
Use of Flawed and Ideal Image Pairs to Drive Filter Creation by
Genetic Programming
Subash Marri Sridhar, Henry G. Dietz, Paul S. Eberhart; University of Kentucky; Lexington, Kentucky

Abstract
Traditional image enhancement techniques improve images

by applying a series of filters, each of which repairs a specific type
of flaw, but most modern digital cameras produce images with a
variety of subtle interacting defects. Sequential repair is slow, and
the interactions limit the effectiveness.

This paper describes a fundamentally different approach in
which a single filter is created to repair the potentially myriad in-
teracting defects associated with a particular camera configura-
tion and set of exposure parameters. Genetic programming (GP)
is used to automatically evolve a filter algorithm that will con-
vert flawed images into images minimally differing at the pixel
level from the corresponding provided ideal images. For exam-
ple, the flawed images might be shot at a high ISO and the ideal
ones might be the exact same static scenes, aligned at the pixel
level, but shot at a low ISO using appropriately longer exposure
times. Just as easily, the flawed images might be technically well-
corrected, while the ideal ones were manually-edited to adjust
and smooth skin tones, sharpen hair, enhance shadow regions,
etc. The custom-coded parallel GP, its performance, and perfor-
mance of the generated filters is discussed with an example.

Introduction
Image enhancement is the general process of taking an im-

age and accentuating certain image characteristics, and suppress-
ing others so that the resulting image is more suitable for subse-
quent analysis for a specific application[2]. Image restoration is
a form of image enhancement in which the goal is repair of well-
understood degradations by applying a type of “inverse” transfor-
mation. Common to virtually all forms of image enhancement in
the literature is the design flow depicted in Figure 1. Indeed, the
names of image enhancement techniques typically reflect this idea
that each is correcting a specific, individual, type of flaw, e.g.:

• Contrast Stretching — stretching the contrast property of the
image fixes flaws

• Edge Enhancement — enhancing the edges in the image
makes the image more desirable

• Noise clipping — clipping of the pixel values reduces noise
in the image

• Geometric distortion correction — Fixing geometric distor-
tions in the image to make it desirable

• Color level histogram modelling — adjusting color levels in
the image leads to a balanced and desirable image.

The greatest difficulty in using that process to create new im-
age enhancement filters is in quantifying the criterion for enhance-
ment (step 2 above). Hence, a large number of image enhance-
ment techniques are empirical in nature and require human in-
teractive procedures to obtain results that meet the requirements.

This means the process is: time consuming, very subjective, re-
quires expert understanding of image processing techniques and
image properties, and generally involves humans in the evaluation
process.

Figure 1: Traditional design flow for image improvement

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.1

Filter design using an oracle
This paper explores a completely different approach. The ap-

proach here suggests that the image enhancement problem can be
seen as simply finding a filter that, when applied to faulty image
A, produces a close approximation to a “better” reference image
B. In effect, this is using image B as an oracle: an example of how
the perfectly-corrected image should appear.

The hope is that the filter that was found to remove what-
ever defects from A to replicate B should then be able to remove
similar defects from any other given image. In essence, the A+B
pairs constitute a training data set. However, it is reasonable to
expect that a very small number of A+B image pairs should be
needed for training, because each reasonably high-resolution im-
age contains a multitude of regions, each of which constitutes an
essentially independent training case.

Image defects that can be corrected by this approach can
have complex causes, including limitations of sensors or envi-
ronment, geometric distortions induced by optics, non-linearity
induced by sensors, and quantization loss due to under-sampling.
Some of the loss might be due to already-applied image enhance-
ment techniques themselves, for example, intensive noise filtering
or averaging can induce blurring of the image and cause loss in in-
formation. It is even possible to simply allow a skilled human to
manually edit and modify image A by any means they wish – in-
cluding painting and other non-algorithmic transformations – and
then to use the result as an oracle for devising a way to automati-
cally perform similar editing of other images.

Traditional filter design starts with examining image A and
trying to guess at incremental improvements without having a
well-defined ultimate goal. In contrast, the current work is simply
given images A and B as initial conditions, and automatically de-
velops a function that converts image A to image B. In this way,
arbitrarily complex image enhancement problems can be handled
without direct human effort in classifying or evaluating image de-
fects. The evaluation of the resultant transfer function can be very
mathematical and objective in nature, because in its simplest form
the evaluation of the transfer function can be done by measuring
the sum of pixel-level differences between B and the image pro-
duced by processing A. In other words, the approach in this paper
has the following strengths:

1. The filter derivation is an objective process.
2. The procedure requires minimal human interaction (if any

at all).
3. If there are humans involved, they are not required to have

any image processing knowledge.
4. The process is fast and the approach will produce robust and

stable transformation functions.

