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Abstract
This paper proposes a novel multi-spectrum to RGB method

with direct structure-tensor reconstruction. The goal of the pro-
posed method is to generate a fused color image which pre-
serves structure-tensor of the original multispectral image while
keeping naturalistic color of a reference RGB image. Existing
multi-spectrum to RGB methods generate the fused image by se-
quential pipeline that consists of fused-gradient estimation and
reintegration. The existing sequential pipeline tends to gener-
ate the fused image whose structure-tensor is deviated from the
structure-tensor of the original multispectral image. Contrary to
the existing sequential pipeline, the proposed method generates
the fused image directly with the structure-tensor of the original
multispectral image by minimizing an energy which consists of the
structure-tensor term and the reference color constraint term. The
proposed direct structure-tensor reconstruction enables us to pre-
serve the structure-tensor of the multispectral image while keep-
ing the naturalistic color of the reference RGB image. The exper-
imental results on multispectral images including visible and NIR
images show that the proposed method outperforms the existing
methods in terms of not only image quality but also quantitative
evaluations.

Introduction
Multispectral imaging has various applications including re-

mote sensing and biometrics [6, 23]. Recent advances in com-
putational photography techniques (e.g. designing color filter ar-
ray [30, 18, 24, 25] or beam-splitter [47]) have provided an easy
way to acquire a multispectral image. To analyze the multispec-
tral image by human using a standard display, a multi-spectrum to
RGB technique which converts the multispectral image to a sin-
gle image is required. This technique is called image fusion, the
goal of which is to generate an image that contains an important
feature of the multispectral image while keeping naturalistic color
of the multispectral image.

Traditional image fusion methods for generating a gray-
scale image are based on pyramidal decompositions such as the
wavelet-transform [21], the Gaussian and the Laplacian pyra-
mid [44, 27] as shown in Table. 1. The existing methods, how-
ever, cannot preserve the feature of the multispectral image suf-
ficiently because a single-band is selected from the multispectral
image pixel-by-pixel in the decomposed domain, i.e. the feature
of the other bands is discarded. Dimensionality reduction tech-
niques such as PCA [45, 31], ISOMAP [9] are also applied to
generate a fused-image to preserve the feature of the multispectral
image. Although these methods are effective to contain the fea-
ture of the multispectral image, the fused image with gray-scale

or false-color is generated.
Variation-based methods are also proposed to preserve

the feature of the multispectral image using differential-
geometry [38, 28]. Socolinsky first presented the variation-based
method for generating a gray-scale image using the structure-
tensor which represents geometric structure of the multispectral
image [38].

Motivated by the existing variation-based methods [38, 28],
Connah et al. recently proposed “Spectral Edge Image Fu-
sion” [8] to generate a naturalistic color image from the mul-
tispectral image. The pipeline of Connah’s method consists of
fused-gradient estimation and reintegration as shown in Fig. 1 (a).
In the fused-gradient estimation, Connah’s method can generate
the gradient which not only preserves the structure-tensor of the
multispectral image but also keeps the naturalistic color of the ref-
erence RGB image. However, after reintegration, the structure-
tensor of the fused image tends to deviate from the structure-
tensor of the multispectral image because there is no constraint
to preserve the structure-tensor of the multispectral image at the
reintegration.

The goal of the proposed method is to generate the fused
RGB image which preserves the structure-tensor of the multispec-
tral image while keeping the natural color of the reference RGB
image. The proposed method generates the fused RGB image by
direct reconstruction from the structure-tensor of the multispec-
tral image and the reference RGB image. The pipeline of the
proposed method is shown in Fig. 1 (b). Our method directly
reconstructs the fused image with the structure-tensor of the mul-
tispectral image by minimizing the energy which consists of the
structure-tensor term and the reference color constraints.

Novelties of this paper include: 1) We propose the
novel method of converting multi-spectrum to RGB with direct
structure-tensor reconstruction, while the existing method is se-
quential. 2) To accomplish this converting, the novel energy com-
posed of the structure-tensor term and the reference color con-
straints is presented, while the existing method cannot reflect nat-
ural color of the reference RGB image.

Related works
Image fusion

Image fusion is a technique for generating an informative
single image by combining multiple input images. This technique
is used in various applications such as image analysis and machine
recognition.

