
Single-Sensor RGB and NIR Image Acquisition:
Toward Optimal Performance by Taking Account of CFA
Pattern, Demosaicking, and Color Correction
Hayato Teranaka, Yusuke Monno, Masayuki Tanaka and Masatoshi Okutomi
Department of Mechanical and Control Engineering, Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, Japan

Abstract
In recent years, many applications using a pair of RGB

and near-infrared (NIR) images have been proposed in com-
puter vision and image processing communities. Thanks to recent
progress of image sensor technology, it is also becoming possible
to manufacture an image sensor with a novel spectral filter array,
which has RGB plus NIR pixels for one-shot acquisition of the
RGB and the NIR images. In such a novel filter array, half of the
G pixels in the standard Bayer color filter array (CFA) are typi-
cally replaced with the NIR pixels. However, its performance has
not fully been investigated in the pipeline of single-sensor RGB
and NIR image acquisition. In this paper, we present an imag-
ing pipeline of the single-sensor RGB and NIR image acquisition
and investigate its optimal performance by taking account of the
filter array pattern, demosaicking and color correction. We also
propose two types of filter array patterns and demosaicking algo-
rithms for improving the quality of acquired RGB and NIR images.
Based on the imaging pipeline we present, the performance of dif-
ferent filter array patterns and demosaicking algorithms is evalu-
ated. In experimental results, we demonstrate that our proposed
filter array patterns and demosaicking algorithms outperform the
existing ones.

Introduction
In recent years, many applications using a pair of RGB and

near-infrared (NIR) images have been proposed in computer vi-
sion and image processing communities such as image enhance-
ment [1, 2], image fusion [3, 4], dehazing [5, 6], denoising [7, 8],
and shadow detection [9]. However, the acquisition of the pair
of RGB and NIR images is still a challenging task because exist-
ing acquisition systems typically require multiple cameras [1] or
multiple shots [9], where one is required for RGB and the other is
required for NIR.

In current compact and low-cost digital cameras, single-
senor color image acquisition with the Bayer color filter array
(CFA) [10], as shown in Fig. 1 (a)-(c), is well established [11]. To
simultaneously acquire the RGB and the NIR images, many exist-
ing works extend the idea of using the CFA for single-sensor RGB
and NIR image acquisition [12–18]. Thanks to recent progress of
image sensor technology, it is also becoming possible to manu-
facture an image sensor with a novel filter array, which has RGB
plus NIR pixels [14–18]. This sensor can provide us with a prac-
tical solution for one-shot acquisition of the RGB and the NIR
images without increased size and cost from current color digital
cameras. Hereafter, we call such a filter array “RGB-NIR filter
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Figure 1: RGB sensor and RGB-NIR sensor: (a) Bayer pattern. (b) RGB
sensor. (c) RGB sensor sensitivity. (d) Uniform RGB-NIR pat-
tern. (e) RGB-NIR sensor. (f) RGB-NIR sensor sensitivity.

array” and such a sensor “RGB-NIR sensor,” respectively.
In the RGB-NIR filter array, half of the G pixels in the

standard Bayer CFA are typically replaced with the NIR pix-
els [14–18], as shown in Fig. 1 (d)-(f). In other words, each spec-
tral band is uniformly sampled in the filter array. We call this
pattern “uniform RGB-NIR pattern” in this paper. In the single-
sensor RGB and NIR image acquisition, the sensor output is mo-
saic data, where only one pixel value among R, G, B, and NIR
values is recorded at each pixel location. Therefore, full RGB
and NIR images need to be generated by an interpolation process,
which is typically called demosaicking [19, 20]. Although it is
known that both the filter array pattern and the demosaicking al-
gorithm affect the quality of the acquired RGB and NIR images,
the performance of the uniform RGB-NIR pattern has not fully
been investigated in the past literatures [14–18].

The other challenge of the single-sensor RGB and NIR im-
age acquisition is color correction. Since typical RGB filters have
spectral sensitivities also in the NIR wavelengths (see Fig. 1 (f)),
an NIR-cut filter is usually placed in front of the current RGB sen-
sor to avoid NIR contaminations of the acquired RGB image (see
Fig. 1 (b) and (c)). However, the NIR-cut filter needs to be re-
moved to acquire both the RGB and the NIR images by the RGB-
NIR sensor. Therefore, color correction is required for removing
the NIR contaminations of the RGB image and reproducing the
image with correct color representation [16, 21]. To investigate
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Figure 2: Image processing pipeline of the single-sensor RGB and NIR image acquisition.

an optimal performance of the single-sensor RGB and NIR image
acquisition, it is important to take into account all of the filter ar-
ray pattern, the demosaicking and the color correction, which has
not fully been addressed in existing works.

