how many measurements are processed and how are
field updates computed.

Iterative Reconstruction

•  Many techniques
-  ART, SART, SIRT, OS-IRT, MART, ML-EM, OS-EM, ICD, OS-ICD, MBIR, …

•  With something in common
-  Current estimate of image
-  Forward model to predict

measurements
-  Backwards model to take

prediction error information
to update current estimate

•  Main differences
-  Forward models
-  Updates based on prediction information
-  Amount of data processed in loop iterations
-  Volumetric parts of image corrected

Measured
data

Initial
image

Forward
projection

Compare
Compute corrections

to estimate
(backprojection)

Update
image

Iterative loop

Figure 1. Typical processing flow for iterative reconstruction

The general form of a model-based iterative reconstruction

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-167

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-167.1

algorithm is derived from an optimization problem of the form

argmax
img

logP(meas|img)+ f (img)

where the first term is a data fidelity term that models the physics
of the measurement system, and the second term is a regulariza-
tion term that represents prior information and encourages the ap-
pearance of special structures in the reconstructed solution, such
as smoothness. In our experimental algorithm in this paper, we
are not using regularization to keep the description of the compu-
tation simple.

In our problem, let µ denote the discretized spatial map of ef-
fective linear attenuation coefficients, discretized over voxels in-
dexed j = 1, . . . ,P. The tomographic projection measurements
collected at the detectors are denoted by Yi, i = 1, . . . ,N. We de-
note by A the tomographic system matrix that relates the linear
attenuation coefficients to the predicted intensities at the detec-
tors i = 1, . . . ,N. This matrix is typically computed using the
intersection lengths of the ray paths for measurement i with the
voxels [2]. The matrix A has dimensions N×P. Let Ai denote
the i-th row of A. We also denote by ri the background radiation
intensity for measurement Yi. We compute the Ai rows using the
approximation algorithm described in [5].

Let bi denote the source intensity for measurement i. The
statistical model for the observation Yi collected at the detector is
given by [4]:

Yi ∼ Poisson{bie−Aiµ + ri}

Our data fidelity term is the negative log likelihood of the ob-
servations using this model. Using regularization, the resulting
optimization problem is

min
µ

N

∑
i=1

bie−`i +ri−Yi log(bie−`i +ri)+
β

2

P

∑
j=1

∑
k∈N j

w jkψ(µ j−µk)

where `i = Aiµ is the forward projection of field µ to the mea-
surements, N j is a neighborhood of voxel j, w jk are weights, and
ψ is a penalty function encouraging smoothness of the linear at-
tenuation coefficients.

For the purposes of this study, we have chosen to model no
background radiation (e.g. ri = 0), and to use post-reconstruction
smoothing rather than regularization, in order to concentrate on
the difficult parts for acceleration of computation, which are
the tomographic operations. The specific iterative reconstruction
algorithm we have chosen for implementation is the separable
paraboloidal surrogates (SPS) algorithm described in detail in [4],
using ordered subsets. The algorithm partitions the measurements
into M disjoint subsets Sm ∈ {1, . . . ,N}, and processes the mea-
surements one subset at a time to update the reconstructed field of
linear attenuation coefficients. By partitioning the measurements
into subsets, we reduce the needed memory in the GPU used to
perform an update.

The basic organization of the algorithm computations is
composed of major iterations, each of which is composed of mi-
nor iterations that process one subset of data at a time. During
each minor iteration involving ordered subset Sm, the estimate of
the field µold is updated with the data {Yi, i ∈ Sm}.

The first step is to compute the forward projection of the
current field estimate onto the detectors in the measurement subset
Sm, as follows:

µ̂ = µ
old

`i = Aiµ̂, i ∈ Sm

ŷi = bie−`i (1)

The next step is to back-project the parameters of each mea-
surement in Sm into the voxel field, as follows:

num(j) = ∑
i∈Sm

ai j(ŷi−Yi)

den(j) = ∑
i∈Sm

ai j`iŷi (2)

The final step uses the back-projected statistics to update the
field at each voxel, as

µ
new
j =

[
µ

old(1+
num(j)
den(j)

)
]
+

GPU Implementation
For our implementation, we chose an workstation with an In-

tel Core i7 3970-X processor, and an Nvidia GeForce GTX Titan
Black GPU. The Titan Black GPU has 2880 CUDA cores, with
6 Gigabytes of memory, and a single precision rating of 4.5 Ter-
aflops. Figure 2 [9] is a diagram of the internal architecture of
the Titan GPU, with 15 streaming multiprocessor (SMX) units,
each of which is home to 192 cores. While this is not a top of the
line GPU card, it has sufficient parallelization potential for our
application.

Figure 2. The GeForce GTX Titan GPU

Figure 3 shows the contents of an SMX unit. In addition
to the 192 single precision cores, the multiprocessor contains 64
double precision units, as well as 64 Kbytes of shared memory
and 48 Kbytes of constant memory. We are not currently using
any of these features in our implementation, as discussed below.

