
Virtual DSLR: High Quality Dynamic Depth-of-Field Synthesis
on Mobile Platforms
Yang Yang 1, Haiting Lin 1, Zhan Yu 2, Sylvain Paris 2, and Jingyi Yu 1

1 University of Delaware, Newark, DE 19716, USA
2 Adobe Systems Inc., San Jose, CA 95110, USA

Abstract
Shallow depth-of-field (DoF) and a smooth bokeh are sig-

nature elements of Digital SLR cameras and high-quality lenses.
Producing comparable effects on mobile platforms has long been
challenging due to small sensor sizes and short focal lengths of
mobile cameras. In this paper, we exploit depth sensing capabili-
ties on emerging mobile devices and develop a new depth-guided
refocus synthesis technique particularly tailored for mobile de-
vices. Our technique takes coarse depth maps as inputs and ap-
plies novel depth-aware pseudo ray tracing. The depth maps can
be obtained from mobile depth sensors, mobile stereo cameras
and even from user-inputs. Our pseudo ray tracing scheme resem-
bles light field synthesis and refocusing [21] but does not require
actual creation of the light field and hence reduces both mem-
ory and computational overhead. At the same time, the scheme
can overcome boundary bleeding and discontinuity artifacts ob-
served in previous filtering techniques. Comprehensive experi-
ments show that our approach can produce very high quality DoF
comparable to the ones produced by DSLR and the Lytro light
field cameras.

Introduction
Shallow depth of field (DoF) is a signature element in pro-

fessional photography. It is used to effectively emphasize objects
of interest while de-emphasizing the rest of the image via defocus
blurs. For long, high quality DoF (smooth Bokeh, sharp bound-
ary of in-focus objects, correct blurs of out-of-focus regions, etc)
has been a luxury of high-end Digital SLR cameras with superior
quality lenses.

The basic physics of DoF is well studied. Through a thin
lens, a scene point p with depth zp will project to a circular region
on the sensor. Assuming that the thin lens has a focal length f , an
aperture size D, and the sensor to lens distance s, the diameter cp
of the circular region is:

cp =
|s− sp|

sp
D = sD| 1

zp
− 1

zs
|, (1)

where zs = (1/ f −1/s)−1 and sp = (1/ f −1/zp)
−1 according to

the thin lens law. The diameter cp measures the size of blurs and
it is linear to the absolute difference of the reciprocal distances
|1/zp−1/zs|.

While classical DSLR produces fixed-focus DoF, the emerg-
ing light field (LF) cameras such as Lytro provide post-capture
refocusing capabilities. In a nutshell, a LF camera records the 4D
ray space of the scene (2D spatial and 2D angular dimensions).
These rays can be reassembled and integrated to produce desir-
able focus effects [5, 10, 14]. Existing LF cameras are based on

the Lippmann design: it mounts a lenslet array in front of the sen-
sor to multiplex the incident rays. Consequently, it has to trade
between the spatial and angular resolutions. To avoid aliasing,
the angular resolution needs to sufficient high. This leads to a low
spatial resolution of the final refocused image.

Instead of capturing DoF, computer graphics techniques have
been focused on synthesizing DoF through ray tracing, e.g., via a
distributed ray tracer [1]. To ensure rendering quality, schemes
in this category need to trace out a large number of rays for ren-
dering each pixel. Early approaches such as the accumulation
buffer [4] divide the lens aperture into sub-apertures and render
each sub-aperture view through rasterization. Such techniques
require rendering scenes from many different viewpoints hence
place heavy work load on graphic rendering pipeline. More re-
cent approaches directly filter a single view image [2, 8, 11] with
spatially varying blur sizes based on the depths of the pixels ac-
cording to Eq. 1. As shown in Fig. 8, these approaches are very
fast but suffer from intensity bleeding and discontinuity because
the blurring can go across (for background pixels) or be confined
within (for foreground pixels) depth boundaries.

Most recent efforts attempt to combine ray-tracing with light
field synthesis, by exploiting high-performance parallel computa-
tion on the GPU [7]. They first simplify the scene by decomposing
the geometry into discrete image layers according to their depths
and then perform ray tracing or filtering on the layers. [17]first
synthesize a light field (an array of virtual views) from an in-focus
image and its depth map and then apply ray integral. These ap-
proaches can produce very high quality DoF effects comparable to
distributed ray tracing but at an interactive speed. However, such
schemes either require special graphics hardware for performing
specialized operations or a large texture memory for restoring in-
termediate results (e.g., the light field).

