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Abstract 

We propose a new rate control method for JPEG image 
compression. Similarly to the vast majority of JPEG rate control 
approaches, our method solves the task of JPEG rate control by 
generating custom JPEG quantization tables (QTs). The method 
includes adaptive bit count predictor training stage, optionally 
followed by rate-distortion optimization (RDO) stage. The training 
of the adaptive bit count predictor is based on a linear prediction 
model using either coefficient-wise average entropy or -
parameter. The trained predictor is subsequently used by the RDO 
stage to estimate JPEG bit count resulting from the application of 
particular QT, thereby substantially speeding up the RDO 
algorithm. For RDO stage we use one of the two algorithms: Wu-
Gersho algorithm or RD-OPT algorithm. The resulting hybrid 
design combines strong points of each of the utilized approaches, 
while mitigating its shortcomings, thereby providing a good trade-
off between computational complexity, rate control accuracy and 
reconstructed image quality. 

Introduction 
The Joint Photographic Experts Group (JPEG) image 

compression algorithm [1] remains to be one of the most popular 
and widespread image compression formats. However, many JPEG 
implementations lack a rate control (RC) capability, i.e., producing 
an output file having size of (or sufficiently close to) the user-
defined value. The need for RC-enabled JPEG compression 
frequently arises in many areas, for example, when a picture taken 
by a camera is compressed into JPEG file and is intended for 
storing on a flash card of limited storage capacity or for 
transferring through a network channel of limited bandwidth 
capacity. 

Various methods of JPEG RC have been proposed previously, 
but most of them suffer from either prohibitively high 
computational complexity or poor RC accuracy.  

Our method leverages strong points of the most efficient 
JPEG RC approaches – parametric modeling, local search and 
dynamic programming – while trying to mitigating their 
shortcomings. 

Keywords: JPEG coding, image compression, rate control, 
dynamic programming, rate-distortion optimization 

Problem formulation 
Primary means of rate control, provided by the JPEG image 

compression standard, is setting quantization tables (QTs) which 
are used by the JPEG compressor to quantize coefficients of 
Forward Discrete Cosine Transform (FDCT) applied to color 
planes of the input image.  

 
 
 

 

Figure 1. JPEG encoder pipeline overview 

JPEG encoding pipeline is depicted in Figure 1: the input 
image is optionally pre-processed (e.g. by RGB-to-YCbCr color 
space conversion), transformed by FDCT to frequency domain, the 
resulting DCT coefficients are quantized using QTs to produce 
quantized DCT coefficients, which are entropy coded and output to 
JPEG file. 

The JPEG standard allows setting up to three different QTs 
(one for each color component, i.e. Y, Cb and Cr), each QT being 
an 8x8 matrix of integer values ranging from 1 to 255 (the range 
restricted by baseline JPEG). By varying QT, one is able to set a 
trade-off between output bit rate and reconstructed image quality: 
larger quantizers in the QT lead to more coarse quantization, thus 
smaller quantized DCT coefficients (and smaller bit rate) at the 
cost of worse image quality (due to higher distortion of coarse 
quantization). So, the task of RC is usually formulated as Rate-
Distortion Optimization (RDO) problem: find QT (or a set of QTs 
in case of multi-component image) causing minimum quantization 
distortion while keeping bit rate less than or equal to the user-
configured target value (which is a constrained optimization 
problem). Since the entire configuration space for single QT 
contains 25564 ≈ 10153 different QTs, full search solution is 
unacceptable for any practical RC implementation. 

Related works 
 Several approaches to RDO problem have been 

developed, out of which the most interesting ones could be roughly 
divided into four classes: global search, parametric QT modeling, 
local search and dynamic programming.  

Under the global search approach, the global search over the 
entire configuration space is performed using, e.g., genetic 
algorithm [2] or simulated annealing [3]. Despite the fact that the 
globally optimal solution (or sub-optimal one sufficiently close to 
it) is usually found by this approach, the computational complexity 
is typically prohibitively high. 