Creating oracles
An obvious potential flaw of this approach is the need to cre-

ate a perfect B image to serve as an oracle. However, it is actually
very simple because B need not be a truly perfect capture. Neither
is it required that it be obtained in the same way as A. It is suffi-
cient for B to contain the same scene content at the pixel level and
be relatively free of the particular soup of artifacts to be removed
from A.

As a simple motivating example, consider the A+B image
pair shown in Figure 2. In comparison to image B, A shows noise,

(a) Flawed high ISO image

(b) Perfect low ISO “oracle” image

Figure 2: Input Image Pair

disruptions of the tonal scale, loss of sharpness, etc. – a multitude
of interacting defects coming from the use of a high ISO sensitiv-
ity to light for image A.

The quantum efficiency of a pixel generally is not adjustable;
high ISOs are implemented using higher-gain amplification of the
analog signal from each pixel. That unfortunately applies the am-
plification not only to the signals, but to noise as well. Even
for a perfect camera, high ISO image quality would be compro-
mised by the fact that high ISO images are given fewer photons

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.2

to sample, making photon shot noise (statistical variation in the
light source photon emission rate) more significant. In addition,
most consumer cameras apply a variety of algorithms to try to re-
duce the appearance of noise (even to raw images), ranging from
smoothing operations to desaturation of colors.

It is easy to understand how the A image in Figure 2 was pro-
duced. An old compact digital camera with particularly poor high
ISO performance was used to make a properly-exposed photo of
a test scene at ISO 400. Just how poor the quality of the captured
image is can be clearly seen in the crops shown in Figure 3.

The more challenging task is creation of the B image to serve
as an oracle. We have already suggested that the trick is to pho-
tograph the exact same scene, aligned at the pixel level, using a
lower ISO setting – in this case, ISO 50. However, using the same
shutter speed and aperture settings at ISO 50 would result in a
severely underexposed image that would have far from ideal im-
age quality. The answer is that the scene was captured scene using
a longer exposure time, thus enabling the ISO 50 image to be rel-
atively free of artifacts. Note that changing the aperture would not
have the intended result, because it would alter depth of field.

Of course, giving the lower ISO capture a longer exposure
time is cheating in the sense that the image is not truly captured
under identical circumstances, but the point stands that this sim-
ple method trivially produces a near perfect reference image for
improving the high ISO image. In general, it is perfectly accept-
able to use such tricks to produce oracle images: the quality of the
oracle is all that matters, not how it was produced.

Filter Performance Evaluation Metric
Having produced an oracle image B, it is still necessary to

mechanically judge how close a processed version of A is to repli-
cating image B. This is done by a simple entropy function de-
scribed by the following equation:

e = ∑
0≤x≤X
0≤y≤Y

{Filter[f (x,y)]−g(x,y)}

This metric e is the accumulation of the absolute difference
in the pixel values of the filtered image and the good quality lower
ISO image. The lower the value of, e higher the rank/fitness value
of the population member. Of course, other metric functions, for
example comparing squares of differences, are also viable. Em-
pirically, some will work better than others, but many formula-
tions are viable choices.

With the decisions made in the previous sections regarding
image pair choices and specification of an evaluation metric, the
filter development process is not specific to any single flaw type
or artifact. The evaluation process allows the performance of the
filter to be quantified for arbitrary behaviors. This means the filter
generation process is completely objective and easily automated.
There is no need for human interaction in the filter creation pro-
cess nor for deep understanding of image processing techniques
in the creator of the A+B image pairs.

Filter Building Blocks
There are various ways to automatically synthesize image

filters using A+B image pairs and an evaluation metric. For ex-
ample, conventional genetic algorithms or neural networks (in-
cluding the latest “deep learning” methods) could be used. How-

(a) Crop of flawed high ISO image

(b) Crop of perfect low ISO “oracle” image

Figure 3: Crops of Input Image Pair

ever, those techniques would require imposing a fixed structure
on the filter design. The genetic programming approach sug-
gested here does not imposing as many constraints on the form
of the solution, which is likely to result in a more effective or less
computationally-expensive filter. The process also will generally
be able to work with a much smaller training data set.