Traditional image fusion methods for generating a gray-
scale image are based on pyramidal decompositions such as the
wavelet-transform [21], the Gaussian and the Laplacian pyra-
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Table 1. Comparison of existing methods and proposed method
Method Feature of multispectral image Color of fused result

Pyramidal decomposition approach [44, 27, 45, 31, 46] Transformed domain - (gray-scale)
Dimensionality reduction approach [45, 31, 9] Sub-space (e.g. PCA, ISOMAP) False color

Variation-based for generating gray-scale image [38, 28] Structure-tensor (sequential) - (gray-scale)
Spectral Edge Image Fusion [8] Structure-tensor (sequential) Natural color

Proposed method Structure-tensor (directed) Natural color
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(a) Pipeline of existing method ”Spectral Edge Image Fusion [8])” : Sequential approach
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(b) Pipeline of proposed method method: Direct approach

Figure 1. Pipeline of existing method and proposed method. The pipeline of the existing method [8]) consists of the two steps: 1) fused-gradient estimation,

and 2) reintegration. In the existing method, the fused-gradient estimation and the reintegration are sequentially processed as shown in the dotted box. The

problem is that the structure-tensor of the fused image tends to deviate from the structure-tensor of the multispectral image after the reintegration. Contrary to

the existing sequential pipeline, the proposed method generates the fused image by the direct structure-tensor construction. The direct approach enables us to

preserve the structure-tensor of the multispectral image while keeping natural color using the reference RGB image.

mid [44, 27], and the contourlet transform [46]. In the pyramidal
decomposition methods, the fused image is generated by com-
bining pixel-by-pixel in the transformed domains. Although the
pyramidal decomposition methods are computationally effective,
the methods tends to generate artifacts in a smooth region. To
restrain the artifacts, the sophisticated image fusion methods in-
troduces the smoothness constraints based on the generalized ran-
dom walks [33], the Markov Random Filed [42, 37, 36] and the
guided filter [22]. Another issue on the existing pyramidal de-
composition methods [21, 44, 27, 46] is that the methods cannot
preserve the feature of the multispectral image sufficiently.

Dimensionality reduction techniques such as PCA [45, 31],
ISOMAP [9] are also applied to generate the fused-image to pre-
serve the feature of the multispectral image. Although these meth-
ods are effective to contain the feature of the multispectral image,
the fused image with gray-scale or false-color is generated.

Another approach of image fusion method is Variation-based
methods [8, 12, 15, 38, 28]. Variation-based methods can pre-
serve the feature of the multispectral image using differential-
geometry [38, 28]. Socolinsky first presented the variation-based
method for generating a gray-scale image using the structure-

tensor which represents geometric structure of the multispectral
image [38]. Motivated by the existing variation-based meth-
ods [38, 28], “Spectral Edge Image Fusion” [8] and its improved
version [12] is proposed to generate a naturalistic color image
from the multispectral image.

Gradient-domain image reconstruction
The gradient-domain image reconstruction is effective for

various applications in computer graphics and image processing
field. For example, image editing framework called “Poisson im-
age editing” was also presented by Perez [26]. Image fusion algo-
rithms in the gradient-domain were proposed [1, 8, 29, 42, 37, 36].
Sun. et al. also proposed the image matting algorithm based on
Poisson equation [40]. Image inpainting method based on the
gradient-domain were also presented to reconstruct the structure
and the texture [32, 34, 35, 41]. Other applications in gradient-
domain include seamless image stitching [48, 16, 20], HDR tone
mapping [10, 4], surface reconstruction [3, 17, 2, 13], color inter-
polation [19, 4], and color-to-gray mapping [11, 14].

As described later, the proposed method reconstructs the
fused RGB image using the fast Poisson reconstruction [43]
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which is the same manner of the Frankot’s approach [3, 13].
In that sense, the proposed method is the extended version of
gradient-domain image reconstruction framework to preserve the
structure-tensor of the input image.

Proposed method

Our method directly reconstructs the fused image with the
structure-tensor of the multispectral image by minimizing the en-
ergy which consists of the structure-tensor term and the reference
color constraints. Here, the reference RGB image is obtained by
selecting the corresponding band of each channel from the mul-
tispectral image. The structure-tensor of the multispectral image
which represents the geometric structure of the multispectral im-
age is defined as

Gi := (∇Hi)
T (∇Hi), (1)

where Gi and ∂Hi are the structure-tensor of the multispectral im-
age and the gradient of the multispectral image at i-th pixel. Here,
the multispectral image consists of M band, and the gradient ∂Hi
is defined as

∇Hi =

∂xH1
i ∂yH1

i
...

