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Abstract
We developed an underwater image formation model that

describes how light is absorbed and scattered by seawater and
its constituents. We use the model to predict digital camera im-
ages of a reference target with known spectral reflectance at dif-
ferent distances and depths. We describe an inverse estimation
method to derive three model parameters: phytoplankton absorp-
tion spectrum, chlorophyll concentration and the amount of col-
ored dissolved organic matter or CDOM. The estimated parame-
ters predict the spectral attenuation of light which can be used to
color balance the images. In addition, parameter estimates can
be used to monitor environmental changes turning a consumer
digital camera into a scientific measurement device.

Introduction
The digital camera has become an accessory that most peo-

ple take with them everywhere, including underwater. Sadly, they
are often disappointed with the quality of their underwater im-
ages. Backscattered light reduces image contrast and wavelength
dependent light absorption by water introduces color changes
[1, 2]. No doubt the quality of underwater photography will im-
prove as the low-light sensitivity of imaging sensors increases and
as new image processing methods are introduced.

Several underwater image correction algorithms operating
on RGB images have been proposed [3, 4], but only a few meth-
ods analyze the data in the spectral wavelength domain [5, 6, 7].
In most cases, the goal of these algorithms is to improve color ren-
dering, rather than infer biologically relevant quantities [7, 8, 9].
In this paper we consider how to derive scientific data from un-
derwater camera sensor images in order to characterize the ocean
seawater environment. We also illustrate how this data can be
used to process and improve the perceived quality of underwater
images.

We developed an underwater image formation model to de-
scribe how light is absorbed and scattered by water and its con-
stituents and how light is captured by the imaging sensor in a dig-
ital camera. We use our model to simulate the appearance of im-
ages captured by digital cameras and to relate the appearance to
physically interpretable quantities, such as the type and amount
of phytoplankton and other organic and inorganic matter in sea
water [10]. We also use the insights we gained from these simula-
tions to improve the way we process underwater images in order
to produce more aesthetically pleasing photographs [7].

Our underwater image formation model is composed of three
components. First, we use the underwater image formation model
of Jaffe and McGlamery [11, 12] to describe light absorption
and scattering in units of medium beam absorption and scatter-
ing coefficients. Second, we incorporate the results of oceano-
graphic and biological research describing attenuation and scat-
tering coefficients as functions of concentrations of fundamental

constituents of sea water: phytoplankton, colored dissolved or-
ganic matter (CDOM) and non-algal particles (NAP) [10]. Third,
we use a full camera simulation package (ISET, [13]) to produce
simulated images of underwater targets.

We use the underwater image formation model to predict the
sensor data captured by a digital camera at a fixed distance and
depth from a reference target with known spectral reflectance.
With the appropriate parameter settings, we can reproduce the ap-
pearance of sensor images captured by real cameras in similar
underwater environments.

We wish to use the digital camera as a scientific instrument
that can measure environmental factors, such as the type and con-
centration of phytoplankton and other material in the seawater. To
accomplish this, we introduce an inverse estimation method that
uses the camera sensor data to derive parameters that describe
1) the spectral absorption of light by phytoplankton, 2) the con-
centration of chlorophyll in phytoplankton, and 3) the amount of
colored dissolved organic matter or CDOM.

We use the inverse estimation method as a metric to evaluate
how well any digital camera can be used to measure environmen-
tal parameters and consider how these measurements can also be
used to improve the perceived quality of underwater images.

Image formation model
The measurement m produced by an imaging device is lin-

early related to device’s spectral sensitivity functions p(λ ) and
the light radiance ρ(λ ) reaching the photodetector [14]

m =
∫

p(λ )ρ(λ )dλ . (1)

A ray of light traveling between the source and the scene interacts
with the medium in two ways. First, some of the light may be
absorbed by the medium, and thus the overall intensity of light
is reduced. Second, the direction of propagation of a portion of
the light ray may be changed in a phenomenon called scattering.
As a consequence of these interactions the total radiance along
a particular ray of light ρ(λ ) reaching an imaging device can
be decomposed into two additive components; direct ρd(λ ) and
backscattered ρb(λ ) [1, 11, 12]

ρ(λ ) = ρd(λ )+ρb(λ ). (2)

The direct component contains all the light rays that, having been
emitted by a source, interact with a scene. The backscattered com-
ponent represents all the light rays whose direction of propagation
was changed by the medium before they reached the target, which
means they are captured by the imaging device without interacting
with the scene (Fig. 1).