Our focus in this paper is to develop a feasible solution that
can produce high quality DoF on mobile platforms. Compared
with previous solutions, our solution is tailored to handle low
computational power and low memory size of mobile devices
and at the same time it exploits coarse depth sensing capabilities
on emerging mobile platforms. Specifically, our technique takes
coarse depth maps obtained through depth sensors (e.g., Google
Project Tango), stereo sensor (e.g., HTC one smart phone), or
even user drawn strokes as inputs. We then develop a novel depth-
aware pseudo ray-tracing scheme that emulates the light field re-
focusing process while avoiding actual creation of the light field.
Such a scheme does not require high-end graphics card or large
memory sizes but still achieves high quality refocus rendering that
avoids boundary bleeding and discontinuity commonly observed
in previous filtering methods.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.1

In addition to providing pseudo adjustment to aperture shape
and size, our refocus rendering solution can be further used to pro-
duce effects beyond regular DoF in a DSLR. For example, we can
produce the tilt-shift effect, a unique feature of perspective control
lens (or tilt-shift lens), through adjustment of the depth maps. Our
technique can also produce optically impossible DoF by render-
ing multiple, non-adjacent depth layers in-focus. Finally, we can
dynamically change the shape of the virtual aperture to produce
customized Bokeh. We compare our techniques to commercial
software and hardware solutions and comprehensive experiments
show that our results outperform state-of-the-art software solu-
tions and are comparable to the results from DSLR and light field
cameras.

Depth-Guide Pseudo Ray Tracing
Traditional distributed ray tracing requires the complete geo-

metric models. In contrast, our pseudo ray tracing technique uses
an all-in-focus pinhole image and its depth map as input, where
the depth map can be obtained in various ways on mobile plat-
forms as shown in Section . In this section, we first elucidate
and analyze brute-force image space ray tracing. Based on our
analysis, we show how to improve its performance by employing
statistical priors and then propose a new approximation scheme
that is robust even with complex scene geometry.

Image Space Distributed Ray Tracing
As shown in Fig. 1(a), the image space ray tracing uses the

input of a pinhole image and its depth map. We assume that the
depth range of the scene is [z0,z1] (z1 > z0 > 0)1 and the sensor
to pinhole distance is s. We render the DoF effects as if there
were a virtual thin lens located at the pinhole position as shown
in Fig. 1(b). We assume the virtual lens has a the focal length of
f that satisfies 1

f = 1
s +

1
z1

, i.e. the farthest plane z1 is focused on
the sensor. Further, we assume that the radius of the aperture is
R. Under this virtual lens system, points on plane z ∈ [z0,z1] will
project to blur discs whose radius (i.e., the kernel size) is:

k = sR(
1
z
− 1

z1
) (2)

Recall that the largest kernel size on the senor K = sR(1
z0
− 1

z1
)

corresponds to plane z0. The largest kernel size is also related
to the intersection disc of the blue cone of rays (the cone that
converges to a single point on the sensor) with plane z0. Under
the similitude relationship, the radius of this intersection disc can
be computed R z1−z0

z1
or alternatively z0

s K as shown in Fig. 1(b).
Under this system setup, we can conduct dynamic refocusing

by rendering an image on a virtual sensor plane at s f that corre-
sponds to focal plane z f (1

s f
+ 1

z f
= 1

f). As shown in Fig. 1(c), we
use pixel indices in the original pinhole image as the central ray
indices of the ray cones. This guarantees that the rendered refo-
cused image will have an identical resolution of the input pinhole
image and pixels at the same position in both images correspond
to each other.

In the defocus result, for each pixel p, its final color will
be the integration of all incident rays within a cone. In regular
distributed ray tracing, we need to trace each ray into the scene.
In image-space ray tracing, we instead seek to assign a color to

1The maximum scene depth z1 can be infinite.

each ray as some pixel from the input image. Geometrically, this
can be done by first tracing out the ray into the scene as a 3D point
and back trace the 3D point to the input pinhole camera. Under
the Lambertian assumption, we can directly use its corresponding
pixel in the input camera to assign the color of the ray.