For genetic programming, composable primitive and basic
building-block functions are specified, and the system uses them
to build complex image transformations with an arbitrary struc-
ture and complexity. Although they could include well-known
image-processing primitives, they also can be simple arithmetic
operations on pixels. The primitive functions used in the exam-
ple in this paper fall into two broad classes of image enhancement
operations: point operations and spatial operations.

Point operations are zero memory operations where a given
pixel’s gray/color channel level u ∈ [o,L] is mapped into a gray/-
color channel level v ∈ [o,L] according to the transformation
v = f (u).

1. The function f depends only on the pixel value.
2. It is independent of the spatial location (u,v)
3. The domain of f must match the range of the image.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.3

Spatial operations are image enhancement operations that
work on a neighborhood of pixels. Often, the image is convolved
with a finite impulse response filter called a spatial mask. A spa-
tial domain process can be expressed by the following equation:

g(x,y) = T [f (x,y)]

where f (x,y) is the input image, g(x,y) is the output image,
and T is an operator on f defined over a neighborhood of point
(x,y). The following building blocks were chosen as the raw ma-
terial for the example in this paper:

1. Weighted Sum Operation — point operation. This building
block is defined by

out = in1(w)+ in+2(1−w)

where 0 < w < 1
2. Difference operation — point operation. This primitive

function is defined by

out = Abs(in1− in2)

3. Multiply operation — point operation. This primitive func-
tion is defined by the following equation

out = (in1÷255)× (in2÷255)]×255

.
4. Median operation — spatial operation. This function is a

basic median filter that operates on the neighborhood of the
current pixel. The window of the neighborhood is variable
to the median filter function.

out = Median(f (x,y),w))

where w = windowsize and f (x,y) = current pixel
5. Average operation – spatial operation. This primitive opera-

tion basically averages the given set of inputs.

out =
1
n
×

n

∑
i=1

xi

6. Interpolate operation - spatial operation. This primitive
function is a basic interpolation function. The window and
type of interpolation is chosen at random. The window type
used for the interpolation can also be called a spatial mask
filter and is best represented with figures, the interpolation
masks shown in figure 4 were chosen.

7. Pixel — point operation. This is the simplest primitive of
all, the current pixel value.

out = in

8. Random pixel — point operation. This operation allows the
genetic program to assign another pixels value to the current
pixel. This primitive also allows the algorithm to randomize
the choice of the source pixel within a 5x5 window around
the current pixel.

out = Random(in)

9. Constant operation — point operation. This operation al-
lows the genetic program to add offsets to pixels or assign
constant values to pixel values.

out = c

(a) Five-Cross (b) Three-Cross

(c) Five-Plus (d) Three-Plus
Figure 4: Interpolation masks

Genetic Programming
Genetic programming[3] is a method by which computer

programs can be created to solve arbitrary problems. The method
constrains neither the form nor the complexity of the generated
program, but is essentially a type of genetic algorithm.

Genetic algorithms are search algorithms that use the princi-
ples of natural selection to converge on the search result. Genetic
algorithms are composed of the following three components:

1. A string based structure used to represent the search results
for each generation. This also known as the test candidate
or population member.

2. An evaluation and selection algorithm. Scores or fitness
metrics are quantified and assigned for each member of the
population. The population of search results is then pruned
using a selection algorithm to allow the fittest members of
the population to survive while the rest do not pass on to the
next generation.

3. A reproduction algorithm which creates population mem-
bers for the next generation, the methodology used for re-
production follows one of the following three approaches:

(a) Crossover breeding, two of the surviving members of
the population are mated or spliced together to create
a new member of the population.

(b) Mutation breeding, a single surviving member of the
population is modified and features are altered (added
or deleted) to create a new member of the population.

(c) Brand new member creation, new population mem-
bers are created and introduced into the population.