...
∂xHM

i ∂yHM
i

 . (2)

The direct structure-tensor-based reconstruction generates the
fused image from the structure-tensor of the multispectral im-
age Gi and the reference RGB image so that the structure-tensor
of the multispectral image Gi is preserved while the color of the
fused image is similar to that of the reference RGB image. Con-
trary to the existing sequential pipeline, the proposed method di-
rectly generates the fused image by minimizing the energy. In
the proposed method, to preserve the the structure-tensor of the
multispectral image Gi, we introduce a structure-tensor fidelity
term which penalizes the structure-tensor differences between the
fused image and the multispectral image. On the other hand, the
reference color constraint is introduced, so that the color of the
fused image is similar to that of the reference RGB image. Specif-
ically, the energy to reconstruct the fused image is given by

E({Ri}) = ∑
i
||(∇Ri)

T (∇Ri)−Gi||2F+

α ∑
i
||∇Ri−∇R̃i||2F + ε ∑

i
||Ri− R̃i||22,

(3)

where Ri is the set of the RGB intensity of the fused image, R̃i is
the RGB intensity of the reference RGB image at i-th pixel, α and
ε are the parameter to balance each term. In Eq. (3), the first term
is the structure-tensor fidelity term. The second and third term
represent the reference color constraint that penalize the residual
between the color intensities of the fused image and the reference
RGB image in the gradient and the color intensity domains.

The proposed energy can be effectively optimized using the
quadratic relaxation [7, 39]. To optimize the energy in Eq. (3) by
the quadratic relaxation, we rewrite the energy function by intro-

Algorithm 1 Minimize Ẽ({Ri}) in Eq. (3)
given α , β and ε
Gi = (∇Hi)

T (∇Hi) using Eq. (1) and Eq. (2)
initialize {Ri}= {R̃i} and {R̂i}= Ri,
for k = 0 to K do
{v̂i}= arg min

{vi}
Ẽv({vi}|{∇R̂i}) in Eq. (5)

{R̂i}= arg min
{Ri}

ẼR({Ri}|{v̂i}) in Eq. (6)

β ← β ×2
end for
return {Ri}

ducing the slack variable vi as

Ẽ({Ri},vi) = ∑
i
||vT

i vi−Gi||2F+

α ∑
i
||∇R̃i−vi||2F +β ∑

i
||∇Ri−vi||2F + ε ∑

i
||Ri− R̃i||22,

(4)

where β is a parameter to control the relative strength of the third
term. In the proposed method, β is incremented for each iteration.
To minimize the energy Ẽ({Ri},vi) in Eq. (4), we update alterna-
tively Ri and vi. In the manner of the quadratic relaxation, Ri is
updated during fixing vi as v̂i. On the other hand vi is updated
during fixing Ri as R̂i. The energies for updating Ri and vi are
given by

Ẽv({vi}|{∇R̂i})=∑
i
||vT

i vi−Gi||2F

+α ∑
i
||∇R̃i−vi||2F+β ∑

i
||∇R̂i−vi||2F ,

(5)

ẼR({Ri}|{v̂i}) = β ∑
i
||∇Ri− v̂i||2F + ε ∑

i
||Ri− R̃i||22. (6)

It is worthy noting that the combination of vi can be updated
pixel-by-pixel independently by Ẽv({vi}|{∇R̂i})while Ri can be
updated effectively by the fast Poisson reconstruction which is ex-
plained in Appendix. The pseudo code for minimizing Ẽ({Ri})
in Eq. (3) is shown in Algorithm 1.

Experiments
We conducted experiments1 with the multispectral images

including the visible and the NIR images[5] and satelite images2.
We implemented the existing methods [8] for comparison because
the source code is not available.

Fig. 2 and Fig. 3 shows that the result on the multispectral
image composed of the visible and the NIR. Again, Fig, 3 (b)
shows that the PCA-based method [45] generates the false color.
As shown in Fig. 4(c) and (d), although “Spectral Image Edge
Fusion” [8] slightly improves the visibility at the haze region, the
proposed method can generate the fused image with the high-
visibility view by fusing the NIR. We evaluate the root-mean-
square error (RMSE) between the structure-tensor of the results
and that of the multispectral image Gi. The RMSE of the re-

1The additional results and information will be available at
http://www.ok.ctrl.titech.ac.jp/res/CID

2NASA: Landsat imagery, http://glcf.umd.edu/data/gls/
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(a) Reference RGB image (b) PCA-based method [45]

(c) Spectral Edge Image Fusion [8] (d) Proposed method

Figure 2. Result on multispectral image (visible and NIR image pair).

(a) Reference RGB image (b) PCA-based method [45] (c) Spectral Edge Image Fusion [8] (d) Proposed method

Figure 3. Result on multispectral image (close-ups).

sults by proposed method and “Spectral Image Edge Fusion” [8]
are 0.00123 and 0.00659, respectively. This result shows that the
proposed method can preserve the structure-tensor of the multi-
spectral image than the existing method quantitatively.