The McGlamery-Jaffe underwater image formation model
[11, 12] describes how the absorption and scattering affect the
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Figure 1: Direct and backscattered components in underwater
imaging.

Figure 2: The intensity of light traveling through a medium is
reduced due to absorption and scattering.

direct and backscattered radiance components. However, for uni-
form surfaces at a fixed distance from the camera the radiance of
the direct component depends on the light source spectral power
distribution i(λ ), target surface spectral reflectance r(λ ), and the
attenuation of light introduced by the medium c(λ ). The relation-
ship is governed by the Beer-Lambert attenuation law [7]

ρd(λ ) = r(λ )i(λ )e−dc(λ ), (3)

where d is the distance light travels through the medium.

Total attenuation coefficient
The total attenuation coefficient c(λ ) describes how much

light at wavelength λ is attenuated as it travels through the
medium. Light attenuation depends on how much the medium
absorbs light as well as how much light is scattered. The con-
tributions of these two phenomena, denoted a(λ ) and b(λ ) for
absorption and scattering respectively, define the total absorption
coefficient c(λ )

c(λ ) = a(λ )+b(λ ). (4)

Intuitively, the intensity of a particular ray of light traveling
through a medium can be decreased either because photons are
absorbed by the medium, or because some of the light starts to
propagate in different direction as it is reflected off small parti-
cles suspended in that medium. Along the ray however the net
effect of these two distinct phenomena is the same; light intensity
is reduced (Fig. 2).

Absorption coefficient
In underwater environments, the absorption coefficient is im-

pacted by the optical properties of pure sea water aw(λ ) and the
absorption properties of three seawater constituent particles: phy-
toplankton aΦ(λ ), colored dissolved organic matter (CDOM),
aCDOM(λ ), and non-algal particles (NAP), aNAP(λ ). The total
absorption coefficient is given by the sum of absorption proper-
ties of the constituents

a(λ ) = aw(λ )+aΦ(λ )+aCDOM(λ )+aNAP(λ ). (5)
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Figure 3: Shapes of the spectral absorption coefficient a(λ ) for
different seawater constituents. Individual components are not
shown to scale, y-axis represents arbitrary units.

Figure 3 shows the shapes of the spectral absorption coefficient
of the four constituents. The absorption properties of each con-
stituent has been extensively studied. The spectral absorption
of pure seawater aw(λ ) is fixed and well known [15, 16, 17].
The particular properties of phytoplankton and non-algal parti-
cles have both been shown to be related to the concentration of
chlorophyll [18], while the absorption properties of the colored
dissolved organic matter, also called yellow matter, are largely
independent of the amount of chlorophyll [19, 10].

The CDOM spectral absorption is described well by a decay-
ing exponential [19]

aCDOM(λ ) = aCDOM,λ0
e−0.014(λ−λ0), (6)

where λ0, the reference wavelength, is often chosen to be 440nm,
and aCDOM,λ0

is the absorption at the reference wavelength. The
scale in the exponent is experimentally determined and usually
varies between −0.014 and −0.019 [19].

The absorption by non-algal particles (detritus) has a very
similar form to that of CDOM [20]

aNAP(λ ) = aNAP,λ0
e−0.011(λ−λ0), (7)

with values of the scale in the exponent in the range of −0.006 to
−0.014 [20]. Furthermore [18] showed that the detritus absorp-
tion at λ0 = 440 is highly correlated to chlorophyll concentration
C

aNAP,440 = 0.0124 ·C0.724. (8)

Because of this correlation we are treating NAP absorption as a
dependent variable fully specified by chlorophyll concentration C.

The spectral absorption of phytoplankton depends on its
species as well as the concentration. The amount of phytoplank-
ton is defined by the concentration of chlorphyll, one of its pri-
mary components. The spectral shape of the absorption curve
is affected by the phytoplankton species, although the absorption
curves for many phytoplankton species are similar with peak ab-
sorption around 450 and 650nm [21, 22]. The between-species
similarities mean that phytoplankton absorption can be compactly
represented with low-dimensional linear models

aΦ(λ ) =
z

∑
i=1

ti(λ )wi, (9)

where ti(λ ) are fixed phytoplankton absorption basis functions
and wi are the absorption basis weights. Furthermore [18] showed
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Figure 4: Shapes of the spectral scattering coefficient b(λ ) for
different seawater constituents. Individual components are not
shown to scale, y-axis represents arbitrary units.

that phytoplankton absorption is related to chlorophyl concentra-
tion C by

aΦ(440) = 0.0378 ·C0.627. (10)

A particular phytoplankton absorption spectrum can be generated
by selecting a particular assignment of weights w that define the
shape. Then the shape can be scaled, to satisfy (10).