Apparently to determine the ray color, it is essential to locate
the intersection point of the ray with the scene. In the light field
based approach [18], this is achieved via forward warping: the
central view uses its depth map to warp to the neighboring light
field views. A major disadvantage of such an approach is that,
to ensure rays are densely sampled, one needs to virtually cre-
ate/render a very large number of views and therefore the scheme
requires multiple passes of rendering and large texture memory if
it is conducted on the GPU.

Alternatively, we can determine the intersection by discretiz-
ing the path along the ray. Specifically, our goal is to determine,
at each possible depth z along the ray, if its corresponding 3D
point lies in either empty space or on an actual surface. This can
be achieved by backprojecting the point to the pinhole view as a
pixel and verify if the pixel’s depth matches z. Assume that the ray
”stops” at a signed distance r to the aperture center, for a point Q
on the ray with its depth zQ ∈ [z0,z1], the signed distance between
Q and the intersection point of the center ray with plane zQ can be
computed as r zQ−z f

z f
(similar as the above example computing the

largest kernel size). Under the similitude relationship, the projec-
tion q of Q will be at distance lpq to the current rendering pixel p
where lpq =

s
zQ
· r zQ−z f

z f
= sr(1

z f
− 1

zQ
).

Since the depth range of the scene is [z0,z1], the ray seg-
ment inside the depth range will project to a line segment [q0,q1]
around p, where q0,q1 are the projections of Q0,Q1 with depth
z0 and z1 respectively. In image space distributed ray tracing, we
need to search for the front most intersection of the ray with the
scene by intersection checking for each pixel q ∈ [q0,q1] start-
ing from q0. If pixel q corresponds to a true intersection point, it
should satisfy the intersection condition:

lpq = sr(
1
z f
− 1

zq
), (3)

where the depth zq of pixel q is obtained from the depth input.
The analysis above is carried out in terms of depth. We can

alternative map depth to disparity as d = 1
z and conduct a simi-

lar derivation. Specifically, we normalize the disparity range of
the scene to [0,1], i.e. where 0 disparity corresponds to depth at
∞ and 1 corresponds to disparity at the nearest depth. If we di-
rectly use an aperture mask of size K(= sR), we can simply the
the intersection condition as:

lpq =
r
R

K(d f −dq), (4)

where d f =
1
z f

and dq =
1
zq

. Since the left and right sides of Eq. 4
can be directly verified on the disparity map, our image space
distributed ray tracing avoids reconstructing the scene geometry
or warping the central view to a light field.

In fact, we can calculate the computational complexity of
approach as O(NMK) where N is the total number of pixels of
the input image, M is the pixel number of the aperture mask (M
corresponds to the area of the aperture thus has the scale of K2),

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.2

-s

z1

z0

0

0

R

K=Rs
z0 z1 z0-

z1

r

(a) Pinhole imaging (b) Virtual lens system (c) Image space ray tracing

s
1

f
1 1

z1
= +

1
z1

1
z0

K =sR(-)

Q

p

r

(d) Our randomized ray tracing

Q0

q1 q0

Qt Q(t+1)

Q1zf

q1 q0

lpq0
lpq1

p

Q0

Q1zf

-s1

x
q

lpq

sf

q =t

qt+1

Figure 1: Image space distributed ray tracing and our method. (a) Pinhole imaging. (b) Virtual lens system for DoF rendering. (c)
Image space ray tracing searches for the intersection point in the pixels on line segment [lpq0 , lpq1]. (d) Our randomized intersection point
searching method that utilizes smooth surface prior in real scenes.

and K accounts for intersection checking. Different from stan-
dard ray tracing on 3D models, the image space distributed ray
tracing performed on image space suffers from two major prob-
lems. First, our scheme assumes that the xy dimensions of the
scene (both the color image and the depth map) were discretized
into pixels. Therefore the satisfaction of the intersection condi-
tion cannot ensure true intersection. To alleviate this problem, we
relax the intersection condition to |lpq− r

R K(d f −dq)| ≤ 0.5, i.e.,
within the size of a half pixel. Second, since we only use a single
input image, we cannot determine the content (color or geome-
try) in the occluded regions. Our solution is to assume the surface
(geometry and texture) is symmetric around the pixel of interest
(being rendered), i.e., when pixel at lpq is occluded, we use pixel
at −lpq.