In order to understand the mapping of the algorithm onto the
GPU architecture, below is an outline of the major computations
of the ordered subset algorithm.

Initialize 3D volume field

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-167

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-167.2

Target GPU

•  Intel Core i7 3970-X processor, and an Nvidia GeForce GTX Titan
Black GPU ($1-2 K)
-  15 streaming multiprocessor units (SMX), each with 192 cores, some shared

memory, plus 64 double precision units and 16 texture mapping units

-  6 gigabytes on-chip memory

Figure 3. An SMX unit in the GeForce Titan

For number of iterations do

For each subset S of measurements do:

Copy ordered subset data to GPU

For each projection in S do

Compute coefficients of system matrix for

projection

Forward project volume field as in eq. (1)

end For

For each each projection in S do:

Compute coefficients of system matrix for

projection

For each voxel j in 3D volume:

Compute projection contribution to num(j),

den(j) and accumulate as in eq. (2)

end For

end For

For each voxel in field

Update voxel field values as in eq. (3)

end For

end For

end For

An important motivation for the structure of our logic is to
minimize memory access, and to keep most of the computations
local to the threads being computed in each core of the GPU. As
a consequence, we choose to compute the rows of the A matrix
at each iteration in each core, rather than storing the very large
matrix. In addition to eliminating significant memory access time,
this allows us to modify the illumination/detection geometry with
very minor changes in the underlying software.

The first major step in our algorithm is based on partition-
ing the data by using ordered subsets. This allows us to divide
the data into sizes that fit well into the GPU memory. We then
perform forward projection, backward projection, and attenuation

field update using the data from one ordered subset at at time.
Thus, the first computation step is to copy the current ordered
subset data into the GPU. This contains the measured intensities
at each detector, as well as the source/detector geometry. We di-
vide the measurements into blocks of 512 threads for the CUDA
execution. Each thread computes the path of each ray in the for-
ward projection phase: this involves computation of the elements
of row Ai individually by each thread, followed by accessing the
current attenuation field values in the voxels of interest to predict
the measurement observed at the detector as in eq. (1). This step
is highly parallel, and easily distributed among the GPU cores.

Following the forward projection, we synchronize the GPU,
and we again partition the measurements into blocks of 512
threads by source/detector combinations. The threads recompute
the row elements Ai. This avoids the use of limited local memory
for each GPU core. The recomputed row elements Ai are used in
the back projection step by each thread to compute the contribu-
tion to the numerator and denominator used in updating the field
voxels that the ray path intersects, as in eq. (2). The contributions
of all the threads are reduced to total update values per voxel, and
stored in two voxel-sized arrays in GPU memory: the numerator
and denominator arrays.

Once the back projection threads are completed, we use a
second synchronization point to ensure that all the update infor-
mation has been computed. We again partition the voxels into
blocks of 512 threads to update the attenuation field in each voxel.
This step is completely parallel, so each thread accesses the stored
numerator and denominator values and updates the voxel value, as
in eq. (2). After the update step, we introduce another GPU syn-
chronization point before proceeding to load and process the next
subset of measurements.

The main iterations continue across each of the ordered sub-
sets of measurements, and across the major iterations. Given that
our typical problem is in the order of 108 measurements, there is
plenty of work available to keep the 2880 computing cores busy,
while avoiding memory access bottlenecks.

Figure 4. 2-D projection of reconstructed 3-D water bucket volume

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-167

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-167.3

Experiments
In this section, we describe the results of accelerating our

reconstruction using three experimental data sets. The first exper-
iment imaged 2 water buckets on top of each other. A 2-D pro-
jection of the reconstructed images for this experiment is shown
in Figure 4. The buckets have thin metal handles, and are filled
close to 90% up to the top, as shown in the reconstructions.

The second experiment focused on imaging a collection of 3
paint cans on a platform. A 2-D projection of the reconstructed
scene is shown in Figure 5. The paint cans are nearly identical
in size and content, but have different illumination because of the
diverse placement in the scene.

Figure 5. 2-D projection of reconstructed 3-D paint cans volume

The third experiment sought to image a collection of cylin-
ders of different materials and heights, distributed over the imag-
ing volume. A 2-D projection of the 3-D reconstruction of these
cylinders is shown in Figure 6.

Figure 6. 2-D projection of reconstructed 3-D collection of cylinders volume

For each of these experiments, the reconstruction algorithm
generated an estimate of the reconstructed attenuation field in a
cubic region with dimensions 512 x 512 x 512 voxels. Storing
this information in the GPU even at single precision takes a sig-
nificant amount of memory. In terms of measurements, the spe-
cific experimental system we are using collects 108 projections of
this field, which we separate into four subsets of equal size. The
algorithm performs 10 major iterations to obtain the final answer.

As described previously, our algorithms were implemented
on an Intel Core i7 3970-X processor, with an Nvidia GeForce
GTX Titan Black GPU. We ran the sequential version of the algo-
rithm on the same processor, without using the GPU acceleration.