Scattering coefficient
The total scattering coefficient b(λ ) can also be represented

as a sum of the scattering coefficients of pure seawater bw(λ ) and
particulate matter components bp(λ )

b(λ ) = bw(λ )+bp(λ ). (11)

The spectral shapes for the two scattering components are pre-
sented in Fig. 4. As scattering depends much more on particle
dimensions, rather than their biological origin, the constituents
are divided according to their size into pico-, nano- and mi-
croparticles. Each particle class is modeled in the same way,
even though it comprises phytoplankton, colored dissolved or-
ganic matter (CDOM) and non-algal particles (NAP).

Just as in the case of absorption, the scattering coefficient of
seawater bw(λ ) is fixed and known [16, 23]. The scattering coef-
ficient of particulate matter bp(λ ) depends on the concentrations
of pico-, nano- and micropartciles. The concentrations of indi-
vidual particle types types can be related to the total chlorophyll
concentration C [24], and consequently express the total scatter-
ing coefficient as a function of a single parameter C

bp(λ ) = b?p,1,2,λ0

(
λ

λ0

)−γ1,2 [
C1,2

(
1− e−S1,2C

)]
+b?p,3,λ0

(
λ

λ0

)−γ3 [
C−C1,2

(
1− e−S1,2C

)]
+bk,λ0

(
λ

λ0

)−γk

. (12)

In the above equation the subscript 1,2 represents the contribu-
tions of pico- and nanoparticles, while the subscript 3 represents
microparticles. Finally, a constant background contribution is
given by bk. The numerical values of experimentally determined
model constants are summarized in Table 1

Table 1: Particle scattering coefficient model constants for λ0 =
470nm, data taken from [24].

Parameter Unit Value
C1,2 mg m−3 0.78
S1,2 (mg)−1 m3 1.1449
b?p,1,2,λ0

m2 mg−1 0.0046
b?p,3,λ0

m2 (mg)−1 0.0005
bk,λ0

m−1 0.00068
γ1,2 – 0.7
γ3 – -0.2
γk – 1.9

Discrete model
To simplify computation we discretize all spectral quantities

to a small number, q, of narrow wavelength bands. The continu-
ous wavelength representation of total attenuation

k(λ ) = e−da(λ ), (13)

is replaced with a vector k ∈ Rq, whose ith entry represents the
total attenuation at wavelength λi

ki = e−da(λi), (14)

and where d is the distance traveled through the medium. To un-
derline the dependence of the total attenuation k on model param-
eters x = (w,C,aCDOM,λ0

)T , the discretized attenuation is denoted
k(x).

Parameter estimation
The underwater image formation model can also be used to

estimate model parameters from camera sensor data, such as the
phytoplankton absorption spectrum, chlorophyl concentration and
amount of colored dissolved organic matter, CDOM. Estimation
involves finding a solution to a minimization problem

minimize
x,s

‖M−PT diag(i)diag(k(x))R− s1T ‖2
F (15)

subject to C ≥ 0, aCDOM,λ0
≥ 0, Tw≥ 0 (16)

(Tw)λ0
= 0.0378 ·C0.627 (17)

s≥ 0. (18)

The matrix M ∈ Rm×n represents sensor image pixel intensities
of n different surfaces from a camera with m different spectral
channels (for color consumer cameras m = 3). The columns
of P ∈ Rq×m are the spectral responsivity functions of the cam-
era, quantized to q spectral bands, the vector i ∈ Rq is the spec-
tral power distribution of the illuminant. The columns of matrix
R∈Rq×n contain n surface spectral reflectances, and the columns
of matrix T ∈ Rq×z contains z discrete plankton absorption basis
functions. Finally the vector s ∈ Rm contains backscattered light
estimates for each of the camera channels. These estimates are
the same for all surfaces.

The minimization problem contains several constraints, all
of which follow directly from the physical properties of the esti-
mated quantities. Specifically, phytoplankton spectral absorption
Tw, chlorophyll concentration C, CDOM reference absorption
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aCDOM,λ0
and scattering s are all non-negative quantities. Further-

more the phytoplankton spectral absorption curve, Tw, should be
appropriately scaled (17), so that (10) holds.