Randomized Intersection Searching
Image space distributed ray tracing is nearly as accu-

rate as traditional geometry space ray tracing. However, it
is also computationally expensive especially for the application
of refocusing. Recall that M has the scale of K2, therefore,
the cost increases cubically the aperture radius (O(NMK) =
O(NK3)). For a large aperture, conducting complete distributed
ray tracing is too expensive to be applicable to mobile de-
vices. We present two schemes to reduce the computational cost.
First, we reduce the number of ray samples through stochas-
tic sampling methods such as jittered sampling for reducing M.

(a)

Instead of tracing every position of the aperture,
jittered sampling first divides the aperture into
several equalized grids, and then randomly sam-
ples one ray in each grid as shown in the left fig-
ure. Assume that the dimension of the grid array
is a times less than the original dimension of the

aperture, the computational cost is then reduced to O(NMK/a2).
While jittered sampling guarantees correct intersection com-

putation for each ray sample, the sparsity and randomness of the
sampling usually produces severe visual artifacts, especially for
scenes of high contrast and variant colors. Since only a sparse
set of rays are sampled, those rays should be representative for
other unsampled rays in their grids. Several challenges, however,

remain. First, rays in a grid may not be representable by a sin-
gle sample. Second, random sampling cannot guarantee the qual-
ity/representativeness of the sampled ray. These two factors usu-
ally result in inconsistent blurs between neighboring pixels and
incurs noise-type artifacts as shown in Fig. 8.

A more plausible approach is to simplify the intersection
searching process, i.e., to reduce K. We make use of the smooth
surface assumption of real scenes to speed up intersection search-
ing. When searching for the intersection point, instead of iterating
pixel q ∈ [q0,q1] and checking the intersection condition, we start
from fixing dq and directly compute the required lpq using Eq. 4.
Specifically, as illustrated in Fig. 1(d), for a ray sample at radius
r, we initialize a dt

q (superscript t indicates the iteration number)
to be the depth of the pixel at distance lpq0 to the current center
pixel p. Given disparity dt

q, we compute the distance lt
pq. If the

disparity of the pixel at distance lt
pq equals to dt

q, then we deem

that the intersection has been found. Otherwise, we set d(t+1)
q to

be the disparity of the pixel just located. The validation process
repeats until the number of tests reaches a predefined threshold T .
When terminates, the algorithm returns the color of the last pixel
it has checked.

Since in real scenes, surfaces are usually continuous and
smooth, the chance that nearby pixels having the same depth mea-
sure are very high. In other words, it is very likely that dt

q equals

to d(t+1)
q which results in early termination in intersection search-

ing. This scheme can be alternatively interpreted as randomized
intersection searching. The main limitation of this method is that
it does not guarantee that we can find the correct (front most) or
any intersection for a single ray sample. The returned pixel may
not be a valid intersection. However, the chances of error is very
low since one error pixel returned for a certain ray sample may be
a valid intersection point for another ray sample and belongs to
the overall set of the intersections. In other words, an invalid re-
turned pixel does not necessarily introduce to the set an “outlier”
sample: it still highly likely belongs to the set of intersections
which should be counted towards the final blending for defocus
rendering. To distinguish those samples from “outlier” samples,
we call them “in-set” ray samples.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.3

-s

z1

z0

0

p

zf

s f
psf

correct ray sample
missed ray sample

in-set erroneous ray sample
alien erroneous ray sample

Figure 2: Error rate analysis for two examples using our algo-
rithm. Error rate will be less regarding to the ray set (red only)
than regarding to an individual ray (both red and yellow).

1

2

3

4

5

6

7

8

9

10xE
-5 RMSE

54321 6 7

Jittered sampling
ours
Ray tracing

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

(a) Iteration number accumulate histogram (b) RMSE of the rendering methods

Figure 3: Error rate analysis.

To further handle bleeding from the background to a focused
foreground object, when the returned pixel q is an invalid intersec-
tion and q is further away compared to the current center pixel p,
i.e. dp > dq, we replace the returned invalid sample q with p. 2 In
sum, even though the proposed randomized intersection search-
ing algorithm has the limitation of returning erroneous samples,
fusing the pixels from all ray samples still produces plausible and
accurate DoF effects.

For the validation number threshold T , we choose T = 1 to
significantly reduce the computational cost since our goal is to
render on mobile devices. As a result, the computational cost
reduces to O(NM). In all our experiments, T = 1 is sufficient to
produce high quality refocusing effects.