In this paper, we first present an imaging pipeline of the
single-sensor RGB and NIR image acquisition. Then, we investi-
gate its optimal performance by taking account of the filter array
pattern, the demosaicking and the color correction. Especially, we
propose two types of filter array patterns and demosaicking algo-
rithms for improving the quality of the acquired RGB and NIR im-
ages. Based on the imaging pipeline we present, the performance
of different filter array patterns and demosaicking algorithms is
evaluated in simulation experiments. In experimental results, we
demonstrate that our proposed filter array patterns outperform the
commonly used uniform pattern.

Imaging Processing Pipeline

Overview
Fig. 2 presents the standard image processing pipeline of the

single-sensor RGB and NIR image acquisition. The pipeline con-
sists of two successive image processing operations, demosaick-
ing and color correction. The demosaicking is firstly performed to
reconstruct full RGB and NIR images from the mosaicked sensor
output, where only one spectral band is measured at each pixel lo-
cation according to the filter array pattern. Then, color correction
is performed for removing the NIR contaminations of the RGB
image and reproducing the image with standard RGB (sRGB)
representation [16, 21]. In the following, the detailed explana-
tion of the filter array patterns, the demosaicking algorithms and
the color correction is described. We also propose two novel filter
array patterns for improving the performance of the single-sensor
RGB and NIR image acquisition.

RGB-NIR Filter Array Patterns and Demosaicking
Algorithms

Uniform RGB-NIR pattern. Fig. 3 (a) shows the uniform
RGB-NIR pattern and its demosaicking flow by the state-of-the-
art algorithm in [18]. The uniform RGB-NIR pattern is commonly
used in existing works [14–18]. In the uniform RGB-NIR pat-
tern, each spectral band is evenly sampled. In the demosaicking
algorithm [18], the NIR band is firstly interpolated by bicubic in-
terpolation. Then, the missing G pixel values at the NIR pixel
locations are estimated by color difference interpolation to recon-
struct the Bayer mosaic data. Finally, a Bayer demosaicking al-

gorithm is performed to generate the interpolated RGB image. In
experiments, we use the residual interpolation [22] for the Bayer
demosaicking algorithm.

Proposed RGB-NIR pattern 1. Fig. 3 (b) shows the proposed
RGB-NIR pattern 1 and its demosaicking flow. This pattern is
an instance of the previously proposed pattern [23]. We design
this pattern to have the following desirable properties: (i) The
NIR pixels are sampled from the Bayer CFA, and (ii) the sam-
pling density of the G pixels is as high as the Bayer CFA. In the
same manner as most of the Bayer demosaicking algorithms, we
first interpolate the missing G pixel values. The advantage of this
pattern is that we can effectively generate a high-quality guide G
image from the only subsampled RGB data, because the NIR pix-
els are sparsely sampled from the Bayer CFA. After generating
the high-quality guide G image, we exploit inter-channel corre-
lations to interpolate the missing R, B and NIR pixel values by
residual interpolation [22]. We refer to the papers [22, 23] for
detailed descriptions of the algorithm.

Proposed RGB-NIR pattern 2. Fig. 3 (c) shows the proposed
RGB-NIR pattern 2 and its demosaicking flow. In common with
the proposed RGB-NIR pattern 1, the proposed RGB-NIR pat-
tern 2 also has the same sampling density of the G pixels as the
Bayer CFA. However, the NIR pixels have a higher sampling den-
sity compared with the proposed RGB-NIR pattern 1. In the de-
mosaicking algorithm, all of the R, G, B, and NIR bands are used
for generating a high-quality guide G image. Then, we exploit
inter-channel correlations to interpolate the missing R, B and NIR
pixel values by residual interpolation [22]. We refer to the pa-
pers [22, 24] for detailed descriptions of the algorithm.

Color Correction
After generating the interpolated RGB and NIR images,

color correction is performed to reproduce the sRGB image. We
simply perform the linear mapping as

 sR
sG
sB

=


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44




R
G
B
NIR

 , (1)

where [sR,sG,sB]T is a target sRGB vector and [R,G,B,NIR]T
is a input intensity vector. The 3× 4 color correction matrix is
calculated by a least-square manner based on training samples.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.18.DPMI-256

IS&T International Symposium on Electronic Imaging 2016
Digital Photography and Mobile Imaging XII DPMI-256.2



G R G R G R G R
B N B N B N B N
G R G R G R G R
B N B N B N B N
G R G R G R G R
B N B N B N B N
G R G R G R G R
B N B N B N B N

Subsampled NIR

Subsampled R

Bayer
demosaicking

Bicubic
interpolation

Subsampled B

Subsampled G

Interpolated NIR

Interpolated R

Interpolated B

Interpolated G

Color difference
interpolation

Uniform pattern

R G B NIR
Sampling
density 1/4 1/4 1/4 1/4

(a) Uniform RGB-NIR pattern and its demosaicking flow.