For the parametric QT modeling, a simple parametric model 
is adopted for QT so that the number of model parameters is 
significantly less than the number of quantizers in the QT 
[4][5][6][7][8][9]. Then, RD-optimal parameter values are 
determined using some global or local search technique. 
Essentially, this approach reduces the dimensionality of the search 
space thereby significantly simplifying the problem and reducing 
computational complexity. The search in the reduced 
dimensionality space may be done off-line using, e.g., simulated 
annealing [4] in which case the algorithm is not adaptive to the 
input image. To make the algorithm image-adaptive without 
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suffering from prohibitive computational complexity (due to usage 
of complex multi-dimensional search techniques), the common 
solution is to adopt single-parameter model. The simplest way to 
do so is to define QT as the scaled version of the pre-defined 
default QT, (e.g. as in Annex K in [1]). The scaling factor value 
corresponding to the required bit rate may be found using 
predictive operation (via scaling-factor-to-bitrate mapping derived 
from some efficient heuristics [5][6]) or reactive operation [7] 
(iterative scaling factor correction using output bit rate from each 
entropy encoding iteration). Additionally, the default QT can be 
derived based on human visual system (HVS) properties or 
specific application requirements, like in [6], [8] and [9]. The 
strong advantage of this approach is low computational 
complexity, while the drawback is worse quality (resulting from 
poor image adaptability).  

According to the local search approach, the QT search is 
performed in high-dimensional search space using local search 
techniques, i.e. starting at some initial QT (which is usually chosen 
to be the worst-quality lowest-bitrate QT = { 255, 255, …, 255 }), 
local search proceeds by modifying QT by small steps directed to 
optimum [10][11][12][13]. One of the most successful algorithm 
of this kind was proposed in [10] and is referred to as Wu-Gersho 
algorithm hereinafter. To improve convergence of this algorithm, 
clever initial QT is proposed in [11] as well as entropy-based bit 
count estimation (instead of running costly entropy encoding) to 
decrease the algorithm complexity. In [12], a more sophisticated 
bit allocation scheme is used to improve quality of the Wu-Gersho 
algorithm along with HVS incorporation to improve perceived 
quality. In [13], joint optimization of run-length coding, Huffman 
coding and QT selection (based on Lagrangian multiplier method) 
is used to improve both quality and complexity of local search as 
compared to the Wu-Gersho algorithm. Although local search-
based algorithms provide good performance in terms of both 
quality and complexity, the most efficient algorithms (Wu-Gersho 
algorithm and its derivatives, the joint optimization algorithm of 
[13]) still have quite high complexity since they perform many QT 
search steps and, in some variants, additional costly Lagrangian λ 
multiplier estimation. 

In the dynamic programming approach, bit rate and distortion 
are decomposed into sums over 64 DCT sub-bands, so that the 
RDO problem of constrained optimization turns out to have 
optimal substructure. In that form, the problem is solved by 
dynamic programming (DP) technique, based on finding optimal 
path in the trellis formed by all possible quantizer values for each 
DCT sub-band [14] (RD-OPT algorithm). The original RD-OPT 
algorithm was later extended to include optimization of global 
DCT coefficient thresholding [15], while similar DP-based 
framework along with Lagrangian multiplier method was used in 
[16] to provide optimization of local DCT coefficient thresholding. 
Another extension in [17] utilized entropy-constrained vector 
quantization for the same problem, thereby significantly increasing 
computational complexity. Although complexity of DP-based 
algorithms is significantly less than that of the global search 
algorithms (and even many local search algorithms, e.g. the Wu-
Gersho algorithm), the bit rate decomposition which motivates the 
optimal substructure of the RDO problem (which is required for 
the problem to be solved by DP) is in fact approximate and, as we 
show later, in its original form (based on coefficient-wise average 
entropy) has quite bad accuracy.  