Fig. 2 illustrates two examples of the ray sampling results
using our algorithm. The correct and erroneous ray samples
are distinguished using different color shading. Recall that even
though individual pixel-ray indexing may be wrong, the incor-
rectly fetched pixel will still correspond to some ray within the
blur kernel, the overall error rate with respect to all rays within
the kernel is very low.

Fig. 3(a) plots the iteration histogram, where the value of bin
i shows the total number of pixels that find their correct samples
corresponding to rays falling inside the aperture within i itera-
tions. The histogram is computed based on several example im-
ages with their depth maps. From the histogram, it is clear that
T = 1 is generally sufficient to achieve a low error rate.

Fig. 3 (b) plots the root mean square error (RMSE) of the
rendered results from our algorithm, jittered sampling, and full

2The current center pixel p is guaranteed to belong to the set of inter-
sections since it is the intersection point of the center ray with the scene.

gamma 2.2
local gradients

0 255128

1

0.5

Image intensity

0.21

186

N
or

m
ali

ze
d

R
ad

ia
nc

e

0 255150

255

I0

O
ut

pu
t c

om
bi

na
tio

n f (0.5*(f (I0)+f (I1)))-1 -1

0.5*(I0+I1)

I1=0

I1=50

I1=100

I1=150

I1=200I1=255

20010050

(a) gamma 2.2 and its gradients (b) Intensity combination through tone mapping

Figure 4: The effects of response function in intensity fusing.
(a) Gamma 2.2. (b) Comparison between intensity combination
through tone mapping and linear combination on two intensities I0
and I1. Different color corresponds to different I1 intensity value.

ray tracing using the center image and its disparity map from each
light field data set. The ground truth results are rendered using
the complete light fields by integral photography. The plot shows
that our algorithm achieves comparable quality to distributed ray
tracing.

Weighted Color Blending
In real camera photography, the transformation from linear

scene radiance J to the digital image intensity I is highly nonlin-
ear due to high dynamic range compression and on-board color
processing.This nonlinear transformation is usually modeled as
response function f : I = f (J). An SLR camera integrates radi-
ance instead of intensity on the sensor. Ideally, correct DoF syn-
thesis should be conducted on radiance J = f−1(I) and produce
the final rendering I′ as I′(p) = gp(I) = f (1

|Ωp| ∑q∈Ωp
f−1(I(q))),

where p,q index the pixels in the image, Ωp denotes the blur
kernel centered at p and |Ωp| computes its cardinality. We use
gp(I) to denote the overall transformation. However there are
two obstacles that prevent the direct application of the transfor-
mation gp(I). First, the response function for the input image
is usually unknown. As common practice, one may use gamma
2.2 as approximation [9]. But the camera response function can
be very different from gamma 2.2 function [6]. Second, a sin-
gle response function is inadequate to model the color process-
ing performed on-board. Due to the aforementioned two main
reasons, the Gamma 2.2 approximation results in color shift as
shown in Fig. 5. In order to avoid the color shifting and at the
same time mitigate nonlinearity artifacts, we adopt a weighted
blending scheme that directly integrates pixels from image I with
content aware weighting.

We first examine the property of the overall transformation
function gp(I) using gamma 2.2 function as an example. As
shown in Fig. 4(a), the gradients within high intensity regions are
steeper than the ones in low intensity regions. This indicates that
high radiance is compressed much more than low radiance. Com-
pared to directly integrate on intensity, when converted back to
radiance, the integrated radiance that combines low and high ra-
diances will be closer to the higher radiance as illustrated in the
example Fig. 4(b). In other words, the overall effect of gp(I) is to
give higher intensity a larger weight. Thus we adopt the following

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.4

Input

Linear Gamma 2.2 Gauss

Figure 5: DoF results using different fusion methods with a cir-
cular aperture: direct linear blending, gamma 2.2 based blending
and our gaussian weighted color blending scheme.

blending scheme:

I′(p) =
1

W ∑
q∈Kp

wqI(q), wq = exp(− (I(q)max−255)2

2σ2),

(5)

where I(q)max = max{Ir(q), Ig(q), Ib(q)} is the max intensity
among all the color channels, the normalization term W =

∑q∈Kp
wq and σ is a user defined parameter to control the weight-

ing behavior. Fig. 5 compares different blending methods. While
linear blending that directly averages the intensities dims the
high lights and gamma 2.2 based blending gp(I) makes the color
bluish, our proposed gaussian weighted color blending renders a
more realistic results.