Proposed pattern 1

G N G R G R G R
B G B G N G B G
G R G R G R G N
N G B G B G B G
G R G N G R G R
B G B G B G N G
G R G R G R G R
B G N G B G B G

Subsampled NIR

Subsampled R

Residual 
interpolation

Residual 
interpolation

Subsampled B

Subsampled G

Interpolated NIR

Interpolated R

Interpolated B

Interpolated G

Residual 
interpolation

Guide image

G pixel value
interpolation

R G B NIR
Sampling
density 1/5 1/2 1/5 1/10

(b) Proposed RGB-NIR pattern 1 and its demosaicking flow.

G N G N G N G N
R G B G R G B G
G N G N G N G N
B G R G B G R G
G N G N G N G N
R G B G R G B G
G N G N G N G N
B G R G B G R G

Subsampled NIR

Subsampled R

G pixel value
interpolation

Residual 
interpolation

Residual 
interpolation

Subsampled B

Subsampled G

Interpolated NIR

Interpolated R

Interpolated B

Interpolated G

Residual 
interpolation

Guide image

Proposed pattern 2

R G B NIR
Sampling
density 1/8 1/2 1/8 1/4

(c) Proposed RGB-NIR pattern 2 and its demosaicking flow.

Figure 3: Demosaicking flows with different RGB-NIR filter array patterns: (a) Uniform RGB-NIR pattern. (b) Proposed RGB-NIR pattern 1. (c)
Proposed RGB-NIR pattern 2.

Experiments
In experiments, we used a hyperspectral image dataset in-

cluding both visible and NIR wavelengths (420-1000nm). The
hyperspectral image is acquired at every 10 nm by using a
monochrome camera with two VariSpec tunable filters [25],
VIS (420-640nm) and SNIR (650-1000nm). The captured hy-
perspectral image is then converted into a form of spectral re-
flectance using a calibration chart. In experimental evaluation,
the whole imaging pipeline is simulated by using the hyperspec-
tral dataset as the ground truth. The dataset consists of 40 scenes
with 512×512 pixels, which is divided into two groups, where
half 20 scenes are used for training the color correction matrix
in Eq. (1) and the rest 20 scenes are used for testing the imaging
pipeline. We assumed a daylight as a light source for the evalua-
tion. Fig. 4 summarizes the pipeline of simulation experiments.

We compared three filter array patterns; (i) the uniform
RGB-NIR pattern, (ii) the proposed RGB-NIR pattern 1, and

(iii) the proposed RGB-NIR pattern 2. In the numerical compar-
ison, we evaluate multispectral peak signal-to-noise ratio (MP-
SNR) calculated as

MPSNR = 10log
2552

1
4 ∑i=sR,sG,sB,NIR ||x̂i− xi||22

, (2)

where x̂i is the estimated pixel value and xi is the ground-truth
pixel value. Table 1 shows the MPSNR performance of the test
20 scenes. One can see that our proposed RGB-NIR patterns sig-
nificantly outperform the uniform pattern. The proposed pattern 1
is slightly better than the proposed pattern 2. Fig. 5 shows the
visual comparison of the acquired RGB and NIR images by dif-
ferent filter array patterns. From the visual comparison, our pro-
posed RGB-NIR patterns can offer visually pleasing results, while
the uniform RGB-NIR pattern generates severe visual artifacts in
edges.
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Figure 4: The pipeline of simulation experiments.

Conclusion
In this paper, we presented the image processing pipeline of

the single-sensor RGB and NIR image acquisition and investi-
gated its optimal performance by taking account of the filter ar-
ray pattern, the demosaicking, and the color correction. We also
proposed two novel filter array patterns and demosaicking algo-
rithms to achieve a better performance for acquiring high-quality
RGB and NIR images. The advantage of our proposed filter array
patterns is that we keep the sampling density of the G pixels as
high as the Bayer CFA. We experimentally compared the perfor-
mance of the imaging pipeline with different filter array patterns
and demonstrated that our proposed filter array patterns outper-
form the commonly used uniform pattern in terms of numerical
and visual comparisons.
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