The above components are employed for population size p
and for n number of generations. The values for p and n are
chosen by the user depending on the complexity of the search
space. Genetic algorithm efficiently exploits historical informa-
tion to speculate and create new search patterns/points with ex-
pected improved performance. This generational method coupled
with the passing on of positive “traits” from generation to gener-
ation is the foundation of genetic search algorithms and the back
bone of the artificial intelligence philosophy – Genetic Program-
ming.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.4

Table 1: Image Filter Building Blocks

Building Block Maximum inputs (kids) Building Block Attribute Symbol
Weighted Sum 2 weight SUM

Difference 2 none DIFF
Multiply 2 none MUL
Median 0 window size - 1/2/3 MED
Average 25 none AVG

Interpolate 0 Interpolate type - Five Cross/Three Cross/Five Plus/Three Plus INT
Pixel 0 none PIX

Random Pixel 0 X offset and Y offset RAND
Constant 0 Constant Value 0 – 255 CONST

Traditional genetic algorithms are search algorithms that are
primarily used for curve fitting. In contrast, genetic program-
ming aims at complete autonomy of the computer in developing
a programmatic solution for the problem at hand. Genetic pro-
grams use genetic algorithm techniques to learn and solve prob-
lems autonomously. In essence, genetic programs are Computer
programs creating specialized computer programs to solve a prob-
lem in a broadly defined space. The computer is in full control and
is responsible for:

1. Using fundamental building blocks to build complex func-
tions/equations to solve the problem at hand.

2. Evaluate the complex functions/equations it generates in a
quantifiable manner in order to rank them and weed out so-
lutions that are not favorable

3. Use the best solutions generated as the baseline to generate
more solutions, thereby generating a better class of solutions
with improved performance than its predecessors.

4. Finally after several iterations of the above process present
the user with the solution in a way such that it can be reused
for solving problems from a similar problem space in the
future.

Clearly, using Genetic programming as the entity/user to
generate the image enhancement filter we are completely remov-
ing the need for human interaction in the filter creation process.
Thus achieving goal number 2 we set out to meet – The proce-
dure involves minimal human interaction (if any at all). The only
human interaction needed in this approach would be to provide
the image sets and of course to develop the genetic algorithm it-
self. The genetic algorithm itself need only be implemented once,
and can be reused for any arbitrary image transformation process
based on A+B image pairs.

The fundamental requirements behind genetic programming
based image filter generation are:

1. Provide the genetic program with the tools to build image
enhancers.

2. Provide the genetic program with benchmark images which
are used to evaluate the image enhancers.

3. Provide the genetic program with an evaluation metric to
generate fitness numbers for the image enhances.

Genetic Program Internals
The field of genetic programming has grown and today there

are several models and approaches to the design of genetic al-

gorithm. For the purposes of this paper, two are relevant; a tra-
ditional simple genetic program model, and a more sophisticated
island model based genetic program. We will first discuss the sim-
ple genetic program model to generate filters, note some deficien-
cies, then modify the design to an island model genetic program.

Traditional Genetic Program algorithm
A traditional Genetic programming model is the oldest and

most widely used model. This model is at the core of pretty much
all of the Genetic Programming models in use today. This model
involves the following steps [3]:

1. Create a Population of Members
2. Evaluate Population Members and assign fitness scores to

members and sort members based on Fitness scores.
3. Save off a select few members with high fitness levels
4. Perform Crossover to Replace a few of the remaining mem-

bers
5. Perform Mutation to Replace a few more of the remaining

members
6. Replace the remaining unhealthy members (members with

low fitness scores) with brand new members.
7. Repeat 2→ 6 for multiple generations

The last generation contains the population which contains
the best members evolved by the genetic program.

The following sections detail the Genome, Population Mem-
ber Creating Algorithm, Evaluation Algorithm, Crossover Algo-
rithm and the Mutation Algorithm used in this paper procedure/-
experiment.

Genome Structure
The genome is represented using an inverted tree structure,

as shown in figure 5. Each node in the tree is a primitive operation
and the nodes feeding into it are the inputs (or children) of that
primitive operation. The primitive operations or building blocks
that will be used in this genetic program are described in and
Table 1.

Population Member Creating Algorithm
The genetic program is initially seeded with a population of

size n. After some experimentation, it was found that a population
size of n = 100 was a good choice. Population sizes larger than

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.5

Figure 5: Genome Structure

100 took far too long to be evaluated and didn’t add to the diver-
sity of the population. At the same time population sizes smaller
than 100 didn’t provide the genetic diversity needed for healthy
genetic evolution. Each population member is represented by a
an inverted tree consisting of Max_Nodes.