Depth Maps as Inputs
Depth sensor The depth sensing capabilities are becoming pop-
ular on emerging smart phones and tablets. For example, Google
Project Tango [3], HTC One [22] are exploring integration with
time-of-flight depth sensors. Structure company [15] designs in-
frared sensors attachable to iPad’s. As a prototype, we use a struc-
ture sensor which captures color image of resolution 640× 480
and an infrared depth image of resolution 320×240.

We adopt the similar scheme in [17] to upsample the depth
map. The low resolution depth map can be upsampled to high res-
olution using bilateral up sampling while preserve the boundary
discontinuity. We show an example of our depth sensor result in
the first row of Fig. 6.
Single image depth learning There is also an emergence of tech-
niques that recover depth from a single color image through ma-
chine learning [12,13]. Variant monocular depth cues from a pin-
hole image are explored including the scale, ground plane, van-
ishing points. Especially combined with object detection, we can
get a depth map with clear boundary from single image for our
application. Specifically, we adopt the method from [16] for its
edge preservation ability. We show an example of single image
depth learning result in the second row of Fig. 6.
Depth generation interface When no depth sensor is available or
the learning method fails, we use a depth generation interface for
user to draw depth map efficiently, taking the advantages of mod-
ern multi-touch screens equipped in most mobile devices. Basi-
cally, users use selection and (gradient or solid) filling tools for
depth map generation. The most important aspect of the depth

Image

Image Depth

Depth Our result

Our result

Figure 6: Depth acquisition methods: first row, the depth sensor;
second row, single image depth learning.

map in DoF rendering we want to assure is clear sharp boundary.
As shown in Fig. 7, we provide stroke based selection tool which
adopts paint selection technique for quick and clear object selec-
tion. Most scenes have ground plane whose depth can be gener-
ated using gradient filling. This ground plane can be first paint as
background depth layer. Users only need to assign several depth
layers for objects placed on/above the ground plane. While the
user move his/her finger on the image, the object marked by the
trajectory is selected with clear boundary. The user then can fill
the selection with a suitable depth value.

User drawing depth layer User de�ned depth map

Figure 7: Stroke based user depth generation.

Experimental Results
Our algorithm is tested on an iPad mini with 1.3Ghz A7 dual

core CPU, 1GB memory, and a PowerVR G6430 GPU. We con-
duct variant experiments to show the running complexity, render-
ing quality of our algorithm compared to full ray tracing, jittered
sampling, LF rendering [17, 20] and image space filtering [11]
techniques. We also show the super flexibility of our algorithm in
rendering images. It is very convenient in our rendering frame-
work to control settings such as aperture size and shape, focusing
regions. Using our algorithm and tools, we can easily generate
special effects such as tilt-and-shift, artificial focusing.
Performance Table 1 summarizes the complexities and the run-
ning time of all the algorithms. Our proposed algorithm has the
complexity same as that of the most efficient image space filter-
ing technique, and produces high quality DoF comparable with
the most accurate ray tracing technique. Recall that LF rendering
technique [17,20] utilizes efficient rasterization process in graphic
pipeline to render multiple views of the scene. It is hence faster
than ray tracing, 5 fps vs. 3 fps, to produce a similar rendering
quality. The memory usage of LF rendering can be further re-
duced to O(N) if we accumulate the intermediate views directly

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.5

Algorithms Comp. Memory Running
Cost Cost time (fps)

Image space blurring O(NM) O(N) 15
LF rendering O(NM) O(NM) 5
Ray-tracing O(NMR) O(N) 3

Jittered sampling O(NMR/a2) O(N) 15
Ours rand. searching O(NM) O(N) 15

Complexity and Running time analysis. Where N: number of
pixels of result; M: number of pixels of the aperture mask; a:
constant reduction scale; R: aperture radius. Typical resolu-
tions of the image and the aperture mask for the evaluation is
720×540 and 41×41 respectively.

to the output buffer. However, it needs to fill in the holes in the
rendered view due to depth warping. In contrast, our method au-
tomatically fills the missing information through symmetric as-
sumption. Furthermore, from table 1, we observe LF rendering
is less efficient than image space blurring and our method. This
is because the implementation requires multiple pass rendering
which becomes a severe bottleneck. In contrast, our method is a
single pass algorithm.
Rendering Quality Fig. 8 compares the rendering results of var-
ious algorithms (full ray tracing, jittered sampling, LF render-
ing [17, 20] and image space filtering [11]). We observe that our
rendering quality is comparable to the full ray tracing and the LF
rendering, while jittered sampling results exhibit noise-type arti-
facts and image space filtering results exhibit boundary bleeding
and discontinuity artifacts.