Description of method 

Algorithm overview 
Our method utilizes strong points of several previously known 

approaches – parametric modeling, local search and dynamic 
programming – while trying to mitigate their shortcomings. Since 
the weakest point of the most efficient approaches is either high 
computational complexity caused by many costly entropy coding 
runs or poor RC accuracy caused by poor accuracy of bit count 
estimation, the key component for creating fast and accurate RC is 
a low complexity bit count estimator providing good accuracy. To 
this end, we’ve developed the bit count predictor module, which 
allows low complexity estimation of bit count resulting from 
application of particular QT without running actual entropy 
encoding or quantization. 

Our RC method provides three modes of operation depending 
on the quality/performance trade-off preference of the user: fast, 
LS (local search) and DP (dynamic programming). All three modes 
utilize the same adaptive bit count predictor module which is 
trained to adapt to particular input image prior to running chosen 
RC mode. 

The libjpeg-turbo library was chosen as a basic JPEG 
implementation due to its good SIMD-based performance 
optimization and modular source code structure making RC 
implementation easier.  

 

Figure 2. JPEG RC architecture overview 

Our method operates using the following stages (see Figure 
2): 
1. Perform necessary JPEG pre-processing (e.g. RGB-to-YCbCr 

conversion (if required), sample offsetting, etc) implemented 
in libjpeg-turbo library. 

2. Perform FDCT and gather DCT coefficients histograms. 
3. Run bit count predictor adaptation loop by alternating 

predictive and reactive RC operations. 
4. If the LS or DP RC mode is requested, run the respective 

RDO algorithm using the adaptive bit count predictor trained 
earlier, otherwise, if fast RC mode is configured, proceed to 
the next stage. 

5. Quantize the DCT data using the QT output by the configured 
RC algorithm, then run entropy encoding on the quantized 
data and output encoded JPEG file. 
 
These stages will be considered in more detail in the next 

sections. 

Adaptive bit count predictor 
The basic idea of the bit count predictor is the fast estimation 

of the output bit count resulting from application of the JPEG 
algorithm to the input image without running the entire JPEG 
pipeline, namely, without costly entropy coding stage (and even 
without quantization). The estimation is based on image statistics 
which could be easily gathered once per image without significant 
computational overhead, so that the estimation itself (which may 
be run many times during RC operation) has low complexity and 
would not restrict iterations count for sophisticated RC algorithms. 
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Some of the most computationally efficient image statistics 
which could be used for the task are coefficient-wise average 
entropy Havg [18] and -parameter (i.e. fraction of zero-valued 
quantized DCT coefficients) [19][20]. 

To minimize overhead of the most costly part of Havg and  
calculation, DCT analysis stage is usually run after FDCT stage 
[14]. DCT analysis consists of gathering DCT coefficients 
histograms, which are used later to easily calculate either Havg or  
with negligible computational overhead. We use the same 
approach as in [14] to gather histograms of DCT coefficients 
multiplied by 2 and rounded to integer values (which is effectively 
the transformation of real-valued DCT coefficients to fixed-point 
representation with q-scale of 1), separately for each color plane 
(Y, Cb and Cr). Hereinafter, Ci(s) will be used to denote a 
histogram of i-th DCT sub-band values (i = 0,…,63). Since the 
same process is used for each color plane, we omit color plane 
index (unless explicitly given). 

Having calculated DCT histograms once per input image, we 
can easily calculate both coefficient-wise average entropy Havg and 
-parameter for any QT { Qi | i = 0,…,63 } without running actual 
quantization: 
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where Nb is the total number of 8x8 blocks in the image and the 
full quantizer range is defined by qmin = 1 and qmax = 255. 