The optimization problem (15) is not convex; it is difficult
to solve for two reasons. First, the objective function, an l2 norm
of an exponential, is non-convex. Second, the equality constraint
(17) is not linear. Since all functions that cause non-convexity
are continuous, smooth and monotonic, we can use an iterative
approach to solve the problem. First, at iteration t, we approxi-
mate the function k(x) with its first order Taylor series expansion
around an estimate xt [6]. The same approach is used to approx-
imate the the non-linear equality constraint (17). Next, we com-
pute a solution of the now convex problem. Finally, we use the
computed optimal parameter estimates as center points for Tay-
lor series expansion at the next iteration. The process is repeated
until no decrease in the objective is observed.

Experiments
We implemented the underwater image formation model in

Matlab and used the Image Systems Engineering Toolbox [13] to
simulate camera acquisition of a Macbeth test chart placed un-
derwater. We used a model of a popular consumer camera with
a Bayer RGB color filter array and a near infrared (NIR) filter.
Convex optimization problems were solved using the cvx opti-
mization toolbox [25]. We simulated different water types by
varying the concentrations of chlorophyll C and the absorption
of color dissolved organic matter CDOM, aCDOM,λ0

. We chose
λ0 = 440nm as the reference wavelength for CDOM absorption
estimates and we used phytoplankton basis functions derived from
the data in [21]. This particular data set proved to be largely one-
dimensional, and hence we chose a single basis function. Al-
though the proposed algorithm can handle cases where phyto-
plankton absorption shape varies, in this simulation the shape of
phytoplankton absorption was fixed and only the scale could vary.
Finally, we generated tests scenes at different depths and target to
camera distances.

Appearance simulation
We evaluate our model using qualitative comparisons be-

tween simulated target images and the images of a Macbeth chart
submerged in different geographical locations. Figure 5 shows
target appearance in clear waters of the Pacific Ocean in the prox-
imity of Fanning Island. The blueish tint of the simulated test
target was achieved by setting a low chlorophyll concentration
C = 1mg m−1 and low CDOM absorption aCDOM,440 = 0.05m−1.
Figure 6 presents a similar comparison for murky waters of the
Monterey Bay, CA. To obtain a much stronger greenish tint of
the target the chorophyll concentration was increased to C =
5mg m−1 and CDOM absorption was set to aCDOM,440 = 0.1m−1.

Figure 7 further explores the changes in the appearance
of the test target when different model parameters are selected.
Specifically color appearance changes are much more pronounced
with increasing target depth (Fig. 7, top row). As light travels
deeper underwater, it is attenuated more and more strongly and
the colors become less and less pronounced. Changes in the cam-
era to target distance (Fig. 7, bottom row) have a much smaller
effect on the overall color appearance.

Figure 8 shows the appearance changes as the function of
chlorophyll concentration. The concentration was adjusted be-

(a) Captured (b) Simulated
Figure 5: Target appearance in clear water conditions (Fanning
Island, Pacific Ocean). Images are not gamma encoded.

(a) Captured (b) Simulated
Figure 6: Target appearance in murky water conditions (Monterey
Bay, CA). Images are not gamma encoded.

tween C = 0.01mg m−1 (open ocean waters) and C = 100mg m−1

(eutropic estuaries, lakes) [10]. As expected the overall hue
changes from blueish, characteristic of pure water absorption, to
greenish, where absorption is dominated by phytoplankton.

Parameter estimation
The estimation algorithm finds model parameters x =

(w,C,aCDOM,λ0
)T so that the resulting light attenuation k(x) pro-

duces the best fit between the image formation model and the
measured or simulated data M. Figure 9 compares a sample at-
tenuation estimate k(x) to the ground truth data for a particular
set of medium properties and scene geometry.

The high quality of the estimate does not depend on the spe-
cific medium characteristics. Figure 10 plots the relative root-
mean-squared error (RRMSE) defined as

RRMSE =
‖ŷ− y‖
√

q‖y‖
, (19)

where y, ŷ ∈ Rq represent the true and estimated quantity respec-
tively. The RRMSE values are computed for different depths and
camera to scene distances and averaged across different chloro-
phyll concentrations and CDOM absorption values. Note that this
relative error remains small, about 2%, but increases slightly with
larger depths and target distances.

The wavelength dependence of the spectral attenuation k(λ )
predicts the color of water. As the light travels deeper into the
medium, its spectral composition, and thus colors, are affected.
The information about the shape of spectral absorption curve can
be used to correct the colors of underwater images. Figure 11, left,
represents the appearance of the underwater target used to derive
the attenuation curve . This attenuation curve was then used to
estimate the effective ambient illuminant and to calculate the co-
efficients in a diagonal (von Kries, [26]) illuminant correction (see
Fig 11, right). The attenuation curve in Fig. 9 was derived from
the top left image in Fig. 11.