Next, we compare our method with real cameras. We
demonstrate that our method produces a high quality DoF ef-
fect comparable to expensive DSLR cameras and LF cameras.
Fig. 9 compares our proposed algorithm with images captured by
a Canon 60D with lens 3.5 and the latest LF camera Lytro illum.
Compared to a DSLR camera which can only achieve fixed fo-
cus, our method can conduct post-capture refocus same as the LF
camera (Fig. 10). The major difference though is that we only
use a mobile camera which is significantly cheaper than the Lytro
camera and at the same time we can achieve very high resolution
rendering at a high speed. Our technique also offers a richer set
of effects as shown in Fig. 11 and Fig. 13.

(a) (b) (c)

(d) (e) (f)

Figure 10: Dynamic refocusing comparison between the Lytro
illum results (first row) and our method (second row).

Bokeh Effect The weighted fusing technique is especially de-
manding in Bokeh effect rendering where light sparks are of sig-
nificantly higher radiance than their surroundings. The parame-

Figure 11: Rendering results with different aperture shapes indi-
cated on the up right corners.

ter in weighted fusing scheme is adjustable to further refine the
Bokeh effects. We compare different σ values in Fig. 12. With
smaller σ , the Bokeh becomes more prominent.

σ = 50 σ = 70

σ = 180 Linear blend

Figure 12: Comparing the rendering Bokeh results with different
σ .

Special effects We further show the super flexibility of our
method through special effects rendering. Tilt-shift photography
is a technique for selective focus and is often used for simulat-
ing a miniature scene. In real cameras, special lens are required
to achieve such effects. Tilt makes the lens plane forms an angle
to the image plane which results in same effects of depth com-
pression. Our algorithm can easily render Tilt-and-shift effects by
modifying the depth input. Fig. 13 (a) shows an example where
the depth range is compressed along a user specified line.

We also show examples contains artistic focus effect which
cannot be achieved using a DSLR camera or a LF camera. Regu-
lar cameras can only focus at one depth layer. In our framework,
we can simultaneously focus on the objects at different depth lay-
ers by assigning them with same disparity values. In this way, we
can make some depth based illusions more realistic. Fig. 13(b)

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.6

Ray tracing
Jittered

Sampling Ours LF Rendering
Image Space

 Filtering Input

Figure 8: DoF comparisons between different rendering methods.

and (c) shows such examples. Actually, we can focus at any re-
gions by providing depth maps regardless We show an example
of center focusing for visual attraction in Fig. 13(d).

Conclusions
In this paper, we have proposed a computation and mem-

ory efficient DoF rendering algorithm suitable for mobile devices.
Our approach uses an all-focus image and its depth map as inputs
and can produce a wide range of high quality DoF effects. We
exploit the depth sensing capabilities on emerging smart phones
and tablets and the multi-touch interface for continent depth map
acquisition. Compared with other software solution, our depth-
guided pseudo ray tracing is as efficient as image space blurs but
can achieve quality comparable to distributed ray tracing. Com-
pared to real SLR and LF cameras, our solution is based on mobile
cameras which are significantly cheaper. In addition to regular
DoF rendering, we have demonstrated our technique to produce
challenging or physically impossible effects.

References
[1] COOK R. L., PORTER T., CARPENTER L.: Distributed ray tracing.

In SIGGRAPH (1984), ACM.
[2] EARL HAMMON J.: Practical post-process depth of field. In GPU

Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008, pp. 583–605.
[3] Project tango. https://developers.google.com/project-tango/.
[4] HAEBERLI P., AKELEY K.: The accumulation buffer: Hardware

support for high-quality rendering. In SIGGRAPH (1990), ACM.

[5] ISAKSEN A., MCMILLAN L., GORTLER S. J.: Dynamically repa-
rameterized light fields. In SIGGRAPH (2000), ACM.