Differently from RC algorithms in both [19] and [20], our 
implementation uses either Havg or  in the sophisticated RC 
algorithm (Wu-Gersho or RD-OPT) rather than simple -to-
quantizer mapping, due to the fact that both [19] and [20] deal with 
different codecs (MPEG-2, h.263, MPEG-4, JPEG XR) and 
concentrate on determining per-block quantization parameter 
rather than quantizer-per-sub-band which is the case with JPEG. 

Having calculated Havg or -parameter, the bit count predictor 
estimates the predictive bit count Bp using linear model: 

  PPBp )(  (3)                        (3) 

where prediction parameter P = Havg or . 
The parameters of linear model may be trained off-line (using 

large representative database of images) or on-line (for the input 
image being encoded) by fitting linear function to the experimental 
distribution of bit counts (resulting from running entire JPEG 
pipeline for different QTs) versus prediction parameters (Havg or 
). Although usage of off-line trained parameters does not require 
any additional fitting during actual image compression, thereby 
providing good computational performance, the accuracy of 
resulting RC is poor, due to the lack of adaptation to particular 
input image, so we use the off-line trained parameters as 

initializers for on-line training to improve its convergence by 
starting from the values which are good “on average”. 

To make bit count predictor adaptive for particular input 
image, on-line training (adaptation) is used. Its main idea is to use 
values of prediction parameters and bit counts resulting from 
several JPEG encoding runs for the same input image in linear 
fitting. Scaled versions of the default JPEG QT (see Annex K in 
[1]) are used for gathering data to be fitted. The process of the on-
line training is steered so as to achieve requested target bit rate by 
varying scaling factor (SF) of the default JPEG QT. To find the 
appropriate scaling factor, the false position root-finding method is 
used. Figure 3 shows the flowchart of the adaptation algorithm 
(low importance details, like scaling factor range checking, are 
omitted). The algorithm consists of the two interoperating parts: 
1. Predictive part, which determines the appropriate scaling 

factor using bit count predictor. The predictor first estimates 
the prediction parameter (Havg or ) using current QT (which 
is the default JPEG QT scaled using current scaling factor) 
and DCT histograms (gathered prior to the adaptation stage) 
and then uses the estimated prediction parameter value in Eq. 
(3). 

2. Reactive part, which is responsible for updating (correcting) 
prediction model parameters using the actual bit count 
available after JPEG encoding (thereby providing a feedback 
to the predictive part). The updating is done using MSE 
method: α and β are modified so as to minimize mean square 
error (MSE) of the prediction at each iteration (Niter is the 
current number of the reactive loop iterations and k is the 
iteration index): 
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Figure 3. Flowchart of the bit count predictor adaptation process 

The combination and interoperation of those two parts is 
crucial for attaining both acceptable complexity and good 
prediction accuracy: the predictive part stand-alone is fast, but 
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provides poor prediction accuracy, while stand-alone operation of 
the reactive part requires many costly encoding iterations to 
achieve good prediction accuracy resulting in high computational 
complexity. 

To keep the computational complexity low, we limit the 
maximum number of entropy encoding iterations Nmax to 4 (for the 
fast RC mode) or 8 (for the LS/DP RC modes). The bit count 
tolerances for the predictive part (εPL and εPH) and for the reactive 
part (εRL and εRH) are set to 0.01. The motivation behind such 
settings is that the fast RC mode is only aimed at achieving target 
bit rate while keeping complexity as low as possible, that’s why it 
has low iterations number limit. In contrast, the LS and DP RC 
modes are aimed at both providing target bit rate and improving 
compressed image quality, thus their sophisticated RDO 
algorithms require much more accurate bit count predictor, which 
is achieved via performing more adaptation iterations. Another 
optimization trick we used is that the bit counting module was 
configured to process only fraction of MCUs of the input image 
rather than the entire image. For the fast RC mode the fraction is 
set to 50%, for the LS/DP RC modes it’s set to 100% (since those 
modes are designed to perform quality-optimized encoding). 