Finally, we show the results on satellite images composed of
seven-band. As shown in Fig. 4 and Fig. 5, the proposed method
can improve the visibility by preserving the structure-tensor of the
multispectral image while keeping the natural color of the refer-
ence RGB image.

Conclusion
The novel multi-spectrum to RGB method with direct

structure-tensor reconstruction has been proposed. The proposed
method generates the fused image directly with the structure-
tensor of the original multispectral image by minimizing an en-
ergy which consists of the structure-tensor term and the reference
color constraint term. The proposed direct structure-tensor recon-
struction enables us to preserve the structure-tensor of the mul-
tispectral image while keeping the naturalistic color of the refer-
ence RGB image. The experimental results on multispectral im-

ages including visible and NIR images showed that the proposed
method outperforms the existing methods in terms of not only im-
age quality but also quantitative evaluations.

References
[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,

B. Curless, D. Salesin, and M. Cohen. Interactive digital photomon-
tage. ACM Trans. on Graphics (TOG), 23(3):294–302, 2004.

[2] A. Agrawal, R. Chellappa, and R. Raskar. An algebraic approach to
surface reconstruction from gradient fields. Proc. of IEEE Int. Conf.
on Computer Vision(ICCV), 1:174–181, 2005.

[3] A. Agrawal, R. Raskar, and R. Chellappa. What is the range of
surface reconstructions from a gradient field? Proc. of European
Conf. on Computer Vision (ECCV), pages 578–591, 2006.

[4] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless. Gradientshop: A
gradient-domain optimization framework for image and video filter-
ing. ACM Trans. on Graphics (TOG), 29(2):10, 2010.
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Appendix: Fast Poisson reconstruction
In this appendix, we present the detailed description of

the computational effective gradient-domain image reconstruc-
tion algorithm which is the same manner of the Frankot’s ap-
proach [13, 3]3. In general, the optimization problem for the Pois-
son problem [26] is described as

min
r

∫
Ω
|∇r−v|2dΩ with r|∂Ω = r∗|∂Ω, (7)

where r is the reconstructed image intensity, v is the guidance
gradient field, Ω is the target region (hole region), and ∂Ω is the
boundary region between the target region and the source region.
The solution of the optimization problem is obtained by solving
the Poisson equation with the Direichlet boundary condition:

∆r = divv over Ω with r|∂Ω = r∗|∂Ω, (8)

where ∆ is the Laplacian operator. In the Poisson image edit-
ing [26], the Poisson equation is solved by Gauss-Seidel method.
Although the Poisson image editing is very effective for vari-
ous applications, the Gauss-Seidel method requires large com-
putational cost because the Gauss-Seidel method is an iterative
technique. Further more, the Poisson image editing approach has
a limitation which the color of the target region will be totally
adapted to the source region.

The proposed reconstruction algorithm optimizes whole im-
age region while the Poisson image editing only optimizes the
source image region. The proposed fast Poisson reconstruction
has a closed form solution and a color preserving parameter. This
color preserving parameter can control the color adaptation level.
If the color adaptation parameter is large, the color of the source

3The code is available at http://www.ok.ctrl.titech.ac.jp/res/IC/IC.html
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and destination is perfectly preserving in the reconstructed result.
In the proposed fast Poisson reconstruction, we minimize the fol-
lowing energy functional.

f [r] =
∫

T
|∇r−v|2dt + ε

∫
T
|r− r̃|2dt, (9)

where r̃ is the naive composed image, T is the whole image re-
gion, and ε is the color preserving parameter. The closed form so-
lution of Eq. (9) is derived from the functional derivative δ f [r]/δ r
as

(div v−∆r)+ ε(r̃− r) = 0. (10)

The discretized version of Eq. (9) and Eq. (10) are given by

F({Ri}) = ∑i ||∇Ri−V j||2F + ε ∑i ||Ri− R̃i||2, (11)

(Ui−∆Ri)+ ε(Ri− R̃i) = 0, (12)

where Ri and R̃i are discretized value of r and r̃ at i-th pixel,
V j is discretized value of v, and Ui is the discritized version of
divv at i-th pixel, respectively. It is worthy noting that the color
version of the energy F({Ri}) in Eq. (12) is equal to the energy
ẼR({Ri}|{v̂i}) in Eq. (6). The solution of Eq. (12) is effectively
obtained using discrete cosine transform as

Rω =
Uω + R̃ω
ε +Lω

, (13)

where Rω is the discrete-cosine-transformed reconstructed image
of at the frequency ω , Uω is the discrete-cosine-transformed com-
ponent of Ui, R̃ω is the discrete-cosine-transformed naive com-
posed image, Lω is the discrete-cosine-transformed Laplacian op-
erator ∆.
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