[6] KIM S. J., LIN H. T., LU Z., SUSSTRUNK S., LIN S., BROWN

M. S.: A new in-camera imaging model for color computer vision
and its application. Pattern Analysis and Machine Intelligence, IEEE
Transactions on (2012).

[7] LEE S., EISEMANN E., SEIDEL H.-P.: Real-time lens blur effects
and focus control. ACM Trans. Graph. (2010).

[8] LEE S., KIM G. J., CHOI S.: Real-time depth-of-field rendering
using anisotropically filtered mipmap interpolation. IEEE Transac-
tions on Visualization and Computer Graphics (2009).

[9] LIN H., KIM S. J., SUSSTRUNK S., BROWN M. S.: Revisiting ra-
diometric calibration for color computer vision. In Computer Vision
(ICCV), 2011 IEEE International Conference on (2011), IEEE.

[10] NG R.: Fourier slice photography. In SIGGRAPH (2005), ACM.
[11] ROKITA P.: Real-time Depth of Field Rendering via Dynamic Light

Field Generation and Filtering. Computer & Graphics (1993).
[12] SAXENA A., CHUNG S. H., NG A. Y.: Learning depth from single

monocular images. In NIPS (2005), MIT Press.
[13] SAXENA A., CHUNG S. H., NG A. Y.: 3dd depth reconstruction

from a single still image. Int. J. Comput. Vision (2008).
[14] SOLER C., SUBR K., DURAND F., HOLZSCHUCH N., SILLION F.:

Fourier depth of field. ACM Trans. Graph. (2009).
[15] Structure sensor. http://structure.io/.
[16] WANG P., SHEN X., LIN Z., COHEN S., PRICE B., YUILLE A.:

Towards unified depth and semantic prediction from a single image.
In CVPR (2015).

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.7

Input Our rendering results DSLR Lytro

Figure 9: DoF comparisons between a DSLR camera and Lytro Illum.

[17] WANG Q., YU Z., RASMUSSEN C., YU J.: Stereo vision based
depth of field rendering on a mobile device. In SPIE conference of
Digital Photography X, 2014 (2014).

[18] YU Z., GUO X., LING H., LUMSDAINE A., YU J.: Line assisted
light field triangulation and stereo matching. In In Proceedings of
the Thirteenth International Conference on Computer Vision (2013).

[19] YU Z., THORPE C., YU X., GRAUER-GRAY S., LI F., YU J.:
Dynamic depth of field on live video streams: A stereo solution. In
In proceedings of Computer Graphics International (2011).

[20] YU X., WANG R., YU J.: Real-time Depth of Field Rendering via
Dynamic Light Field Generation and Filtering. Computer Graphics
Forum (2010).

[21] YU Z., THORPE C., YU X., GRAUER-GRAY S., LI F., YU J.:
Dynamic depth of field on live video streams: A stereo solution. In
In proceedings of Computer Graphics International (2011).

[22] HTC One. https:http://www.htc.com/us/smartphones/htc-one-m8/.

Author Biography
Yang Yang received his MEng degree from the Stevens Institute

of Technology, in 2012. He is now a PhD student at Department of
Computer and Information Sciences, University of Delaware. His
research interests include computer vision and computer graphics.

Haiting Lin received his PhD degree from School of Computing,
National University of Singapore in 2003. He is now working as a
Postdoc at Department of Computer and Information Sciences, University
of Delaware with Prof. Jingyi Yu.

Zhan Yu has been a research scientist at Adobe Systems Inc. Since
December 2013. Before that, he received his PhD degree in computer
science from the University of Delaware and a BS degree in software
engineering from Xiamen University. His research interests include
computational photography, computer graphics, and computer vision.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.8

(a) (b) (c) (d)

Figure 13: Special effects.

Sylvain Paris is a researcher at Adobe, working in the Advanced
Technology Labs. He received his PhD degree from INRIA, France. His
research focuses on extracting information from photographs and videos.

Jingyi Yu is an associate professor in the Department of Computer
and Information Sciences and the Department of Electrical and Computer
Engineering at the University of Delaware. He received his BS degree
from Caltech in 2000 and a PhD degree from MIT in 2005. His research
interests span a range of topics in computer vision and graphics,
especially on computational cameras and displays. He is a recipient of
both an NSF CAREER Award and the AFOSR YIP Award.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-031

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-031.9