Fast RC mode 
Fast RC mode is the fastest of all the modes and is aimed at 

reaching target file size only (without quality optimization). Its 
operation is identical to the on-line adaptation described in 
previous section. Since the on-line adaptation is steered by varying 
the scaling factor so as to reach the target bit count, the output of 
the process is the scaling factor (and respective scaled version of 
the default JPEG QT) providing the output file size close to the 
configured target value. 

LS RC mode 
LS RC mode is aimed at attaining the target bit rate while 

providing better reconstructed image quality than the fast RC 
mode. Quality improvement is achieved via construction of rate-
distortion optimized QT based on the Wu-Gersho algorithm [10]. 
Unlike the fast RC mode, this RDO algorithm produces QT which 
is not a scaled version of the default JPEG QT. In contrast to the 
original algorithm described in [10], our implementation does not 
perform costly image encoding for each QT update, but uses the 
adaptive bit count predictor to estimate bit count resulting from the 
application of updated QT. The adaptive bit count predictor is 
trained for the input image by the fast RC mode operation which is 
run prior to running the RDO algorithm.  

In our implementation of the Wu-Gersho algorithm we used 
sum-of-squared-errors (SSE) in DCT domain as a distortion 
measure. It may be easily calculated using the DCT histograms { 
Ci(s) | i = 0,…,63 } via the following formula: 
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To speed up the RDO stage, sub-band-wise distortion and bit 

count tables are pre-calculated for relevant quantizer values. Pre-
calculated sub-band-wise D(i, q) and Bp(i, q) are defined using the 
following formulae (i is a DCT sub-band index and q is the 
quantizer value): 
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Using those tables, the total distortion for the QT { Qi | i = 
0,…,63 } can be calculated via 
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Another difference from the original Wu-Gersho design is the 
initial QT choice: we use the QT output by the preceding fast RC 
mode operation multiplied by 2, which significantly decreases the 
RDO algorithm iterations number, while almost not affecting the 
resulting compressed image quality. 

Such a design makes our implementation of the Wu-Gersho 
algorithm dramatically faster than the original Wu-Gersho design 
(by orders of magnitude) though at the cost of deterioration of 
image quality, as compared to the original Wu-Gersho 
implementation, due to the fact that predicted bit count is used 
instead of the true one (i.e. the output of quantization and entropy 
encoding process), so the algorithm may proceed in wrong (non-
optimal) direction and end up with non-optimal QT. However, the 
resulting quality is significantly better than the one provided by the 
fast RC mode. 

DP RC mode 
DP RC mode is again aimed at attaining the target bit rate 

while providing better reconstructed image quality than the fast RC 
mode. Quality improvement is achieved via construction of rate-
distortion optimized QT based on the RD-OPT algorithm [14]. 
Like the LS RC mode, this RDO algorithm produces QT which is 
not a scaled version of the default JPEG QT. In contrast to the 
original algorithm described in [14] (and all derived works), our 
implementation does not use stand-alone coefficient-wise average 
entropy Havg as a bit count estimator, but uses the adaptive bit 
count predictor (which could use either of Havg or  as a prediction 
parameter). Despite that difference, the RD-OPT algorithm can be 
used with our bit count predictor, since the output of the predictor 
can be decomposed into a sum of contributions from individual 
coefficients: 
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where Bp(i, q) is defined by Eq. (6). 
Just like the LS RC mode, pre-calculated sub-band-wise D(i, 

q) and Bp(i, q) are used to speed up calculations, sum-of-squared-
errors (SSE) in DCT domain is used as a distortion measure and 
the adaptive bit count predictor is trained for the input image by 
the fast RC mode operation which is run prior to running the RD-
OPT algorithm. For the bit count discretization we use rounding to 
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the nearest multiple of the bit count bin size
B

t

N
B , where Bt is the 

target bit count and NB = 1000 is the number of bit count bins 
(which corresponds to the MAXRATE parameter in [14]). We 
found that this value provides quite optimal trade-off between 
complexity, bit rate accuracy and image quality. 