Each node is a randomly selected primitive operation to cre-
ate an inverted tree structure. Each Genome is generated by se-
lecting an initial primitive operation as the root node and then
by selecting random operations (child nodes) for each of the of
inputs of the root node. The child nodes of the root node are
then taken as root nodes and further child nodes are attached to
their inputs recursively until Max_Nodes have been added to the
tree. Max_Nodes was set to a value of 64 in the example experi-
ment. During the beginning phase of the project Max_Nodes was
set to 128, however the algorithms tended to run for extremely
long periods of time, sometimes days and the performance of
the generated filters were only marginally better than the perfor-
mance of filters with 64 nodes. Hence 64 nodes were deemed
large enough to generate a complex image filter from the chosen
primitive building blocks.

Population Evaluation Algorithm
During the course of every generation, each population

member (image filter) undergoes an evaluation process and a
score is generated for each image filter. This score is then used
to rank the population members in order from best performing to
least performing members. The population members are evalu-
ated by:

1. Running the flawed image through the population member
and generating a filtered image.

2. Performing a pixel by pixel difference of the filtered image
and the ideal image.

3. Integrating/accumulating the difference (or error) for each
pixel.

4. Assigning the accumulated result as the score for the given
population member (image filter).

A lower score indicates that the filtered image generated by
the population member is closer to the quality of the ideal im-
age. Using this metric, the population is ranked from low→ high
scores.

Figure 6: Evaluation Algorithm

Lower ranked members (members with high score values) of
the population will be removed and replaced in the Crossover and
Mutation phase of the population’s lifetime. For this experiment,
during the lifetime of every population:

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.6

Figure 7: Visual representation of the crossover algorithm

• Top 25% of the population survived.
• Next 25% of the population was replaced by performing

Crossover.
• Next 25% of the population was replaced by performing

Mutation.
• Remaining 25% of the population was replaced with brand

new members.

Crossover Algorithm
Crossover in genetic programming terminology is akin to

sexual reproduction in the animal kingdom. New members of
the population are created by taking features and characteristics
from well-performing members of the population. In this exper-
iment population members are represented by trees, so crossover
reproduction will be performed as depicted in Figure 7, with the
following steps:

1. Randomly select 2 high ranked surviving members of the
population to represent Parent A and Parent B.

2. Randomly select a sub node of Parent A tree and randomly
select a sub node of Parent B tree.

3. Using the selected sub nodes as the splicing points, create
a new tree by splicing together top half of Parent A and the
bottom half of Parent B.

4. If the resultant new tree has more than Max_Nodes repeat
steps 3 & 4

5. Replace one of the weaker members of the population with
the newly created member.

Mutation Algorithm
Mutation is performed by taking a well-performing member

of the population and slightly modifying the genetic code/struc-
ture of the member to create a new population member, as shown
in Figure 8. In this experiment, mutation is performed with the
following steps:

1. Randomly select a high ranked surviving members of the
population to represent the Parent.

2. Randomly select a sub node of the Parent tree.

Figure 8: Mutation Visual Representation

3. Using the Population member creating algorithm create a
new subtree.

4. Using the selected sub node as the splicing point, create a
new tree by splicing together top half of Parent and the sub-
tree newly created in step 3.

5. If the resultant new tree has more than Max_Nodes repeat
steps 3 & 4

6. Replace one of the weaker members of the population with
the newly created member.

The traditional simple genetic programming model de-
scribed section is a good start, but it has the drawback of being
very slow and not very scalable when it comes to improvements
and does not allow for population diversity. It also does not ac-
curately model the real-world genetic evaluation process. More
importantly, while the fundamental idea of using Genetic Pro-
gramming for filter generation meets our requirement of devel-
oping filters that are robust and stable, it is fairly time consuming.
Evolving filters over several generations means running the Ge-
netic Program for extended periods of time and this defeats one
of our initial requirements of making the process fast. The sub-
sequent sections are dedicated to solving this final piece of the
puzzle. In the followings sections we will be exploring:

• Island mode Genetic Programming
• Using Supercomputers to improve performance numbers

and reduce run time.
• Using TCC and its run time compilation library libtcc to

further improve run time performance and tremendously in-
crease the speed of the algorithm.