Although the algorithm can predict spectral attenuation with
high accuracy, the inverse estimation algorithm may be ill-posed

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-252

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-252.4



D
is

ta
nc

e
1m

(a) 0m (b) 1m (c) 5m (d) 10m (e) 15m

D
ep

th
10

m

(f) 1m (g) 2m (h) 5m (i) 7m (j) 10m
Figure 7: Macbeth test target appearance for different scene geometries: targed distance and depth with fixed seawater properties:
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Figure 8: Macbeth test target appearance for different chlorophyll concentrations. The target is submerged to 10m and is 1m away from
the camera, CDOM absorption is fixed: aCDOM,440 = 0.1m−1.
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Figure 9: Light attenuation estimation example, depth 10m, dis-
tance 5m, C = 1mg m−3 and aCDOM,440 = 0.1m−1.

when it comes to predicting the model parameters for phyto-
plankton concentration and CDOM. Different numerical values of
these model parameters can produce the same spectral attenuation
curves. It is, therefore, interesting to compare the estimated and
ground truth values for the amount of phytoplankton and CDOM
in sea water at different depths and for different target distances.
Figure 12 shows that the difference between true and estimated
parameter values for both phytoplankton and CDOM concentra-
tion is relatively small at small depths and increases with water
depth. Across different conditions Pearson’s correlation coef-
ficient between the true and estimated quantities is consistently
above 0.7.

Similar analysis, presenting the correlation between true and
estimated colored dissolved organic matter (CDOM) absorption
aCDOM,440, is shown in Fig. 13. Again, parameter estimates be-
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Figure 10: Errors in light attenuation estimation. Each point rep-
resents the average RRMSE and the corresponding standard error
across different phytoplankton concentrations C and CDOM ab-
soprtions aCDOM,440.
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Figure 11: Color correction of underwater image at a fixed dis-
tance of 5m. The original image (a) was used to estimate the
absorption which provided the von Kires model coefficients for
illuminant correction (b). The intensities of images at the two
depths are similar because the two images have been normalized.

come less accurate with an increase in depth as well as chlorophyll
concentration.

Although the accuracy in predicting the parameter values for
phytoplankton and CDOM concentration decreases with increas-
ing depth and target distance, we can still use the estimated total
light attenuation as a good model for the ambient illumination.
In other words, analysis of the underwater images we capture of
objects that are far away from the camera and deep in the ocean
may not yield good estimates for the amount of phytoplankton and
CDOM, they do nonetheless give us a useful estimate of the am-
bient illumination that can be used for color correction (Fig. 12).

Conclusions
We presented an underwater image formation model con-

necting underwater scene appearance with biologically meaning-
ful quantities such as chlorophyll concentration, plankton species
and the amount of color-dissolved organic matter (CDOM). By
adjusting a small number of parameters we were able to repro-
duce images of underwater targets captured in different areas of
the world and in different water conditions.

Next, we proposed an inverse estimation algorithm that uses
an image of a known target captured with a simple camera to es-
timate the total light attenuation spectrum due to water and its
constituents. We showed that the derived attenuation spectrum
could be used to color balance underwater images.

Finally, we investigated the use of conventional consumer
color cameras as scientific measurement devices. In addition to
the spectral attenuation curve, our estimation algorithm can de-
rive estimates for biologically relevant water constituents such as
the amount of phytoplankton and color dissolved matter (CDOM)
in the water. Our simulations show that there is a high correlation
between the estimates and the ground truth parameters, particu-
larly when the water depth is less than 10 meters.

We are now extending this work by modeling consumer digi-
tal cameras with attached lighting to explore how we can improve
our estimates at deeper water depths. And we are using the same
methodology (simulation and estimation) to study the health of
coral reefs [27].
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Figure 12: Chlorophyll concentration estimation accuracy for a
fixed scene to target distance of 1m, different depths: (a) 5m, (b)
10m, (c) 20m and different values of aCDOM,440. Different colors
correspond to different values of CDOM absorption aCDOM,440.
Pearson’s correlation coefficient r2 varies between 1 and 0.7 and
decreases with an increase in depth and lower CDOM absorption
values.
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Figure 13: Colored dissolved organic matter absorption
aCDOM,440 estimation accuracy for a fixed scene to target distance
of 1m, different depths: (a) 5m, (b) 10m, (c) 20m and different
values of phytoplankton concentration C. Color coding represents
different values of C. Pearson’s correlation coefficient r2 varies
between 1 and 0.7. Estimate accuracy decreases with increasing
depth and chlorophyll concentration.
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