Such a design makes our implementation of the RD-OPT 
algorithm better than the original RD-OPT design in terms of bit 
count estimation accuracy, though at the cost of computational 
overhead due to the bit count predictor adaptation stage. 

Color image processing 
In general, each of the algorithms described above processes 

each color plane separately. However, since the target JPEG file 
size (set by the user) is specified for all color planes altogether, we 
need some means to distribute the target bit count among the color 
planes. For our RC method, we use a simple approach: during the 
on-line training (adaptation) stage the algorithm keeps track of the 
distribution of the total bit count (after each JPEG encoding) 
among color planes and after the adaptation stage is finished, uses 
the distribution corresponding to the iteration which provides the 
total output bit count most close to the target bit count. In that way, 
we use color planes bit distribution motivated by the relationship 
between the default JPEG QTs for luminance and chrominance 
applied to the particular input image. Since the default JPEG QTs 
are empirically derived based on psychovisual thresholding, our 
approach provides good quality of chrominance components while 
keeping their bit budget adequately low. 

Since distortions in Cb and Cr chrominance channels are 
perceived approximately equally by HVS, both those planes are 
processed in a combined way: that is, a single set of DCT 
histograms is gathered for both planes, a single bit count prediction 
parameter is estimated for both planes, etc. and a single resulting 
QT is used to quantize DCT coefficients of both planes. Such an 
approach helps to decrease computational complexity (for color 
images, two effective planes are processed – luminance and 
combined chrominance – instead of the three) while inflicting 
almost no image quality degradation. 

Experimental results 
Performance metrics 

In order to evaluate the performance of the developed RC 
method in terms of computational complexity, image quality and 
RC accuracy, we use three respective quantitative measures: 
1. Relative complexity, defined as a ratio of the CPU clocks 

consumed by the RC-enabled encoder to that of the bare (non-
RC-enabled) libjpeg-turbo encoder.  

2. Peak Signal-to-Noise Ratio (PSNR) metrics, which evaluates 
quality degradation of the reconstructed image as compared to 
the original input image. To aggregate luminance PSNR (Y-
PSNR) measurements for large set of images and bit rates, 
BD-Rate (Bjøntegaard Delta Rate) [21] is used. 

3. RC accuracy is evaluated by the ratio of the actual JPEG file 
size (output by the RC-enabled encoder) and the configured 
target file size. 

Test conditions 
The developed RC-enabled JPEG encoder was extensively 

tested on a quite large and representative image database, 
containing 171 images from several test image databases, popular 
in the image compression community: EPFL JPEG XR Image 

Compression Database, JPEG-LS Test Suite, Kodak Lossless True 
Color Image Suite and USC-SIPI Image Database. The target bit 
rate was varied in a wide range: from 0.25 bits per pixel (bpp) to 
4.0 bpp, with step size of 0.25 bpp. 

For all RC configurations Huffman table optimization was 
enabled (since disabling it resulted in deterioration of both quality 
and complexity), while the anchor (baseline) for BD-Rate 
measurements was chosen to be the fast RC mode without 
Huffman table optimization using Havg as the prediction parameter.  

The test system had Intel Core i7-3770 CPU clocked at 
3.4GHz, 16 GB of RAM and Windows 7 Enterprise x64 SP1.  

Summary of results 
From the results given in Table 1, one can see that our method 

provides quite wide range of trade-offs between complexity and 
quality (negative BD-Rate values mean bit rate reduction at the 
same quality, which is equivalent to having better quality at the 
same bit rate), while consistently keeping good RC accuracy 
(average ≈ 100% and low RMS ranging from 3 to 12%.). 
Complexity versus quality trade-offs are ranging from 6.5% BD-
Rate reduction at the average relative complexity of 3.2 to 20.2% 
BD-Rate reduction at the average relative complexity of 28.1. 