Island Model Based Genetic Program
The Island model takes a more advanced approach to evolu-

tion. It adds the following 2 main features to traditional Genetic
Programming:

1. Multiple Independent Simultaneously Evolving popula-
tions.

2. Periodic Migration of population members between islands.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.7

As a result this approach comes closer to the evolution ob-
served in nature where populations usually evolve in groups/-
colonies or Islands and migrate over to other colonies and con-
tinue to evolve in the new colony. This approach allows for the
following benefits[4]:

• Each population can possibly bring in a new flavor of solu-
tions suited to solving specific issues in the problem space

• Migration allows for populations that have evolved to differ-
ent local peaks to take features from one another and con-
tinue evolving towards the true peak

• Running several populations in parallel can significantly in-
crease the number of members evolving at a time leading to
more possible solutions.

• The continuous migration of population members allows for
good genetic material to be spread across other populations
and this can result in a healthier and diverse genetic code.

• Parallelizing also significantly increases the speed of the Ge-
netic Program.

Supercomputers for Genetic Programming
To fully realize the potential of the Island model, it would

make sense if each individual Island GP was running on its own
dedicated Processor with its own dedicated memory to work with.
The design of the island model naturally fits in the architecture
of cluster supercomputers[4]. There are several benefits of using
supercomputers to realize Island models:

• Dedicated processors means that each Island can fully uti-
lize the potential and power of a whole CPU. Since each
machine is running only a single Genetic Program, the HW
doesn’t have to be very sophisticated and can be a generation
older, which yields to cheaper HW.

• Isolated Islands with dedicated CPUs allows GPs to evolve
at their own pace. When it is time for migration the Island
absorbs a new member and moves on again continuing at its
own pace.

• The whole is much greater than the sum of the parts; Re-
search has shown that Genetic Programs solves a problem
faster with semi-isolated island models [4]. Now parallel
genetic programming often delivers a superlinear speed-up
in terms of the computational power needed for yielding a
solution.

Island Model Overview
The Island Model Genetic Algorithm developed for this ex-

periment, summarized in Figure 9, uses the following parameters:

• Each Genetic Program uses a Population size of n = 100.
The reason for choosing this value has already been ex-
plained in previous sections.

• the Generation limit for the islands was chosen to be 100
generations. Through the course of developing this experi-
ment it was determined that a population size of 100 evolved
marginally beyond 100 generations.

• Migration between islands was timed to occur every 1 hour.
This gave the islands sufficient time to evolve before migrat-
ing members. Shorter time durations resulted in islands that
had gone through one 1 or 2 generations.

Migration and the Transit Authority
Migration is the process of exchanging genetic material be-

tween Islands of Genetic Programs. In this project, migration is
controlled and timed by the central node, called the transit author-
ity. When it is time for migration each node or island picks its
best member for migration and sends it over to the transit author-
ity. It also lets the transit authority know if it has gone through
all its generations and is done. The transit authority will not send
any more immigrants to an island which has marked itself com-
plete. The transit authority collects the generation state and trav-
elers from each island. It then sends travelers (now immigrants) to
adjacent islands in a circular fashion, such that the traveler from
Island[n] is sent to Island[n+ 1]. If the island is the last in the
node list, then its traveler wraps around and immigrates to the
first island Island[0]. Finally the transit authority updates its list
of currently active islands and sends them a time marker for in-
dicating when the next migration will take place. After this the
transit authority also saves the list of travelers to a file for user.
This process repeats every migration cycle until all islands have
finished evolving.

Direct evaluation with TCC & LibTCC
As with all algorithms, genetic programs have their own per-

formance bottlenecks. After analyzing the genetic programming
algorithm used in this project, it was clear that the genetic pro-
gram was spending a majority of its execution time in the popu-
lation member evaluation stage. This was due to the fact that for
every pixel the GP was traversing an entire tree of nodes. This
meant traversing and processing as many as 64 nodes per opera-
tion. Tree traversal is one of the most inefficient and power hungry
operations. To improve the performance of the GP, we we look to
a little known but very stable and impressive project called the
Tiny C Compiler or TCC [1].

TCC was originally developed by Fabrice Bellard, and is
maintained by a community of volunteers. TCC is extremely
small, yet it compiles C into native x86 machine code much faster
than most C compilers. Better still, TCC can also be invoked
as the libtcc library to dynamically generate code into mem-
ory that can then be called as a function by the currently-running
program.