Table 1 contains the results of our experiments, comparing
the computation time for the sequential implementation of our
reconstruction code versus the GPU implementation. The times
are reported as a fraction of the slowest sequential computation
time. The times were computed as the average of 50 reconstruc-
tion times. Note that the sequential implementation of the algo-
rithm is different: It avoids re-computation of the coefficients Ai
in the backprojection step, as it does not have the local memory
limitations that the GPU cores have.

Our results consistently indicate an acceleration factor of

Sequential Parallel
Paint Cans 1.0000. 0.0176

Water Buckets 0.9688 0.0162
Cylinders 0.8750 0.0164

Table 1: Sequential and parallel computation times for differ-
ent reconstructions. Time units are in fractions of slowest se-
quential computation time.

near 60 from using the GPU implementation. The overall recon-
struction time using the GPU architecture is approaching the re-
quirements of what one would like to see for real-time imaging
applications.

Note that the current approach has taken a minimalist mem-
ory management approach to greatly increase parallelism. The
rows Ai are recomputed in the forward and backward projection
iterations, and the main collaboration among the threads is the
reduction of the information from the back projection operations
to compute the numerator and denominator of the updates for the
field intensities in the individual voxels.

Discussion
In this paper, we describe an implementation of a model-

based iterative reconstruction algorithm for sparse data computed
tomography imaging on an NVIDIA GPU. The algorithm we
chose to implement is the SPS algorithm described in [4]. We
described the structure of the algorithm, and how it was mapped
onto an Nvidia GeForce GTX Titan Black GPU architecture using
CUDA.

We demonstrated the effectiveness of the GPU implemen-
tation when compared with a sequential implementation on the
same architecture without using GPUs. For three sample test
cases involving 3-D reconstructions with large numbers of vox-
els, the computation time was reduced by a factor of near 60 in
each experiment.

Our GPU implementation approach was intended to make
minimal use of local and shared memory, and used CUDA primi-
tives for reduction. As such, it is suitable for a wide range of GPU
sizes. There are a number of optimizations that we propose to ex-
plore in our future work to reduce further the computation time
on GPUs by exploiting local and shared memory, as well as by
using hierarchical reductions. We also propose to extend our im-
plementation to include regularization as part of our voxel update
procedure.

Acknowledgments
The authors would like to acknowledge the support of Astro-

physics, Inc. in this work.

References
[1] R. G. Roth, A. D. A. Maidment, S. P. Weinstein, S. O. Roth, E. F.

Conant, Digital Breast Tomosynthesis: Lessons Learned from Early
Clinical Implementation, RadioGraphics, V. 34 .(2014).

[2] A. Kak, M. Slaney, Principles of Computerized Tomographic Imag-
ing, IEEE Press.(1998).

[3] Z. Yu, J. Thibault, C.A. Bouman, K.D. Sauer, J. Hsieh, Fast model-
based X-ray CT reconstruction using spatially nonhomogeneous ICD
optimization, IEEE Trans Image Process, V. 20. (2011).

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-167

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-167.4

[4] H. Erdogan, J. A. Fessler, Ordered subsets algorithms for transmis-
sion tomography, Phys. Med. Biol. No. 44. (1999).

[5] F. Jacobs, E. Sundermann, B. De Sutter, et al., A fast algorithm to cal-
culate the exact radiological path through a pixel or voxel space, Jour-
nal of Computing and Information Technology, V. 6, No. 1 (1998).

[6] J. Zhang, W. Meleis, D. Kaeli, T. Wu, Acceleration of maximum like-
lihood estimation for tomosynthesis mammography, Int. Conf. Paral-
lel and Distributed Systems. (2006).

[7] H. Yan, L. Ren, D. J Godfrey, F.-F. Yin, Accelerating reconstruction
of reference digital tomosynthesis using graphics hardware, Medical
Physics, V. 10. (2007).

[8] D. Schaa, B. Brown, B. Jang, P. Mistry, R. Dominguez, D. Kaeli,
R. Moore, D. Kopans, GPU Acceleration of Iterative Digital Breast
Tomosynthesis, GPU Computing Gems. (2011).

[9] T. Sandhu, Review: NVIDIA GeForce GTX TITAN 6GB graphics
card overview, http://hexus.net/tech/reviews/graphics/51857-nvidia-
geforce-gtx-titan-6gb-graphics-card-overview/, Feb. 19. (2013).

Author Biography
Fernando Quivira is a graduate student in the Electrical and Com-

puter Engineering at Northeastern University, Boston, MA.
Simon Bedford is Director of Government Programs at Astrophysics

Inc, in City of Industry, CA.
Richard Moore is Research Director for breast imaging at Mas-

sachusetts General Hospital, Boston, MA.
John Beaty is Director of Technology Programs for the Bernard M.

Gordon Center for Subsurface Sensing and Imaging Systems at Northeast-
ern University, Boston, MA.

David Castañón is Professor of Electrical and Computer Engineer-
ing at Boston University, Boston, MA.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.19.COIMG-167

IS&T International Symposium on Electronic Imaging 2016
Computational Imaging XIV COIMG-167.5