The fast RC mode offers the lowest complexity, while 
providing the smallest quality improvement, which is completely 
due to the usage of Huffman tables optimization, since the fast RC 
mode does not involve any RDO operation. The DP RC mode 
provides the highest quality improvement, while being the highest 
complexity mode. At the same time, the LS RC mode, while 
providing somewhat worse image quality improvement as 
compared to DP RC mode, offers much lower complexity. 

Note that prediction parameter choice may also be used for 
quality/accuracy/complexity trade-off, though its effect varies 
depending on the RC mode. While the complexity is always 
significantly lower for -parameter, the quality improvement for 
RDO-based RC modes is higher when using Havg. As to RC 
accuracy, -parameter provides better accuracy than Havg for the 
LS RC mode, unlike the DP RC mode, where the best accuracy is 
achieved with Havg. 

Table 1. Summary of the results for the RC-enabled encoder 

RC 
mode   

Prediction 
parameter 

choice 

Test results 

Accuracy, 
% Average 

relative 
complexity 

Avg. 
BD-

Rate, 
% Avg.  RMS 

Fast 
  Havg 99.3  3.0 3.2 -6.5 

 99.3  3.0 2.3 -6.5 

LS 
Havg 99.2  12.3 14.5 -19.4 

 99.4  6.4 8.8 -15.4 

DP 
Havg 97.3  3.2 28.1 -20.2 

 98.4  7.2 16.3 -15.4 

 
To compare our results with the ones of the original RD-OPT 

design (as described in [14]), we configured our implementation of 
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the DP RC mode so that it uses Havg alone instead of the adaptive 
bit count predictor (just by setting α = 1 and β = 0 and switching 
off the adaptation stage) and ran the same test with the same image 
database using different values of NB parameter. Since [14] deals 
with grayscale images only, we ran both the RD-OPT and our DP 
RC mode on grayscale images. The results of the comparison 
between the RD-OPT and the DP RC mode are presented in Table 
2. One can see that while for NB = 1000 the original RD-OPT 
design is faster than our DP RC mode and provides better quality, 
it’s worse in terms of RC accuracy (due to the lack of adaptation of 
the bit count predictor to the input image). Note that increasing NB 
value does not help to improve quality or RC accuracy, while the 
complexity rises dramatically. 

Note that though we use different approach to setting variable 
parameters of RD-OPT algorithm – we vary NB parameter (which 
is equivalent to varying the MAXRATE parameter in [14]) rather 
than BPPSCALE as is done in [14] – it’s still easy to synchronize 
our implementation of the RD-OPT algorithm with the original 
design, since MAXRATE (and thus NB) and BPPSCALE can be 
related by the simple formula: 

MAXRATEBPPSCALERt   (8) 

where Rt is the target bit rate value (in bpp) for the image being 
compressed. So, for example, for Rt = 1.0 bpp the values of 
BPPSCALE and MAXRATE are equal and the results can be 
directly compared. 

 
 
 
 
 
 

Table 2. Results of the RD-OPT algorithm test 

NB 

Test results 

Accuracy, % Average 
relative 

complexity 

Avg. 
BD-

Rate, 
% 

Avg.  RMS 

1000 99.7  9.5 27.9  -15.6 

2500 99.9  9.6 46.4  -15.8 

5000 100.1  10.0 79.2  -15.8 

7500 100.4  10.3 110.0 -15.8 

10000 101.0  11.0 135.5 -15.9 

Our  
DP RC 
mode 

Havg 98.9  5.7 36.5 -7.8 

 100.2  9.8 28.4 -2.3 

Computational complexity details 
Figure 4 shows the split-up of RC-enabled JPEG encoder 

computational complexity in a form of pie charts of the constituent 
JPEG pipeline modules contributions. It can be easily seen that the 
combined share of the RC module along with the bit count 
predictor adaptation, being as small as 28% for the fast RC mode 
without Huffman table optimization, expectably grows when this 
optimization is used and becomes the dominant part of the total 
complexity for the RDO-based RC modes, taking up almost 80% 
for the DP RC mode with Huffman table optimization. 