The fast compile speed combined with libtcc allow addi-
tional speedup of several fold by evaluating population members
using direct execution of compiled code, rather than interpreta-
tion. The inverted tree structure of the genome is converted into C
code which then the GP can dynamically compile and use on the
fly with the help of libtcc. Figures ?? and ?? show the changes
to the Genetic Program that were made in order to fully utilize
libtcc.

Results
Filters 1 and 2 were trained from the Low ISO Image and

High ISO image shown at the beginning of this paper and figures
12 and 13 show the result of applying the generated filters to the
high ISO image.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.8

Figure 9: Island Model Algorithm

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.9

Figure 10: LibTCC Based Genetic Program Figure 11: Population Evaluation Using LibTCC

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.10

Figure 12: High ISO image filtered by Filter 1

Listing 1: Filter 1

AVG(1 3 ,ADD(MUL(PIX , PIX) ,MED(3)) ,
RPIX(−2 ,1) ,
DIFF (DIFF (INTERPOL (1) , INTERPOL (0)) , INTERPOL

↪→ (2)) ,
MUL(INTERPOL (1) ,MUL(AVG(6 , MUL(ADD(ADD(

↪→ INTERPOL (2) ,CONST(2 1 9)) , RPIX(−2 , 2))
↪→ ,MUL(PIX ,MUL(INTERPOL (2) , RPIX (−1 ,2))
↪→)) ,MED(1) ,MED(2) ,MED(3) , INTERPOL (3) ,
↪→ PIX) ,CONST(1 9 2))) ,

MUL(MUL(PIX , RPIX(−2 ,2)) , DIFF (ADD(ADD(
↪→ INTERPOL (0) , DIFF (RPIX (0 ,−1) , PIX)) ,
↪→ AVG(6 , MED(2) ,ADD(DIFF (MED(1) ,
↪→ INTERPOL (1)) , INTERPOL (0)) ,CONST(1 5 3)
↪→ , RPIX (1 , 0) ,CONST(2 1) , RPIX (1 ,−1))) ,
↪→ RPIX (2 , 0)))

PIX , RPIX (1 , 2) , RPIX(2 ,−1) , RPIX(0 ,−1) , RPIX
↪→ (0 , 1) , INTERPOL (0) ,MED(1) ,CONST(3 0)) ,

Listing 2: Filter 2

ADD(MUL(CONST(1 2 5) , INTERPOL (2)) , RPIX (0 , 2))

Conclusion
This paper has outlined a system that automatically can de-

velop filter algorithms to perform complex image transforma-
tions. The primary input to the system is one or more A+B pairs
of pixel-aligned original and oracle images. From that, the sys-
tem uses island-model parallel genetic programming, accelerated
by direct execution of TCC-compiled code (rather than interpre-
tation) for fitness evaluation, to create optimized filter programs
that can convert image A into a good approximation to image B.

While the above methods and approach provided good re-
sults, there is still room for improvement both in the approaches

Figure 13: High ISO image filtered by Filter 2

used to evolve filters as well as computing performance. In par-
ticular, more sophisticated use of the island model seems promis-
ing. For example, individual islands could be dedicated to specific
sections of the images and/or specific color channels in order to
increase speed of convergence without sacrificing diversity across
islands. It should also be possible to parallelize evaluations within
individual islands so that the evaluations are sped-up both by par-
allelizing execution over different portions of an image and by re-
ducing the amount of image data each processor must access. Of
course, it is also easy and effective to incorporate stronger prim-
itives. Obvious possible additions include logarithm, threshold,
Gaussian blur, and tone mapping.

References
[1] Fabrice Bellard et al., Tiny C Compiler, http://www.tinycc.org/,

(2013).
[2] Rafael C. Gonzalez and Richard E. Woods. Digital Image Process-

ing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
(2006).

[3] John R. Koza, Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Publishers,
Norwell, MA, USA, (2003).

[4] John R. Koza, Asynchronous “Island” Approach to Par-
allelization of Genetic Programming, http://www.genetic-
programming.com/parallel.html, (1999).

Author Biography
Subash Marri Sridhar is a Staff Engineer at Qualcom primarily in-

volved in indoor positioning and range measurement technology. The
work reported here is very closely related to research he did as part of
his MS degree in Electrical Engineering from the University of Kentucky,
completed in 2015. The co-authors, Henry Dietz and Paul Eberhart, are
respectively his MS advisor and a fellow graduate student also working in
the Aggregate.Org research group

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-016

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-016.11