 

Figure 4. Module performance pie charts of the RC-enabled encoder (“Balanced RC” is the LS RC mode, “Quality RC” is the DP RC mode) 
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Image quality details 
 Figure 5 shows the visual quality comparison for example 
image, compressed with the fast and the DP RC modes into the 
JPEG files of almost the same size. The highlighted regions show 
that RDO-based DP RC mode provides visibly smoother gradients 
and more natural colors. 

 

Figure 6. Y-PSNR results for the Lena color image encoded by the RC-
enabled encoder 

Figure 6 shows rate-distortion (RD) curves for the Y-PSNR 
results for all of the RC configurations of our method computed for 
the Lena color image (as a typical example of image used for JPEG 
compression). The RD curves directly reflect the results of Table 
1: the fast RC mode has the worst quality (with the results of the 
variants using -parameter and Havg being almost identical), the 

DP RC mode provides the best quality, while the LS RC mode is 
in-between the fast and the DP RC modes and for both RDO-based 
modes the variant using Havg is better than the one using -
parameter. The difference in Y-PSNR between different modes is 
small for small bit rates (i.e. bit rates below 0.5 bpp) and gradually 
increases with increasing bit rate up to 2 dB at 4 bpp between the 
DP RC mode with Havg and the fast RC mode. Small quality 
improvement for low bit rates is quite an expectable behavior, 
since in both RDO-based algorithms we use the bit count predictor 
(instead of accurate bit counting via entropy encoding), which has 
quite poor prediction accuracy at low bit rates, thereby adversely 
affecting RDO operation and leading the process of generation of 
optimal QT to non-optimal solution. 

 

 

Figure 7. Y-PSNR results for the Barbara grayscale image encoded by our DP 
RC mode and the original RD-OPT algorithm 

Figure 5. Visual quality comparison of the outputs of the DP RC mode and the fast RC mode (for the same JPEG file size) 
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For comparison with the original RD-OPT design, Figure 7 
shows the RD curves computed for the Barbara grayscale image 
for both the original RD-OPT algorithm (using different values of 
NB parameter) and the DP RC mode of our method. One can see 
that the quality improvement of the original RD-OPT algorithm 
over our DP RC mode (using Havg) is quite small and even 
increasing bit count discretization accuracy (i.e. NB parameter) by 
an order of magnitude leads to improvement in Y-PSNR by less 
than 0.4 dB. 

Conclusion 
In the paper, we propose a novel JPEG rate control method. 

Our method combines strong points of several previously known 
approaches: fast bit count estimation using coefficient-wise 
average entropy and -parameter, local search via Wu-Gersho 
algorithm, RD-OPT algorithm based on dynamic programming. 
We train our adaptive bit count predictor on the input image using 
linear prediction model and one of the prediction parameters 
(coefficient-wise average entropy or -parameter) and 
subsequently use it in one of the three implemented RC modes: 
fast, LS or DP, the LS mode being based on the Wu-Gersho 
algorithm and the DP mode being based on the RD-OPT 
algorithm. Our implementations of both the Wu-Gersho and the 
RD-OPT algorithms improve the original designs either by making 
them significantly faster (in case of Wu-Gersho algorithm) or by 
making them more accurate (in case of RD-OPT algorithm). The 
resulting multi-mode RC method has quite good RC accuracy 
ranging from 3 to 12% and provides a wide range of trade-offs 
between complexity, accuracy and quality – from 6.5% BD-Rate 
reduction at the average relative complexity of 3.2 to 20.2% BD-
Rate reduction at the average relative complexity of 28.1 – suitable 
for vast variety of applications, e.g. JPEG compression of images 
in digital cameras or Motion JPEG compression of video streams 
for transmission over a network channel having limited bandwidth 
capacity. 
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